当前位置:文档之家› 激光原理习题

激光原理习题

激光原理习题
激光原理习题

第一章:激光的基本原理

1.为使He-Ne激光器的相干长度达到1km,它的单色性?λ/λ0应是多少?

2.设一对激光能级为E2和E1(f1=f2),相应的频率为v(波长为λ),能级上的粒子

数密度分别为n2和n1,求:

(a)当v=3000MHz,T=300K时,n2/n1=?

(b)当λ=1μm,T=300K时,n2/n1=?

(c)当λ=1μm,n2/n1=0.1时,温度T=?

3.设一对激光能级为E2和E1(f1=f2),相应的频率为ν(波长为λ),能级上的粒子数密度分别为n1和n2,求

(a)当ν=3000Mhz,T=300K时,n2/n1=?

(b)当λ=1um,T=300K时, ,n2/n1=?

(c)当λ=1um, ,n2/n1=0.1时,温度T=?

4.在红宝石Q调制激光器中,有可能将几乎全部Cr+3离子激发到激光上能级并产生激光巨脉冲。设红宝石棒直径1cm,长度7.5cm,Cr+3离子浓度为2×1019cm-3,巨型脉冲宽度为10ns,求输出激光的最大能量和脉冲功率。

5.试证明,由于自发辐射,原子在E2能级的平均寿命t s=1/A21。

6.某一分子的能级E4到三个较低能级E1,E2和E3的自发跃迁几率分别是A43=5*107s-1,A42=1*107s-1和A41=3*107s-1,试求该分子能级的自发辐射寿命τ4。若τ1=5*107s-1,τ2=6*10-9s,τ3=1*10-8s在对E4连续激发并达到稳态时,试求相应能级上的粒子数比值n1/n4,n2/n4,n3/n4,并回答这时在哪两个能级间实现了集居数反转。

7.证明当每个膜内的平均光子数(光子简并度)大于1时,辐射光中受激辐射占优势。

8.(1)一质地均匀的材料对光的吸收系数为0.01mm-1,光通过10cm长的该材料后,出射光强为入射光强的百分之几?(2)一光束通过长度为1m的均匀激励的工作物质,如果出射光强是入射光强的两倍,试求该物质的增益系数。

第二章:开放式光腔与高斯光束

1.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。

2.试求平凹,双凹、凹凸共轴球面镜腔的稳定性条件。

3. 激光器的谐振腔由一面曲率半径为1m的凸面镜和曲率半径为2m的凹面镜组成,工作物质长0.5m,其折射率为1.52,求腔长L在什么范围内是稳定腔。

4.图2.1所示三镜环形腔,已知l,试画出其等效透镜序列图,并求球面镜的曲率半径R在什么范围内该腔是稳定腔。图示环形腔为非共轴球面镜腔。在这种情况下,对于在由光轴组成的平面内传输的子午光线,式(2.2.7)中的f=(Rcosθ)/2,对于在与此垂直的平面内传输的弧失光线,f=R/(2cosθ),θ为光轴与球面镜法线的夹角。

5.有一方形孔径共焦氦氖激光器,腔长L=30cm,方形孔边长d=2a=0.12cm,λ=632.8nm,镜的反射率为r1=1,r2=0.96,其他损耗以每程0.003估计。此激光器能否单模运转?如果想在共焦镜面附近加一个方形小孔阑来选择TEM00,小孔的边长应为多大?试根据图2.2.5作一大概的估计。氦氖增益由公式e gl=1+3*10-4(l/d)估算(l为放电管长度)。

6.试求出方形镜共焦腔面上的TEM30模的节线位置,这些节线是等距分布的吗?

7.求圆形镜共焦腔TEM20和TEM02模在镜面上光斑的节线位置。

8.今有一球面腔,R1=1.5m,R2=-1m, L=80cm。试证明该腔为稳定腔;求出它的等价共焦腔的参数;在图上画出等价共焦腔的具体位置。

9.某二氧化碳激光器采用平—凹腔,L=50cm,R=2m,2a=1cm,λ=10.6um试计算w s1,w s2,w0,θ0,δ100,δ200各为多少。

10.试证明,在所有a2/Lλ相同而R不同的对称稳定球面腔中,共焦腔的衍射损耗最低。这里L表示腔长,R=R1=R2为对称球面腔反射镜的曲率半径,a为镜的横向线度(半径)。

