当前位置:文档之家› 火电厂保安电源事故切换及保安负荷失电重启试试验方案验

火电厂保安电源事故切换及保安负荷失电重启试试验方案验

火电厂保安电源事故切换及保安负荷失电重启试试验方案验
火电厂保安电源事故切换及保安负荷失电重启试试验方案验

#1机保安电源事故切换及保安负荷重启动试验方案

#1机组于XX月XX日XX:XX停备,预计时间5天,为吸取兄弟电厂全厂事故教训,验证我厂保安段电源在保安段失电情况下能可靠切换,保证事故情况下尤其是全厂失电情况下保安负荷能正常运行,确保机组安全停机,在本次停机期间,需对保安段工作电源、备用电源、柴油发电机组供电电源进行可靠性事故切换试验,并对盘车电机、发电机交流密封油泵、汽轮机交流润滑油泵等重要保安负荷进行在保安段短时失电电压恢复后的重启动试验。

根据运行经验,汽轮机盘车过程预计5天,本次试验安排在盘车过程后期或盘车结束期间进行。考虑到重要保安负荷在盘车过程后期失电停运时间不能过长,为防止事故切换试验失败,导致重要保安负荷失电时间过长影响汽轮机组盘车,特制定本方案。

试验准备:

1、试验前检查#1机保安MCC工作电源4B1A1开关、保安MCC 工作电源进线4B1A2开关、保安MCC备用电源4B1B1开关在远方合闸位,保安MCC备用电源进线4B1B2开关在远方工作分闸位,柴油发电机出口4B01开关在远方工作合闸位,柴油发电机电源4B016隔离开关在合闸位,保安段由400V工作ⅠA段带电。柴油发电机组控制柜上运行方式处于自动位,柴油发电机油位、机油压力、电池电压等正常。

2、保护人员检查保安段重要保安负荷开关马达保护器欠压保护设置正确,起动参数中重启动参数设置正确。

3、运行人员将在投脱硫保安MCC(1)、UPS、直流系统、DCS 电源等重要负荷倒至其它电源带电。

试验过程:

1、运行人员停止发电机密封油交流备用油泵,发电机密封油直流油泵应连锁起动。若联起不成功,运行人员应及时起动发电机密封油交流备用油泵,试验结束后检修人员检查联起不成功原因。

2、运行人员停止交流润滑油泵,直流润滑油泵应连锁起动。若联起不成功,运行人员应及时起动交流润滑油泵,试验结束后检修人员检查联起不成功原因。

3、运行人员断开#1机保安MCC工作电源进线4B1A2开关,保安MCC备用电源进线4B1B2开关应自动合闸,同时柴油发电机应能自动启动。保安段电压恢复,运行人员注意观察顶轴油泵、盘车装置等保安负荷运行情况。

4、运行人员断开保安MCC备用电源进线4B1B2开关,柴油发电机自启动,由柴油机组控制柜控制器判断柴油机组准备带载,自动合上出口4B01开关,保安MCC段由柴油发电机组供电。若经过一段时间后柴油发电机组出口4B01开关合闸不成功,则由运行人员及时停止柴油发电机,合上保安MCC工作电源进线4B1A2开关,恢复保安段电源,同时注意顶轴油泵、盘车电机、电动给水泵辅助油泵等重要电机自动重启动是否成功。若3分钟之内电机重启动不成功,则

由运行人员起动相应电机,检修人员检查原因。

5、柴油发电机组带保安MCC段运行15分钟后,由运行人员断开柴油发电机组出口4B01开关,合上#1机保安MCC工作电源进线4B1A2开关,保安MCC段恢复由工作400VPCA段供电。

试验后分析:

检修人员检查DCS历史记录曲线,核对保安段各开关事故切换时间及柴油机起动到出口开关合闸的延时时间。必要时调整保安MCC段马达保护器电机重启动的失压延时时间。

事故保安电源设备安装.(DOC)

1、适用范围 本指导书适用于天龙矿业2*200MW发电厂安装工程的事故保安电源设备安装工程。 2、编制依据 1、新疆电力设计院设计的有关图纸。 2、《施工现场临时用电安全技术规范》JGJ46-2005。 3、《电气装置安装工程质量检验及评定规程》DL/T5161.1~5161.17-2002。 3、作业项目概述 本工程全厂设一台800KW、400V柴油发电机,柴油发电机中性点直接接地,一段进线及四段保安段,一套UPS不间断电源装置。 4、作业准备 1、到达现场的设备包装完整,密封件密封应良好。 2、检查清点,型号、规格以及外观质量应符合设计要求,附件、备件应齐全。 3、产品的技术文件应齐全。 4、检查应无损坏、变形、锈蚀。 施工前准备好相应的机具,机具如下表: 5、作业条件 5.1、技术 5.1.1、技术员应组织作业人员认真学习、理解设计要领,熟悉施工场地,了解土建施工

进度。

5.1.2、施工图纸已会审并交底; 5.1.3、认真收集厂家技术资料,对制造厂有特殊要求的设备,应尽早作好技术准备;5.1.4、应按照安装图核对土建施工的水泥平台尺寸及间距应符合设计要求; 5.2、施工现场 5.2.1、盘柜安装前应具备下列技术文件: a.土建移交的初地平标高记录,签证单等。 b.预埋件、电缆预留孔的位置及其他相关资料。 5.2.2、盘柜安装时应具备下列条件: a.控制室和电子设备室墙壁、柱子、顶棚粉刷装饰完。 b.门窗安装完毕,安全措施完善。 c. 施工区域环境卫生已打扫干净、并符合安装要求,防尘措施到位。 d. 空调系统具备投运条件,采暖通风装置及照明工程已全部完工具备投用条 件。 e.运输道路要畅通,临时用电符合安全要求。供电必须可靠,可采用双电源供电。 5.2.3、盘柜、设备开箱验收合格,同时施工人员必须做好施工记录,确保工序衔接。 6、作业顺序

用电负荷明细表(详细)

用电负荷明细表(详细)