11. 今有一平面镜和一R=1m 的凹面镜,问:应如何构成一平—凹稳定腔以获得最小的基膜远场角;画出光束发散角与腔长L的关系曲线。

12.推导出平—凹稳定腔基模在镜面上光斑大小的表达式,做出:(1)当R=100cm 时,w s1,w s2随L而变化的曲线;(2)当L=100cm,时,w s1,w s2随R而变化的曲线。

13.某二氧化碳激光器,采用平-凹腔,凹面镜的R=2m,腔长L=1m。试给出它所产生的高斯光束的束腰斑半径ω0的大小与位置、该高斯光束的f及θ0的大小。14.某高斯光束束腰斑大小为w0=1.14cm,λ=10.6um。求与束腰相距30cm,10m,1000m远处的光斑半径w及波前曲率半径R。

15.若已知某高斯光束之w0=0.3mm,λ=632.8nm。求束腰处的q参考值,与束腰相距30cm处的q参考值,以及在与束腰相距无限远处的q值。

16.某高斯光束ω0=1.2mm,λ=10.6μm。今用F=2cm的锗透镜来聚焦,当束腰与透镜的距离为10m、1m、10cm、0时求焦斑大小和位置,并分析所得的结果。

17.CO2激光器输出光λ=10.6um,w0=3mm,用一F=2cm的凸透镜聚焦,去欲得到w'0=20um及2.5um时透镜应放在什么位置。

18.如图2.2光学系统,入射光λ=10.6um,求w''0及l3

19某高斯光束ω0=1.2mm,λ=10.6μm。今用一望远镜将其准直。主镜用镀金反射镜R=1m,口径为20cm;副镜为一锗透镜,F1=2.5cm,口径为1.5cm;高斯光束束腰与透镜相距l=1m,如图2.3所示。求该望远镜系统对高斯光束的准直倍率。

20.激光器的谐振腔由两个相同的凹面镜组成,它出射波长为λ的基模高斯光束,今给定功率计,卷尺以及半径为a的小孔光阑,试叙述测量该高斯光束共焦参数f的实验原理及步骤。

21.已知一二氧化碳激光谐振腔由两个凹面镜构成,R1=1m,R2=2m,L=0.5m。如何选择高斯束腰斑的大小ω0和位置才能使它成为该谐振腔中的自在现光束?

22.(1)用焦距为F 的薄透镜对波长为λ、束腰半径为ω0的高斯光束进行变换,

并使变换后的高斯光束的腰斑半径00ωω<'(此称为高斯光束的聚焦),在F>f 和

F

πω20=f )两种情况下,如何选择薄透镜到该高斯光束束腰的距离l ?(2)在聚焦过程中,如果薄透镜到高斯光束束腰的距离l 不能改变,如何选择透镜的焦距F ?

23.试由自在现变换的定义式(2.12.2)用q 参数法来推导出自在现变换条件式(2.12.3).

24.试证明在一般稳定腔(R 1,R 2,L ),其高斯模在腔镜面处的两个等相位面的曲率半径必分别等于各该镜面的曲率半径。

25.试从式(2.14.12)导出(2.14.13),并证明对双凸腔B 2-4C>0.

26.试计算R 1=1m,L=0.25m,a 1=2.5cm,a 2=1cm 的虚共焦腔的ξ单程和ξ往返,若想保持

a 1不变并从凹面镜M 1端单端输出,应如何选择a 2?反之若想保持a 2,不变并从凸面镜M 2端单端输出,应如何选择a 1?在这两种单端输出的条件下,ξ单程和ξ往返各为多大?题中a 1为镜M 1的横截面半径,R 1为其曲率半径,a 2,R 2的意义类似。

第三章(对应教材第四章):电磁场和物质的共振相互作用

1.静止氖原子的3S 2-2P 4谱线中心波长为632.8nm ,设氖原子分别以0.1c 、0.4c 和0.8c 的速度向着观察者运动,问其中表观中心波长分别变为多少?

2.在激光出现之前,Kr 86低压放电灯是很好的单色光源。如果忽略自然加宽和碰撞加宽,试估算在77K 温度下它的605.7nm 谱线的相干长度是多少,并与一个单色性λλ/?=10-8的氦氖激光器比较。

3.考虑某二能级工作物质,E 2能级自发辐射寿命为τs ,无辐射跃迁寿命为τnr 。

假定在t =0时刻能级E 2上的原子数密度为n 2(0),工作物质的体积为V ,自发辐射光的频率为ν,求:

(1) 自发辐射光功率随时间t 的变化规律;

(2) 能级E 2上的原子在其衰减过程中发出的自发辐射光子数;

(3) 自发辐射光子数与初始时刻能级E 2上的粒子数之比η2(η2称为量子

产额)。

4.估算CO 2气体在室温(300K )下的多普勒线宽?νD 和碰撞线宽系数a ,并讨论在什么气压范围内从非均匀加宽过渡到均匀加宽。

5.氦氖激光器有下列三种跃迁,即3S 2-2P 4的632.8nm ,2S 2-2P 4的1.1523um ,和3S 2-3P 4的3.39um 的跃迁。求400K 时它们的多普勒线宽,分别用GHz,um,cm -1为单位表示。由所得结果你能得到什么启示?

6.考虑某二能级工作物质,E 2能级自发辐射寿命为τS ,无辐射跃迁寿命为τnr 。假定在时刻t=0能级上E 2的原子数密度为n 2(0),工作物质的体积为V ,自发辐射光的频率为v ,求:

(1)自发辐射光功率随时间t 的变化规律

(2)能级E 2上的原子在其衰减过程中发出的自发辐射光子数

(3)自发辐射光子数与初始时刻能级E 2上的粒子数之比η2(η2称为量子产额)

7.根据4.4 节所列红宝石的跃迁几率数据,估算 W 13等于多少时红宝石对λ=694.3nm 的光是透明的。(对红宝石,激光上、下能级的统计权重f 1=f 2=4,计算中可不计光的各种损耗。)

8设粒子数密度为n 的红宝石被一矩形脉冲激励光照射,其激励跃迁几率可表示为(如图4.1所示)

013000p W t t W t t <≤?=?

>?

t t 0

W 13(t) W p

0 图4.1

求激光上能级粒子数密度n 2(t),并画出相应的波形。

9.某种多普勒加宽气体吸收物质被置于光腔中,设吸收谱线对应的能级为E 2和E 1(基态),中心频率为ν0。如果光腔中存在频率为ν的单模光波场,试定性画出下列情况下基态粒子数按速度分布n 1(υz ):

(1)0νν>>;

(2)D ννν?≈

-2

10; (3)0νν=

10.试从爱因斯坦系数之间的关系说明下述概念,分配在一个模式中的自发辐射跃迁几率等于在此模式中的一个光子引起的受激跃迁几率。

11.短波长(真空紫外,软X 射线)谱线的主要加宽机构是自然加宽。试证明峰值吸收截面σ=λ20/2π。

12.已知红宝石的密度为3.98g/cm 3,其中Cr 2O 3所占比例为0.05%(质量比),在波长694.3nm 附近的峰值吸收系数为0.4cm -1,试求其峰值吸收截面(T=300K )。

13.有光源一个,单色仪一台,光电倍增及其电源一套,微安表一块,圆柱形端面抛光红宝石样品一块,红宝石中鉻离子数密度n=1.9*1019/cm 3,694.3nm 荧光线宽。?νF =3.3*1011Hz 可用实验测出红宝石的吸收截面,发射截面及荧光寿命,试画出实验方块图,写出实验程序及计算公式。

14.在均匀加宽工作物质中,频率为ν1、强度为1νI 的强光的增益系数为

),(11ννI g H ,),(11ννI g H ~ν1关系曲线称作大信号增益曲线,求大信号增益曲线的宽度。

15.有频率为ν1、ν2的二强光入射,试求在均匀加宽情况下:

(1)频率为ν的弱光的增益系数表达式;

(2)频率为ν1的强光的增益系数表达式。

(设频率为ν1及ν2的光在介质内的平均强度为1νI 、2νI )

16.写出综合加宽线型函数表达式子(用误差函数表示)。

17.激光上下能级的粒子数密度速率方程如式(4.4.28)所示。

(1)试证明在稳态情况下,在均匀加宽介质(具有洛伦兹线型)中

2121101(,)l

n n N φτσννυ??=+ 式中,)]1(1[2112δττδφ-+=f f ,21

2ττδ=,0n ?为小信号情况下的反转集居数密度。 (2)写出中心频率处饱和光强Is 的表达式。

(3)证明τ1/τ2时,?n 和I s 可由式(4.5.13)及式(4.5.11)表示。

18.已知某均匀加宽二能级(f 2=f 1)饱和吸收染料在其吸收谱线中心频率v 0=694.3nm 处的吸收截面σ=8.1*10-16cm -2,其上能级寿命τ2=22*10-12s ,试求此染料的饱和光强I s 。