一、住宅楼照明用电明细表(详细) 序号楼 号 每户 (KW ) 户数照明容量(KW)备注 1 1 6 A单元50户+B单元50户=100户270.1+241.5= 511.6 住宅 2 2 4 甲单元(1、3)24户+甲单元(2、 4)24户+甲单元(5)12户=60户112+112+56=28 住宅 3 3 甲单元(1、2)24户+甲单元(3、4) 24户+甲单元(5)12户=60户112+112+56=28 住宅

4 4 6 A单元34户+B单元34户=68户204+204=408住宅 5 5 6 A单元34户+B单元34户=68户241.5+241.5= 483 住宅 6 6 4 甲单元(1、3)24户+甲单元(2、4) 24户+甲单元(5)12户=60户112+112+56=28 住宅 7 7 4 甲单元(1、2、3、4、5)12户x5 个单元=60户 420住宅 8 8 4 一单元44户+二单元44户+三单元 44户=132户 528 住宅 9 9 4 一单元44户+二单元44户+三单元 44户=132户 528 住宅

10 10 4 一单元44户(每户4KW)+二单元44 户(每户4KW)+三单元44户(每户 6KW)=132户176+176+264= 456 住宅 小 计 4174.6住宅

二、住宅楼电梯用电明细表(详细) 序号楼 号 设备 名称 数量单台功率 (KW) 总功率(KW)备注 1 1 消防 电梯 2台15 30 住宅楼 2 2 消防 电梯 0 住宅楼 3 3 消防 电梯 0 住宅楼

备用电源自动投切装置定期实验切换制度

设备定期投切试验制度 为了使运行设备安全可靠地长期运行,保证备用设备处于良好状态,对一些设备进行定期切换运行或试验,是确保机组安全运行的重要措施。 1.运行人员应在规定的时间内,按要求,严格认真的做好有关项目的定期切换和实验工作,并将执行情况记入交接班簿和定期切换实验簿,以备查考。 2.由于某些原因,不能执行(或未执行)定期切换工作或实验时,应注明其具体原因。不得随意改变执行时间或不执行。 3.例行实验的具体内容及要求详见集控运行例行试验表。本表中已列出的实验监护项目,必须严格执行操作监护制度。 4.本定期实验制度未列出实验的具体操作程序,因此其操作必须遵循各运行规程的有关规定。 5.操作员应熟悉场用电气运行方式,有较强的处理事故的应变能力。 6.本制度是运行基本技术管理制度之一,自公布日起执行。

集控运行例行试验表

备用电源自动投入装置定期切换实验制度为贯彻反事故措施,确保场用电的连续安全运行,决定进行备用电源自动投入装置(简称BZT)做定期切换试验。为使该项工作顺利进行,特制定本措施: 一、组织措施: 1.参加人员:风场场长、电气专工、安全员、技术员、运行组、检修组。 2.担任切换试验的操作员,应熟悉场用电气运行方式,有较强的处理事故的应变能力。 3.在进行备用电源自动投入装置(简称BZT)切换试验前,应根据运行方式做好事故预想,充分协调,明确分工,并将分工情况汇报场长。 4.在备用电源自动投入装置切换试验过程中,如果发生事故,各参加人员要立即中止试验操作,在值长的统一指挥下处理事故。 5.风场运行值长负责本分场检修及运行人员的协调工作。 二、备用电源自动投入装置切换试验的范围: 400V配电室 三、备用电源自动投入装置切换试验的周期: 切换周期原则为一个月。切换时机应选择在重要设备备用(或非工作)状态,如在试验周期内发现BZT工作异常,经修复后也应做切换试验。其试验时机的选择,参加试验的人员,与做定期试验时相同。其试验周期亦应从本次试验算起;若本月某段的BZT动作成功过,

双电源切换装置改造技术规范标准

1.热控电动门低压电源柜双电源切换装置技术改造规 1.1总则 1.1.1 本规书适用于华电热电热控电动门低压电源柜双电源自动切换装置改造项目的有关方面的要求,其中包括技术指针、性能、结构、试验等要求,还包括数据交付及技术文件要求等。 1.1.2本规书提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规的条文,供方应保证提供符合国家或国际标准和本规书的优质产品。若供方所使用的标准与本规书所使用的标准不一致时,按较高标准执行。 1.1.3 如供方没有以书面形式对本规书的条文提出异议,那么招标方就可以认为供方提供的产品完全满足本规书的要求。 1.1.4本规书为订货合同的附件,与合同正文具有同等效力。 1.1.5在签订合同之后,到供方开始制造之日的这段时间,招标方有权提出因规、标准和规程发生变化而产生的一些补充修改要求,供方应遵守这个要求。 1.1.6本规书未尽事宜,双方协商解决。 1.2 供方的工作围 供方至少必须按下列项目提供双电源及其配套设备和相应服务: a. 设计 b. 装配 c. 材料试验 d. 设计试验 e. 生产试验 f. 包装 g. 检验 h. 运输及现场交货 i. 安装 j. 调试 i.安装结束,投入生产前相关试验合格。 2、技术要求