19.若红宝石被光泵激励,求激光能级跃迁的饱和光强。

20.推导图4.2所示能级系统2->0跃迁的中心频率大信号吸收系数及饱和光强I s 。假设该工作物质具有均匀加宽线型,吸收截面σ02已知k b T<

21

21.用波长在589nm 附近可调染料激光照射一含有13.3Pa 钠及2.66*105Pa 氦气的混合室,气室温度为230C ,气室长度l=10cm ,氦气与钠原子间的碰撞截面Q=10-14cm 2,钠蒸气的两个能级间的有关参量如下,

1能级(32S 1/2):E 1=0,f 1=2

2能级(32P 3/2):E 2=16973cm -1,f 2=4 A 21=6.3*107s -1

(1)求跃迁1->2的有关线宽(碰撞加宽,自然加宽,多谱勒加宽)。

(2)如果激光波长调到钠原子1->2跃迁中心波长,求小信号吸收系数。

(3)在上述情况下,改变激光功率,试问激光光强I 多大时气室的透过率t=0.5?

22.设有两束频率分别为δνν+0 和δνν-0,光强为I 1和I 2的强光沿相同方向(图4.3(a ))或沿相反方向(图4.3(b ))通过中心频率为ν0的非均匀加宽增益介质,I 1>I 2。试分别画出两种情况下反转粒子数按速度分布曲线,并标出烧孔位

置。

第四章(对应教材第五章):激光振荡特性

1.激光器的工作物质为,折射率为,谐振腔长L ,谐振腔中除工作物质外的其余部分折射率为,工作物质中光子数密度为N ,试证明对频率为中心频率的光

21dN l c n cN N dt L L δσ=?-''

其中()L l L l ηη''=+-。

2.长度为10cm 的红宝石棒置于长度为20cm 的光谐振腔中,红宝石694.3nm 的谱线的自发辐射寿命τs ≈4×10-3s ,均匀加宽线宽为 2×105MHz ,光腔单程损耗因子δ=0.2。求中心频率阈值处值反转粒子数△n t ;

3.在一理想三能级系统如红宝石中,令泵浦激励几率在t=0瞬间达到一定值W 13,W 13>(W 13)t (其中(W 13)t 为长脉冲激励时的阀值泵源激励几率)。经时间τd 后系统达到反转状态并产生振荡。试求τd -W 13/(W 13)t 的函数关系,并画出归一化τd /τs -W 13/(W 13)t 的示意关系曲线。(令ηF =1)

4.脉冲掺钕钇石榴石激光器的两个反射镜透射率T 1、T 2分别为0和0.5。工作物质直径d=0.8cm ,折射率η=1.836, 总量子效率为1,荧光线宽?νF =1.95×1011 Hz ,自发辐射寿命τs =2.3×10-4 s 。假设光泵吸收带的平均波长λp =0.8μm 。试估算此激光器在中心频率处所需吸收的阈值泵浦能量E pt 。

5.测出半导体激光器的一个解理端面不镀膜与镀全反射膜时的阀值电流分别为J 1与J 2,试由此计算激光器的分布损耗系数a (解里面的反射率r ≈0.33)

6.某激光器工作物质的谱线线宽为50MHz ,激励速率是中心频率处阀值激励速率的二倍,欲使该激光器单纵模振荡,腔长L 应为多少?

7.如图5.1所示环形激光器中顺时针模式Ф+及逆时针模Ф-的频率为v A ,输出光强为I +及I -

(1)如果环形激光器中充以单一氖同位素气体Ne 20,其中心频率为v 01,试画出

v A≠v01及v A=v01时的增益曲线及反转粒子数密度的轴向速度分布曲线。

(2)当v

A ≠v01时激光器可输出两束稳定的光,而当v

A

=v01时出现一束光变强,

另一束光熄灭的现象,试解释其原因。

(3)环形激光器中充以适当比例的Ne20及Ne22的混合气体,当v

A

=v0时,并无上述一束光变强,另一束光变弱的现象,试说明其原因(图5.2为Ne20,Ne22及混合气体的增益曲线),v01,v02及v0分别为Ne20,Ne22及混合气体增益曲线的中心频

率,v

02-v0

1

≈890MHz.