2.1 技术要求: a. 额定电压:400V b. 额定绝缘电压690V c. 额定频率:50HZ d. 额定工作电流:80A、125A e. 极限短路分断能力:Icu≥65KA f. 运行短路分断能力:Icu≥65KA g. 断电时间<100ms 2.2 使用说明 本技术规书中的低压开关柜用于华电热电热控电动门低压电源柜自动双电源切换装置改造项目,其中装有必要的控制、保护设备。 2.3 双电源装置选用国际品牌应具有瞬时、超载、短延时、缺相保护等功能 对现有电气回路进行修改,现场能够显示投切状态,失电、缺相等故障声光报警。DCS远程监控投切状态,失电、缺相等故障信号,远程控制投切 2.4 所有导体接触面进行镀银处理 母线支持件和母线绝缘物,应为不吸潮、阻燃、长寿命的并能耐受规定的环境条件产品。在设备的使用寿命,其机械强度和电气性能应基本保持不变。 所有导体的支持件,应能耐受相当于它所接的断路器的最大额定开断电流所引起的应力。 2.5 接线 控制、测量表计和继电器等端子排均应为防潮、防过电压、阻燃、长寿命端子排。端子排的额定值不小于20A,500V,并具有隔板、标志牌和接线螺钉,每个端子应标上需方KKS的编号。 端子选用菲尼克斯系列端子。 应提供适当数量的备用端子,每排端子应有不少于15%的备用量。 供招标方外部连接用的端子,应按能连贯地连接一根电缆的所有缆芯来布置,一根外部联机应接至各自的引出端子桩头上。在所有端子的正前方,应留出足够的、无阻挡的接近空间。 由供方提供的控制线应为不小于1.5mm2交联聚乙烯绝缘线,额定耐压为600V,并具有耐热、防潮、阻燃性能。要求有挠性的地方,应采用多股导线。布线应没有磨损

关于保安段电源

运行规程 39.3保安系统运行方式及切换原则 39.3.1保安系统正常运行方式 39.3.1.1正常情况下,各机400V保安PC段由本机组400V工作PC A段供电,由400V 工作PC B段供电的备用电源进线一次开关在合闸状态、二次开关在分闸连锁备用状态;柴油发电机为应急保安电源,其出口刀闸在合,400V保安PC段柴油机组进线开关和柴油机组出口开关处于热备用状态。 39.3.1.2各进线开关控制方式选择“远方”位置,“联锁”开关投入,低电压联锁开关在联锁位置。 39.3.1.3柴油发电机组运行方式选择开关在“自动”启动状态,就地电气控制柜在“自动”状态,“自动”模式指示灯点亮。 39.3.1.4脱硫保安MCC A段正常由脱硫PC A段供电,#9机保安段电源备用;脱硫保安MCC B段由脱硫PC B段供电,#10机保安段电源备用。 39.3.2保安系统切换原则 39.3.2.1柴油发电机的出口开关控制电源采用自身机组电源。 39.3.2.2控制逻辑说明: 当保安MCC段母线TV失压(带延时?输出)(DCS判还是PT保护判,PT有母线欠压信号至DCS)时,启动柴油发电机组,同时进行以下操作(DCS实现): 1) 如果工作PC A段无电压(DCS判,PT保护无母线欠压),工作PC B段有电压(DCS 判,PT保护无母线欠压);则: a. 跳开开关QF3,如果此时QF2保护未动作,投入开关QF4,若保安MCC段电 压恢复,则向柴油发电机组发出停机指令,停柴油发电机。 b. 跳开开关QF3,如果此时QF2保护未动作,当QF4投入后,保护动作跳开 QF4,则向柴油发电机组发出停机指令,停柴油发电机。 2) 如果工作PC A段及工作PC B段均无电压,则: 跳开保安MCC段开关QF3,由柴油发电机控制屏判断QF3、QF4均跳闸后,合QF,投入柴油发电机。 3) 如果工作PC A段有电压,QF1保护动作且QF3跳开;则: a. 若QF2保护未动作,投入开关QF4,如果保安MCC电压恢复,则由DCS向 柴油发电机发出停机指令,停柴油发电机。

双电源自动转换开关说明书

双电源自动转换开关说明书 相信大家一定都购买过双电源自动转换开关,顾名思义它是在用电突然断电时通过双电源切换开关,自动连接到备用的电源上,使我们的运作不至于停断,仍能继续运作。这种开关在我们生活的很多地方都有用到,许多公司和小区都有,那么让装修界为您具体的讲解通过双 电源切换开关的原理以及说明书。双电源自动切换开关电器主要用在紧急供电系统,将负载

电路从一个电源自动换接至另一个(备用)电源的开关电器,以确保重要负荷连续、可靠运行。因此,常常应用在重要用电场所,其产品可靠性尤为重要。转换一旦失败将可能造成以下二种危害之一,其电源间的短路或重要负荷断电(甚至短暂停电),其后果都是严重的,这不仅仅会带来经济损失(使生产停顿、金融瘫痪),也可能造成社会问题(使生命及安全处于危险之中)。因此,工业发达国家都把自动转换开关电器的生产、使用列为重点产品加以限制与规范。双电源自动切换开关一般由两部分组成:开关本体(ats)+控制器。而开关本体(ats)又有pc级(整体式)与cb级(断路器)之分,双电源自动转换开关电器(atse)质量的好坏关键取决于开关本体(ats)。1.pc级ats:一体式结构(三点式)。它是双电源切换的专用开关,具有结构简单、体积小、自身连锁、转换速度快(0.2s内)、安全、可靠等优点,但需要配备短路保护电器。 2.cb级ats:配备过电流脱扣器的ats,它的主触头能够接通并用于分断短路电流。它是由两台断路器加机械连锁组成,具有短路保护功能控制器的工作状况控制器主要用来检测被监测电源(两路)工作状况,当被监测的电源发生故障(如任意一相断相、欠压、失压或频率出现偏差)时,控制器发出动作指令,开关本体则带着负载从一个电源自动转换至另一个电源,备用电源其容量一般仅是常用电源容量的20%~30%。图1是典型ats应用电路。控制器与开

双电源切换应用电路

双电源切换应用电路 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

功率P-FET控制器LTC4414 LTC4414是一种功率P-EFT控制器,主要用于控制电源的通、断及自动切换,也可用作高端功率开关。该器件主要特点:工作电压范围宽,为~36V;电路简单,外围元器件少;静态电流小,典型值为30μA;能驱动大电流P沟道功率MOSFET;有电池反极性保护及外接P-MOSFET的栅极箝位保护;可采用微制器进行控制或采用手动控制;节省空间的8引脚MSOP封装;工作温-40℃+125℃。 图1 LTC4414的引脚排列引脚排列及功能 LTC4414的引脚排列如图1所示,各引脚功能如表1所示。 图2 LTC4414结构及外围器件框图 基本工作原理 这里通过内部结构框图及外接元器件组成的电源自动切换电路来说明其工作原理。内部结构框图及外围元器件组成的电路如图2所示。其内部结构是由放大器A1、电压/电流转换电路、电源选择器(可由VIN端或SENSE端给内部电路供电)、模拟控制器、比较器C1、基准电压源()、线性栅极驱动器和栅极电压箝位保护电路、开漏输出FET及在CTL内部有μA的下拉电流源等组成。外围元器件有P沟道功率MOSFET、肖特基二极管D1、上拉电阻RPU、输入电容CIN及输出电容COUT。 图2中有两个可向负载供电的电源(主电源及辅电源),可以由主电源单独供电,也可以接上辅电源,根据主、辅电源的电压由LTC4414控制实现自动切换。这两种供电情况分别如下。 1 主电源单独供电

主电源单独供电时,电流从LTC4414的VIN端输入到电源选择器,给内部供电。放大器A1将VIN和VSENSE的差值电压放大,并经过电压/电流转换,输出与VIN-VSESNSE之值成比例的电流输入到模拟控制器。当VIN-VSESNE>20mV时,模拟控制器通过线性栅极驱动器及箝位保护电路将GATE 端的电压降到地电平或到栅极箝位电压(保证-VGS≤),使外接P-MOSFET 导通。与此同时,VSESNE被调节到VSESNE=VIN-20mV,即外接P-MOSFET的VDS=20mV。P-MOSFET的损耗为ILOAD×20mV。在P-MOSFET 导通时,模拟控制器给内部FET的栅极送低电平,FET截止,STAT端呈高电平(表示P-MOSFET导通)。 2 加上辅电源 当加上辅电源(如交流适配器)后,如果VSESNE> VIN+20mV,则内部电源选择器由SENSE端向内部电路供电。模拟控制器使GATE端电压升高到VSENSE,则P-MOSFET截止,辅电源通过肖特基二极管D1向负载供电。这种电源切换是自动完成的。 在辅电源向负载供电时,模拟控制器给内部FET的栅极送高电平,FET导通,STAT端呈低电平(表示辅电源供电)。上拉电阻RPU的阻值要足够大,使流过FET的电流小于5mA。 在上述两种供电方式时,CTL端是接地或悬空的。CTL的控制功能将在下面的应用电路介绍。 典型应用电路 1主、辅电源自动切换电路

备用电源自动投入装置及接线方式

洛阳理工学院 备用电源自动投入装置原理及接线方式 专业:电气工程及其自动化专业班级:电气35班 学号:B12043506 学生姓名:皇甫晓晓 完成时间: 2013年11月15日

《电力系统自动装置》课程论文评分表

摘要 随着经济建设的发股,我国电力系统的规模日益扩大,发电设备的容量也相应增大.系统运行方式的变化越来越频繁。为了更好地保证电力系统的安全、经济运行并保证电能质量,电力系统自动装置及其技术得到广泛应用并日益发展,同时也促进电力系统自动控制技术的不断提高。 与其他产品不同,电能的生产、传输、分配和消耗在同一时刻完成,遵循功率平衡原则。所以发电厂、变电所、输配电线路和用户构成的电力系统是一个有机的整体,在运行中任何一个环节出现问题,都会影响到电力系统的稳定运行,严重时会造成恶性事故,导致整个系统崩溃。 为了取得更大的经济效益,电力网规模越来越庞大、发电机容量也越来越大,因此为了满足电力系统运行的要求,电力系统必须借助于自动装置来完成别电力系统及其设备监视、控制、保护和信息传递。因此自动化技术就成了必不可少的手段。 二、电力系统自动控制的总目标和主要内容 电力系统自动控制酌总目标是:保证供电质量,提高供电的可靠性,实现电力系统的安全经济运行。为了实现这个总目标,电力系统自动控制的任务有以下几个方面。 1.电力系统自动监视和控制 2.电厂动力机械自动控制 3.电力系统主要电力设备的自动控制 近年来,由于控制理论、信息沦等方面的成就,大规模、超大规模集成电子器件不断推出;计算机技术和数据通信技术的发展,自动控制技术正发生着日新月异的变化;计算机控制技术在电力系统自动装置中得到广泛应用。 关键词:电力系统自动控制可靠性

HSQ1系列双电源自动切换装置剖析

HSQ1系列双电源自动切换装置 ? ? 点击浏览大图收藏此产品 ?公司名称: ?更新时间: ?所在地: ?生产地址: ?已获点击: ?杭申控股集团有限公司 ?2014-07-03 20:17:24 ? ?浙江 2950 ? 【详细说明】 HSQ1 系列 双电 源自 动切

换装 置(以 下简 称切 换装 置)适 用于 交流 50Hz, 额定 绝缘 电压 690V, 额定 工作 电压400V及以下, 额定工作电流从 6A到3200A,具有 常用电源(电网) 和备用电源(电网 或发电机)的供 电系统中,因其中 一路发生故障而 进行电源之间的 自动切换,以保证 供电的可靠性和 安全性,本产品符 合 IEC60947-6-1 (1998)《自动转 换开关电器》、 GB/T14048.11-20 02《自动转换开关 电器》等标准。 切换装 置适用于紧急供 电,在转换电源期 间中止向负载供 电。 二、产品特点 本切换 装置是全新一代 的产品。控制器方