(4)为了使混合气体的增益曲线对称,两种氖同位素中哪一种应多一些。

8.考虑氦氖激光器的632.8nm跃迁,其上能级3S2的寿命τ2≈2×10-8s,下能级2P4的寿命τ1≈2×10-8s,设管内气压p=266Pa:

(1)计算T=300k时的多普勒线宽?νD;

(2)计算均匀线宽?νH及?νH /?νD;

(3)当腔内光强为(1)接近0;(2)10W/cm2时谐振腔需多长才能使烧孔重迭。(计算所需参数可查阅附录一)

9.某单模632.8nm氦氖激光器,腔长10cm,二反射镜的反射率分别为100%及98%,腔内损耗可忽略不计,稳态功率输出是0.5mW,输出光束半径为0.5mm (粗略的将输出光束看成是横向均匀分布的)。试求腔内光子数,并假设反转原子数在t0时刻突然从0增加到阀值的1.1倍,试粗略估算腔内光子数自1噪声光子/腔膜增至计算所得之稳态腔内光子数须经多长时间。

10.腔内均匀加宽增益介质具有最佳增益系数g m及中心频率处的饱和光强I SG,同时腔内存在一均匀加宽吸收介质,其最大吸收系数为a m,中心频率处的饱和光强为I Sa,假设二介质中心频率均为v0,a m>g m,I S a

(1)此激光器能否起振?

(2)如果瞬时输入一足够强的频率为v 0的光信号,此激光器能否起振?写出其起振条件。讨论在何种情况下能获得稳定振荡,并写出稳定振荡时的腔内光强。

11.低增益均匀加宽单模激光器中,输出镜最佳透射率T m 及阈值透射率T t 可由实验测出,试求往返净损耗率a 及中心频率小信号增益系数g m (假设振荡频率v =v 0)。

12有一氪灯激励的连续工作掺钕钇铝石榴石激光器(如图5.3所示)。由实验测出氪灯输出电功率的阈值P pt 为2.2kW ,斜效率024.0/==p s dP dP η(P 为激光器输出功率,P p 为氪灯输入电功率)。掺钕钇铝石榴石棒内损耗系数a i =0.005cm -1。试求:

(1) P p 为10kW 时激光器的输出功率;

(2) 反射镜1换成平面镜时的斜效率(更换反射镜引起的衍射损耗变化忽略不

计;假设激光器振荡于TEM 00模);

(3) 图5.3所示激光器中T 1改成0.1时的斜效率和P p =10kW 时的输出功率。

13.单模半导体激光二极管腔长为200um ,激光线宽为1000MHz 量级。将此激光二极管与一相距10cm 的平面发射镜组成一外腔半导体激光器,试粗略估算激光线宽的量级η≈3.5(激光二极管有源区折射率)

激光原理与技术习题

如果微波激射器和激光器分别在=10m ,=5×10-1 m 输出1W 连续功率,试问每秒钟从激光上能级向下能级跃迁的粒子数 是多少? 解:若输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则: 由此可得: 其中346.62610J s h -=??为普朗克常数,8310m/s c =?为真空中光速。 所以,将已知数据代入可得: =10μm λ时: 19-1=510s n ? =500nm λ时: 18-1=2.510s n ? =3000MHz ν时: 23-1=510s n ? 设一光子的波长=5×10 -1 m ,单色性 λ λ ?=10-7 ,试求光子位置的不确定量x ?。若光子的波长变为5×10 -4 m (x 射线)和5×10 -18 m (射线),则相应的x ?又是多少 m m x m m m x m m m x m h x h x h h μμλμμλμλλμλλ λλλλλλλλ 11171863462122 1051051051051051051055/105////0 /------?=?=???=?=?=???=?==?=???=?=?P ≥?≥?P ??=P?=?P =?P +P?=P 如果工作物质的某一跃迁波长为100nm 的远紫外光,自发跃迁几率A 10等于105S -1 ,试问:(1)该跃迁的受激辐射爱因斯坦系数B 10是多少?(2)为使受激跃迁几率比自发跃迁几率大三倍,腔内的单色能量密度ρ应为多少? 如果受激辐射爱因斯坦系数B 10=1019m 3s -3w -1 ,试计算在(1)λ=6m (红外光);(2)λ=600nm (可见光);(3)λ=60nm (远紫外光);(4)λ=(x 射线),自发辐射跃迁几率A 10和自发辐射寿命。又如果光强I =10W/mm 2 ,试求受激跃迁几率W 10。 证明,如习题图所示,当光线从折射率η1的介质,向折射率为η2的介质折射时,在曲率半径为R 的球面分界面上,折射光线所经受的变换矩阵为 其中,当球面相对于入射光线凹(凸)面时,R 取正(负)值。 习题

激光原理第一章习题课

第一章: 1.为使氦氖激光器的相干长度达到1km ,它的单色性 λλ ?应是多少? 解:相干长度 υ υυ -=?=12c c L c 将 λυ1 1c =, λυ22c =代入上式,得: λ λλλλλ?≈-=0 2 2 121L c ,因此 L c λλλ 00=?,将 nm 8.6320=λ,km L c 1=代入得: 10*328.618.632100-==?km nm λλ 2.如果激光器和微波激射器分别在 m μλ10=, nm 500=λ和 MHz 3000=υ输出1W 连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是 多少? 解:ch p h p n λ υ== (1) 个10*03.510*3*10*626.610*1191 8 34 ≈= --ms Js m W n μ (2)个10*52.210*3*10*626.6500*1181834≈=--ms Js nm W n (3)个10*03.53000*10*626.612334 ≈=-MHz Js W n 3.设一对激光能级为E 2和E 1(f f =12) ,相应频率为υ(波长为 λ ),能级上的粒 子数密度分别为 n 2和n 1,求:

(a )当 MHz 3000=υ,T=300K 时,=n n 12? (b )当 m μλ1=,T=300K 时,=n n 1 2? (c )当 m μλ1=,1.01 2=n n 时,温度T=? 解: e e f f n n kT h kT E E ==---υ121 212 (a )110 *8.4300 *10*38.110*300010*626.64 23 6 *341 2≈≈= -----e e n n (b )10 *4.121 8 34 1 210*8.410*1*300*10*38.110*3*10*626.6≈≈==-----e e e n n hc λ (c )1.010*1*10*38.110*3*10*626.68 341 2===---e e n n T hc λ 得: K T 10*3.63 ≈ 5.试证明,由于自发辐射,原子在 E 2 能级的平均寿命 A s 21 1=τ 证明:自发辐射,一个原子由高能级 E 2自发跃迁到E 1,单位时间内能级E 2减少的粒子 数为: )(212dt dn dt dn sp -= , 自发跃迁几率n dt dn A sp 2 21 1)(21= n A dt dn 2212-=, e n e n n s t t A t τ --≡=20 20221 )( 因此 21 s A 1 = τ 6.某一分子的能级 E 4到三个较低能级E 1E 2和E 3的自发跃迁几率分别是

激光原理及技术习题答案

激光原理及技术部分习题解答(陈鹤鸣) 第一章 4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ?应当是多少? 解:相干长度C c L υ = ?,υ?是光源频带宽度 85 3*10/3*101C c m s Hz L km υ?=== 22 510 8 (/) 632.8*3*10 6.328*103*10/c c c c nm Hz c m s λλυυυυλλλυλ-=??=?=???=?== 第二章 4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求: (1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=? 解: T k E E b e n 121 2 n -- = 其中1 2**E E c h E c h -= ?=λ ν λ h c h == ?*E (1)

(2) 10 * 425 .121 48 300 * 10 * 38 .1 10 10 *3 * 10 * 63 .6 1 223 6 8 34 ≈ = = = =- - - - - - - e e e n n T k c h b λ (3) K n n k c h b 3 6 23 8 34 1 2 10 * 26 .6 )1.0( ln * 10 * 10 * 8 .3 1 10 *3 * 10 * 63 .6 ln * T= - = - = - - - λ 9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数1 01 .0- =mm α (2) 0 1 01 100 366 0I . e I e I e I I. z= = = =- ? - α 即经过厚度为0.1m时光能通过36.6% 10.解:

激光原理习题

1、光与物质相互作用的三个基本过程:自发辐射、受激辐射、受激吸收。 2、激光器的损耗指的是在激光谐振腔内的光损耗,这种损耗可以分为两类:内部损耗、镜面损耗。 3、形成激光的条件:实现粒子数反转、满足阈值条件和谐振条件。 4、激光的四个基本特性:高亮度、方向性、单色性和相干性。 5、激光调制方法:内调制是指在激光生成的振荡过程中加载调制信号,通过改变激光的输 出特性而实现的调制。 外调制则是在激光形成以后,再用调制信号对激光进行调制,它并不改 变激光器的参数,而是改变已经输出的激光束的参数。 就调制方法来讲,也有振幅调制、强度调制、频率调制、相位调制以及脉冲调制等形式。 6、三种谱线增宽形式:自然增宽、碰撞增宽、多普勒增宽。 7、单纵模激光器的选频方法:短腔法、法布里—珀罗标准具法、三反射镜法。 8、激光器的基本结构:激光工作物质:能够实现粒子数反转,产生受激光放大。激励能源:能将低能级的粒子不断抽运到高能级,补充受激辐射减少高能级上的粒子数。光学谐振腔:提高光能密度,保证受激辐射大于受激吸收。 9、高斯光束的基膜腰斑半径(腰粗)公式:W 0= 2 1 W s = 2 1 π λL 简答题: 1、用速率方程组证明二能级系统不可能实现粒子数反转分布。

2、简述光频电磁场与物质的三种相互作用过程,并指出其影响因素。(画图说明) 答:光与物质相互作用的本质是光与物质中的电子发生相互作用,使得电子在不同的能级之间跃迁。包括三种基本过程:自发发射、受激辐射以及受激吸收。 .自发发射——在无外电磁场作用时,粒子自发地从E2跃迁到E1,发射光子hv。(a)特点:各粒子自发、独立地发射的光子。各光子的方向、偏振、初相等状态是无规的, 独立的,粒子体系为非相干光源。受激辐射:——原处于高能级E2的粒子, 受到能量恰为hv=E2-E1的光子的激励, 发射出与入射光子相同的一个光子而跃迁到低能级E1 。特点:①受激发射只能在频率满足hv=E2-E1的光子的激励下发生;②不同粒子发射的光子与入射光子的频率、位相、偏振等状态相同; 这样,光场中相同光子数目增加,光强增大,即入射光被放大——光放大过程。受激吸收:——原处于低能级E1的粒子,受到能量恰为hv=E2-E1的光子照射而吸收该光子的能量,跃迁到高能级E2。 3、 3、简述激光器的基本结构以及产生激光的基本条件:①有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子)有适合于产生受激辐射的能级结构。②有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转③有光学谐振腔,增长激活介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提

激光原理与技术习题

1.3 如果微波激射器和激光器分别在λ=10μm ,=5×10- 1μm 输出1W 连续功率,试问每秒钟从激光上能级向下能级跃迁的粒子数是多少? 解:若输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则: 由此可得: 其中346.62610J s h -=??为普朗克常数, 8310m/s c =?为真空中光速。 所以,将已知数据代入可得: =10μm λ时: 19-1=510s n ? =500nm λ时: 18-1=2.510s n ? =3000MHz ν时: 23-1=510s n ? 1.4设一光子的波长=5×10- 1μm ,单色性λ λ ?=10- 7,试求光子位置的不确定量x ?。若光子的波长变为5×10- 4μm (x 射线)和5 ×10 -18 μm (γ射线),则相应的x ?又是多少 m m x m m m x m m m x m h x h x h h μμλμμλμλλμλλ λλλλλλλλ 11171863462122 1051051051051051051055/105////0 /------?=?=???=?=?=???=?==?=???=?=?P ≥?≥?P ??=P?=?P =?P +P?=P 1.7如果工作物质的某一跃迁波长为100nm 的远紫外光,自发跃迁几率A 10等于105S - 1,试问:(1)该跃迁的受激辐射爱因斯坦系数B 10是多少?(2)为使受激跃迁几率比自发跃迁几率大三倍,腔内的单色能量密度ρ应为多少? c P nh nh νλ==P P n h hc λ ν= =