面,应用微处理机 智能控制,不但检 测精度、可靠性 高,而 且许多参数(切换 延时,电压阈值 等)由用户现场可 调;自投自复和自 投不自复现场可 调,还有遥控分闸 功能,用于消防控制。HSQ1的电网-发电机型控制器,在上述功能基础上还有一 个信号输出,用于启/停发 电机。在开关本体方面,配用了最新式的电动操作机构,开关本体的体积小,高 度低,机械联锁的可靠性 好。本切换装置与国内外其它厂家的同类产品相比,具有以下特点: ▲采用智能型控制器,对两路电源的三相都进行检测,检测精度高,保证负载 获得符合使用要求的电源。 ▲开关本体带“0"位,即具有两台断路器同时处于分闸状态的位置,便于下级 线路的检修。 ▲控制器可接受消防信号,将两台断路器同时分闸。 ▲电网—发电机型控制器带有自动启、停发电机信号。 ▲断路器具有过载、短路保护功能,切换装置是CB级的ATSE。 ▲具有可靠的机械和电气联锁,保证两台断路器不能同时合闸。 ▲装置的二次回路在出厂前已全部接好,用户只须将一次线接好即可投入使用。 三、产品规格 1、按不同的使用场合及用户对切换装置的功能要求,有下列3种型号的控制器 可供选择。 电子控制器的型号及控制功能见表1。 表1 电子控制器的型号及功能

SchneiderBA电源自动切换控制器说明书

BA/UA BA/UA controller Compact NS100-630 Masterpact MT Merlin Gerin Installation manual

This equipment should only be mounted by professionals.The manufacturer shall not be held responsible for any failure to comply with the instructions given in this manual RISK OF ELECTROCUTION,BURNS OR EXPLOSION the device should only be installed and serviced by professionals switch off the general power supply to the device prior to any work on or in the device always use an appropriate voltage detection device to confirm the absence of voltage replace all interlocks,doors and covers before energising the device. Failure to take these precautions could expose intervener and people round to serious corporal injuries which could cause death.

双电源自动转换开关装置

双电源转换开关,主要有ATS及STS两种。 ATS也称ATSE,是Automatic transfer Switching equipment的英文缩写,国家标准中文全称为自动转换开关电器,俗称双电源自动转换开关。A TS产品的国标标准定义为由一个(或几个)转换开关电器和其它必需的电器组成,用于检测电源电路,并将一个或多个负载电路从一个电源自动转换到另一个电源的电器 STS静态转换开关(Static Transfer Switch)为电源二选一自动切换系统,正常工作状态下,在主电源处于正常的电压范围内,负载一直连接于主电源。在主电源发生故障时,负载自动切换到备用电源,主电源恢复正常后,负载又自动切换到主电源。STS静态转换开关(Static Transfer Switch)采用先断后通(Break before Make)的切换方式,可以实现不同输入电源之间的不间断切换,为单电源负载提供双母线供电,如:非并联UPS系统的n+1冗余、不同容量UPS系统的n+1冗余、不同型号UPS系统的n+1冗余、不同市电的冗余、市电与发电机的冗余。 STS与A TS的区别 STS用于在两个独立的AC电源之间转换供电,第一路出现故障后STS自动切换到第二路给负载供电,第二路故障的话STS自动切换到第一路给负载供电。与传统的自动转换开关ATS不同,静态转换开关提供快速负载转换(一般为1/4周期),保证精密的电子设备不间断工作。负载重新转换到主输入电源实际上是瞬时的(≤8ms)。适合用于UPS与UPS,UPS 与发电机,UPS与市电,市电与市电等任意两路电源的不断电转换。 STS静态切换开关主要由智能控制板,高速可控硅,断路器构成。其标准切换时间为≤8ms,不会造成IT类负载断电。既对负载可靠供电,同时又能保证STS在不同相切换时的安全性。STS的基本应用包括电力工业的自动化系统,石化工业的电源系统,计算机和远程通讯中心,大楼的自动化和安全系统,以及其他对电源中断敏感的设备。 ATS(Automatic Transfer Switch)自动转换开关的简称。ATS主要用在紧急供电系统,将负载电路从一个电源自动换接至另一个(备用)电源的开关电器,以确保重要负荷连续、可靠运行。ATS为机械结构,以接触器为切换执行部件,切换功能用中间继电器或逻辑控制模块组成二次回路完成控制功能,缺点是主回路接触器工作需要二次回路长期通电,容易产生温升发热、触点粘结、线圈烧毁等故障。同时如果是大负载情况下,转换时间相对比较长,为100毫秒以上,会造成负载断电。 ATS双电源自动转换开关

全厂停电事故的预防及处理示范文本

全厂停电事故的预防及处 理示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

全厂停电事故的预防及处理示范文本使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 为了防止在发生全厂停电事故时发生主设备(发电机、 主变压器)损坏事故,确保主设备的安全停运,使厂用电恢 复后能尽快恢复发电机组的运行,从而将事故损失降到最 低限度,电厂有必要制定相应的预防措施和切实可行的事 故预想处理方案,并加以执行。 1 事故预防措施 1.1 直流系统的运行维护管理 发生全厂停电和厂用电中断时,直流电源是控制、保 护和确保安全停机的唯一电源,因此在平时必须加强对蓄 电池和直流系统(含逆变电源)的运行维护和检修。 (1) 做好直流系统、不停电电源装置(UPS)专用蓄电池 的维护管理。要按时调整蓄电池的电解液比重和电压,使

其处于完好满充电状态,并定期进行均衡充电。确保其电压、放电容量和电解液的比重、温度符合要求。对已投运的蓄电池,应按制造厂的说明书进行复核,对于电压和放电容量不能满足要求的蓄电池应及时改进或更换。 (2) 直流系统各级保险器和联动装置应定期检查、试验。保险容量应保证在事故情况下保险不会越级熔断而中断保护操作电源和直流润滑、直流密封油泵电源。直流润滑、直流密封油泵的联动控制回路的控制直流电源应取自蓄电池。 (3) 不允许在蓄电池无并联情况下,由充电装置单独向重要负荷供电,即使在事故情况下,也应考虑尽快与另一蓄电池并列。 (4) UPS系统定期切换试验必须在机组停运后进行。试验前应做好防止UPS电源消失的措施,以防微机储存信息丢失。

火电厂保安电源系统配置方案对比分析

火电厂保安电源系统配置方案对比分析 发表时间:2018-01-10T11:52:37.650Z 来源:《电力设备》2017年第27期作者:李程[导读] 摘要:近年来,我国的火力发电发展迅速,提供了大量的居民用电,方便了人民的日常生活。 (江苏徐矿综合利用发电有限公司江苏徐州 221011) 摘要:近年来,我国的火力发电发展迅速,提供了大量的居民用电,方便了人民的日常生活。但是,由于各种原因,火力发电厂的大型机组交流事故经常发生,造成很大的经济损失,也给国家和人民的财产生命安全造成了巨大损害。而火力发电厂交流事故保安电源系统在全厂发生停电的紧急情况下发挥了巨大的作用。因其能够提供稳定性高、平稳的交流电流,因此可使机组在停电的紧急情况下安全的停止保护重要设备的平稳运行。保安电源现已成为大型汽轮发电机组配置的电源系统。 关键词:发电厂;保安电源;UPS电源;可靠性;控制逻辑;切换方式 1.前言 火力发电厂的机组保安负荷不稳定时,容易对机组和工作人员造成安全威胁,甚至导致机组的永久性损坏,从而造成巨额的财产损失。根据相关部门的电力标准,规定机组的容量一般大于等于200MW时应配备相应的交流保安电源系统,并且交流保安电源应采用快速启动的柴油发电机组。柴油发电机组是一个独立于工作机组的系统,电网、机组等的干扰对其影响较小,所以广泛应用于发电厂保安电源。在工作与待机两种状态下进行切换时,保安电源应能保证保安负载不因此而停电或短时间的停电,从而确保机组在任何紧急或极端情况下的安全停机。火电厂保安电源采用一主一备的配备柴油发电机的双路供电措施来实现上述的功能。保安电源中的双路电源可以快速、安全的进行切换,从而保证倒闸操作和双向切换能正常运行。备用电源为柴油发电机,在全厂都停电的情况下启动。在目前的实际工程应用中,双路电源的启停切换和启动柴油发电机的方式有很多种。不同的方案各有优缺点。本文就几种厂用保安电源系统的配置方案进行分析和比较,为工作人员选择配置方案时提供一些有用参考。 2.保安电源系统配置方案分析 2.1目前火电厂UPS电源的控制方式 一般电厂机组的UPS电源输入由工作(主路)电源、旁路电源和直流电源、(进行AC/DC变换的)整流器和逆变器五部分组成。在电网电压正常的情况下,由电网的配电箱供电给负载,同时也给储能电池供电。当电网的电压不稳定或突发停电时,UPS电源开始工作,此时给负载供电的电源变为储能电池,从而维持正常的生产。在一些特殊情况下比如负载严重超载时,则由电网电压经整流罩直接给负载供电。 2.2 DCS+PLC控制方式 所谓的DCS控制系统就是集散控制系统(Distributed Control System)。DCS控制系统的结构是基于分布式系统运行的。主要是利用计算机监控技术、管理生产技术来实现分散式的控制。DCS控制系统为非单独运行系统,根据各种模拟数据、经过电厂的运行的逻辑实现对各种执行部件的控制。所以DCS控制是一个综合的系统,要实现DCS的运行需要结合信号处理技术、网际网络通信系统以及测量与控制系统,除此之外,还需要人机接口的技术。计算机技术中的这几种信息技术的相互融合和发展共同形成了DCS系统。 DCS+PLC系统的优点: 1.需要的自动装置少,所以不需要配置很多的自动装置,其大部分的功能由其现有设备和通道实现,减少了额外的费用。 2.PLC编程简单,调试方便,并且运行速度快。 此方案也存在缺点: 1.DCS的逻辑非常复杂,在投入使用前,需要花费大量的时间来进行调试工作。并且当DCS发生故障时,不能实现自动切换,只能依靠手动来进行应急启动。 2.继电器接点通断的可靠性不高,导致进行切换工作时系统整体的可靠性不高。 2.3保安电源自动切换装置 此方案不采用PLC控制方式而是采用专门的自动装置,该自动装置专门进行交流事故保安电源系统的切换工作。此装置具有事故切换、并联切换、手动切换、串联切换和同期检查等功能。 此种配置方案的优点: 1.支持380V的电压输入,所以可以将母线、柴油发电机和线路电压经空开直接接入装置内,从而省去了PT二次或电压继电器环节。从而增加了系统的可靠性。 2.完全实现自动化,省去了因人为因素导致的失误等现象。而且该系统能自动的进行保安电源事故的切换从而不受DCS工作状态的影响,大大提高了切换过程的可靠性。 缺点: 1.需要与之相配套的自动装置。因其只能控制三根进线的分合,其他进线开关等都需要DCS逻辑来控制。 2.可能会出现非正常切换现象。当空开的位置不合理或没有明显的标识等,都会导致调试过程中的误分闸现象,不能进行正常切换。 2.4 ATS开关结合DSC的控制方式 ATS开关称为自动转换开关(Automatic transfer switching equipment),其主要功能是用于紧急供电系统,将负载电路从一个电源自动的切换到另一个电源(一般为备用电源),从而确保重要负载能连续、可靠的运行。所以,ATS开关常常用于比较重要的地方。从而保证可靠性。 这种配置的优点: 1.ATS基本承担了大部分的任务,可以自动完成,并且接线简单,可靠性高,不用人员的参与即可自动完成。减少了停电的时间,极大地降低了因人为因素导致的失误。 2.不需要引入其他开关的辅助接点或PT二次电压,所以开关的动作不受开关状态和PT故障的影响。因为其本身就配置有智能微处理控制器,根据开关两侧的电压作为切换依据。所以可靠性大大提高。 3.由于其模块化的配置方式,极大地减少了维护的工作量。

智能型双电源自动切换开关应用

智能型双电源自动切换开关应用 来源:工控商务网 随着科学技术的进步,各行业对供电可靠性的要求越来越高。很多场合必须采用两路电源来保证供电的可靠性。过去的两路电源用户,在低压侧采用手动操作的双向隔离开关进行倒闸操作,因此常出现误操作而引起事故。随着供电可靠性要求的提高,反事故措施的日趋完善,越来越多的先进设备投入应用到供电系统中。 一、高可靠性双电源切换装置 一种能在两路电源之间进行可靠切换双电源的装置,不会出现误操作而引起事故的全系列智能化双电源自动切换开关,就是为了满足高可靠性要求。目前投入使用的专用智能化设备,具有自投自复、自投不自复和电网发电机三种切换功能,对两路供电电源的三相电压有效值及相位进行实时检测,当任一相发生过压、欠压、缺相,能自动从异常电源切换到正常电源,这是一种性能完善、安全可靠、操作方便、智能化程度高、使用范围广泛的双电源控制系统的设备。 全系列智能型双电源自动切换开关的紧急供电系统,可实现当一路电源发生故障时,可以自动完成常用与备用电源间切换,而无需人工操作,以保证重要用户供电的可靠性。其主要用于医院、商场、银行等不允许断电的重要场所。 二、智能型双电源自动切换开关 智能型双电源自动切换开关特点 智能型双电源自动切换开关是由两台三极或四极的塑壳断路器及其附件(辅助、报警触头)、机械联锁传动机构、智能控制器等组成。分为整体式与分体式两种结构。整体式是控制器和执行机构同装在一个底座上;分体式是控制器装在柜体面板上,执行机构装在底座上,由用户安装在柜体内,控制器与执行机构用约2m长的电缆连接。其特点是: 两台断路器之间具有可靠的机构联锁装置和电气联锁保护,彻底杜绝了两台断路器同时合闸的可能性; 智能化控制器采用以MOTOROLA单片机为控制核心,硬件简洁,功能强大,扩展方便,可靠性高; 具有短路、过载保护功能,过压、欠压、缺相自动切换功能与智能报警功能; 自动切换参数可在外部自由设定; 具有操作电机智能保护功能; 装置带有消防控制电路,当消防控制中心给一控制信号进入智能控制器,两台断路器都进入分闸状态; 留有计算机联网接口,以备实现遥控、遥调、遥信、遥测等四遥功能。

锂电池充电电路及电源自动切换电路的设计

BATT BATT-8.4V 图1 锂电池充电电路原理图 输入电源V in =24V ,充电电流1~1.5A,锂电池参数为8.4V,2.5A 1、充电电流的设置 恒流充电电流由下式决定:CS CH R mV I 200=,取A I CH 25.1=,得 Ω=16.0CS R 选取R CS 参数为0.16Ω±5%/1W 实际使用电阻值为150mΩ,得A A R mV I CS CH 33.1150 200 200=== 2、充电结束电流的设置 在恒压充电模式,充电电流逐渐减小,当充电电流减小到EOC 管脚的电阻所设置的电流时,充电结束。充电结束电流由下式决定: 6 10 ) 314350(278.1×+×= CS EOC R R I ,R3取10K ,I EOC =0.2A 3、电感的选择 在正常工作时,瞬态电感电流是周期性变化的。在P 沟道MOS 场效应晶体管导通期间,输入电压对电感充电,电感电流增加;在P 沟道MOS 场效应晶体管关断期间,电感向电池放电,电感电流减小。电感的纹波电流随着电感值的减小而增大,

随着输入电压的增大而增大。较大的电感纹波电流会导致较大的纹波充电电流和磁损耗。所以电感的纹波电流应该被限制在一个合理的范围内。 电感的纹波电流可由下式估算: )1(1 VCC V V L f I BAT BAT L ?×××= Δ 其中: f 是开关频率,300KHz L 是电感值 VBAT 电池电压 VCC 是输入电压 在选取电感值时,可将电感纹波电流限制在△IL =0.4×I CH ,I CH 是充电电流,得 L>34.2μΗ,实际取电感值为39μΗ。 4、电源自动切换电路 VOUT 给后续电路供电 图2 电源自动切换电路 当外部电源断开时,PMOS 管导通,由电池给外部系统供电,当外部电源接入时, PMOS 管关断,电池和系统电源之间断开,外部电源对系统供电。

MFC5208发电厂保安电源自动切换装置说明书V1.00

MFC5208 发电厂保安电源自动切换装置 说明书 金智科技股份有限公司

前言 非常感谢您选用江苏金智科技股份有限公司(简称金智科技,股票代码002090)生产的MFC5208发电厂保安电源自动切换装置。本手册是该型装置的技术和使用说明书,期望它能为您的工作带来帮助。 本说明书仅供设计选型参考,与实际产品可能存在细微差别,因此不建议作为工程设计依据。建议工程设计时向我公司设计人员索取相关设计图纸。 如需相关产品、服务和支持的更多信息,请访问金智科技网站https://www.doczj.com/doc/a88264324.html,/。 本公司有权对本说明书的内容进行定期变更,恕不另行通知。变更内容将会补充到新版本的说明书中。如您需要更新版本,敬请与我公司联系。 _____________________________________________________________ 版权所有,请勿翻印、复印。 说明书版本号:V1.00

目录 1. 装置概述 (1) 2. 装置特点及主要技术指标 (2) 2.1. 装置特点 (2) 2.2. 主要技术指标 (3) 3. 切换功能及原理 (6) 3.1. 自投方式一 (6) 3.2. 自投方式二 (9) 3.3. 自投方式三 (11) 3.4. 手动恢复 (12) 4. 其它逻辑 (14) 4.1. PT断线 (14) 4.2. 控制回路断线 (15) 4.3. TWJ异常 (15) 4.4. 动作后的复归 (15) 5. 定值参数设定 (16) 5.1. 切换定值说明 (16) 5.2. 控制压板说明 (18) 6. 装置硬件构成 (19) 6.1. 面板 (19) 6.2. 背板插件及端子 (20) 7. 液晶显示及操作说明 (23) 7.1. 主画面说明 (23) 7.2. 菜单详细说明及操作 (25) 8. 自检信息 (35) 9. 运行巡检说明 (36) 9.1. 常见故障及处理措施 (36) 9.2. 光字牌或DCS信号 (38) 9.3. 面板巡检 (39) 10. 现场调试投运 (39) 10.1. 准备工作 (39) 10.2. 静态调试试验 (40) 10.3. 空载传动试验 (41) 11. 电气接线原理图 (43) 12. 背板端子示意图 (46) 13. 外形及安装尺寸 (47) 14. 装置选型表 (48)

双电源自动转换开关基本常识

双电源自动转换开关基本常识 符合标准 IE60947-6-1:1998(1.2版)《低压开关设备和控制设备第六部份、自动转换开关电器》GB14048.11-2002 《低压开关设备和控制设备、自动转换开关电器》名词术语双电源自动转换开关(ATSE)分为CB 级和PC级两个级别。 CB级:配备过电流脱扣器的ATSE,它的主触头能够接通并用于分断短路电流。 PC级:能够接通、承载,但不用于分断短路电流的ATSE。使用类别:AC-33B,适用电动机混合负载,即包含电动机,电阻负载和30%以下白炽灯负载,接通与分断6le,cosφ=0.5。使用类别:AC-31B,适用无感或微感负载,接通与分断电流为1.5le,cosφ=0.8。 双电源自动转换开关的选择与使用当市电与发电机电源转换时,首先应考虑发电机的特殊性,确认市电断电后,发电机自动启动,待发电机电源各项指标达到稳定值后才能输出,并具有互联装置。按转换时间选择和使用ATS 1 根据国家与行业有关规范要求,对于消防设备的双电源转换,其转换时间越快越好,但考虑目前我国的供电技术条件,规定在30s以内。当消防设备处于运转期间,若突然出现断电,势必引起电源的转换,由于转换时间长会使消防设备停止运转而影响使用,因此必须增加二次控制环节保证消

防设备继续工作,故在选择ATS时应优先选择转换时间快的产品。 2 对于应急照明,根据目前我国设计的时间做法,一般采用城市电网的电源作为应急照明供电。为了满足使用需要和利于安全,允许使用城市电网供电,但是采用ATS作为应急照明时,在正常电源断电后,其电源转换时间应当满足:疏散照明≤15s(有条件时宜缩短转换时间),备用照明≤15s (金融商品交易场所≤1.5s),安全照明≤0.5s。 3 当采用发电机组作为应急照明电源时,发电机的启动和转换的全部时间不应大于15s。四极型ATS的选择与使用⑴根据IEC465.1.5条规定,正常供电电源与备用发电机之间的转换开关应用四极型开关。 ⑵带漏电保护的双电源转换开关应采用四极型开关。两个电源开关带漏电保护时,其下级电源转换开关应采用四极型开关。 ⑶两种不同接地系统间的电源转换开关应采用四极型开关。 ⑷TN-S、TN-C-S系统一般不需要设四极型开关。根据上述要求,在选择ATS时,应按具体使用功能和要求确定是否采用四极型ATS。带漏电保护ATS的选择 ATS是否要加装漏电保护,主要取决于负载的使用性质和特点,为了防触电和确保人身安全,需要加装漏电保护,但在消防负载时为了保证电源的连续性和可靠性,又不希望加装漏电保护,这两者

双电源切换应用电路(行业一类)

功率P-FET控制器LTC4414 LTC4414是一种功率P-EFT控制器,主要用于控制电源的通、断及自动切换,也可用作高端功率开关。该器件主要特点:工作电压范围宽,为3.5~36V;电路简单,外围元器件少;静态电流小,典型值为30μA;能驱动大电流P沟道功率MOSFET;有电池反极性保护及外接P-MOSFET的栅极箝位保护;可采用微制器进行控制或采用手动控制;节省空间的8引脚MSOP封装;工作温-40℃+125℃。 图1 LTC4414的引脚排列引脚排列及功能 LTC4414的引脚排列如图1所示,各引脚功能如表1所示。

图2 LTC4414结构及外围器件框图 基本工作原理 这里通过内部结构框图及外接元器件组成的电源自动切换电路来说明其工作原理。内部结构框图及外围元器件组成的电路如图2所示。其内部结构是由放大器A1、电压/电流转换电路、电源选择器(可由VIN端或SENSE端给内部电路供电)、模拟控制器、比较器C1、基准电压源(0.5V)、线性栅极驱动器和栅极电压箝位保护电路、开漏输出FET及在CTL 内部有3.5μA的下拉电流源等组成。外围元器件有P沟道功率MOSFET、肖特基二极管D1、上拉电阻RPU、输入电容CIN及输出电容COUT。 图2中有两个可向负载供电的电源(主电源及辅电源),可以由主电源单独供电,也可以接上辅电源,根据主、辅电源的电压由LTC4414控制实现自动切换。这两种供电情况分别如下。 1 主电源单独供电 主电源单独供电时,电流从LTC4414的VIN端输入到电源选择器,给内部供电。放大器A1将VIN和VSENSE的差值电压放大,并经过电压/电流转换,输出与VIN-VSESNSE 之值成比例的电流输入到模拟控制器。当VIN-VSESNE>20mV时,模拟控制器通过线性栅极驱动器及箝位保护电路将GA TE端的电压降到地电平或到栅极箝位电压(保证-VGS≤8.5V),使外接P-MOSFET导通。与此同时,VSESNE被调节到VSESNE=VIN-20mV,即外接P-MOSFET的VDS=20mV。P-MOSFET的损耗为ILOAD×20mV。在P-MOSFET导通时,模拟控制器给内部FET的栅极送低电平,FET截止,STAT端呈高电平(表示P-MOSFET 导通)。 2 加上辅电源 当加上辅电源(如交流适配器)后,如果VSESNE> VIN+20mV,则内部电源选择器由SENSE端向内部电路供电。模拟控制器使GA TE端电压升高到VSENSE,则P-MOSFET截止,辅电源通过肖特基二极管D1向负载供电。这种电源切换是自动完成的。 在辅电源向负载供电时,模拟控制器给内部FET的栅极送高电平,FET导通,STAT端呈低电平(表示辅电源供电)。上拉电阻RPU的阻值要足够大,使流过FET的电流小于5mA。

相关主题
文本预览
相关文档 最新文档