1.8如果受激辐射爱因斯坦系数B10=1019m3s-3w-1,试计算在(1)λ=6 m(红外光);(2)λ=600nm(可见光);(3)λ=60nm(远紫外光);(4)λ=0.60nm(x射线),自发辐射跃迁几率A10和自发辐射寿命。又如果光强I=10W/mm2,试求受激跃迁几率W10。 2.1证明,如习题图2.1所示,当光线从折射率η1的介质,向折射率为η2的介质折射时,在曲率半径为R的球面分界面上,折射光线所经受的变换矩阵为 其中,当球面相对于入射光线凹(凸)面时,R取正(负)值。 习题

激光原理与激光技术课后习题答案完整版及勘误表

激光原理与激光技术习题答案 《激光原理与激光技术》堪误表见下方 习题一 (1)为使氦氖激光器的相干长度达到1m ,它的单色性 /应为多大 解: 1010 1032861000 106328--?=?=λ=λλ?=.L R c (2) =5000?的光子单色性 /=10-7 ,求此光子的位置不确定量x 解: λ =h p λ?λ =?2h p h p x =?? m R p h x 510 1050007 10 2=?=λ=λ ?λ=?=?-- (3)CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=,r 2=。求由衍射损耗及输出损耗分别引起的、c 、Q 、c (设n=1) 解: 衍射损耗: 1880107501106102 262.) .(.a L =???=λ=δ-- s ..c L c 881075110318801-?=??=δ=τ 6 86810 113107511061010314322?=??????=πντ=--....Q c MHz .Hz ...c c 19101910 75114321 2168 =?=???=πτ= ν?- 输出损耗: 119080985050212 1.)..ln(.r r ln =??-=-=δ s ..c L c 8 81078210 311901-?=??=δ=τ 6 86810 964107821061010314322?=??????=πντ=--....Q c MHz .Hz ...c c 75107510 78214321 2168 =?=???=πτ= ν?- (4)有一个谐振腔,腔长L=1m ,两个反射镜中,一个全反,一个半反,半反镜反射系数r=,求在1500MHz 的范围内所包含的纵模个数,及每个纵模的线宽(不考虑其它损耗) 解: MHz Hz .L c q 15010511 2103288=?=??==ν? 11]11501500 []1[=+=+ν?ν?=?q q 005.02 01 .02===T δ s c L c 7 8 1067.6103005.01-?=??== δτ MHz c c 24.010 67.614.321 217 =???= = -πτν? (5) 某固体激光器的腔长为45cm ,介质长30cm ,折射率n=,设此腔总的单程损耗率,求此激光器的无

周炳琨激光原理第一章习题解答(完整版)

周炳琨<激光原理>第一章习题解答(完整版) 1.为使氦氖激光器的相干长度达到1km ,它的单色性 λλ ?应是多少? 解:相干长度 υ υυ -=?=12c c L c 将 λυ1 1c =, λυ22c =代入上式,得: λ λλλλλ?≈-=0 2 2 121L c ,因此 c λλλ 00=?,将 nm 8.6320=λ,km L c 1=代入得: 10*328.68.632100-==?nm λλ 2.如果激光器和微波激射器分别在 m μλ10=, nm 500=λ和 MHz 3000=υ输出1W 连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是 多少? 解:ch p h p n λ υ== (1) 个10*03.510*3*10*626.610*1191 8 34 ≈= --ms Js m W n μ (2)个10*52.210*3*10*626.6500*1181834≈=--ms Js nm W n (3)个10*03.53000*10*626.612334 ≈=-MHz Js W n 3.设一对激光能级为 E 2和E 1(f f =12) ,相应频率为υ(波长为 λ ),能级上的粒

子数密度分别为 n 2和n 1,求: (a )当 MHz 3000=υ,T=300K 时,=n n 12? (b )当 m μλ1=,T=300K 时,=n n 1 2? (c )当 m μλ1=,1.01 2=n n 时,温度T=? 解: e e f n h E E ==---υ121 212 (a )110 *8.4300 *10*38.110*300010*626.64 23 6 *341 2≈≈= -----e e n n (b )10 *4.121 6238 34 1 2 10*8.410*1*300*10*38.110*3*10*626.6≈≈==--- ----e e e n n kT hc λ (c )1.010*1*10*38.110*3*10*626.68 341 2===---e e n n T hc λ 得: K T 10*3.63 ≈ 4.在红宝石Q 调制激光器中,有可能将几乎全部Cr + 3离子激发到激光上能级并产生激光 巨脉冲。设红宝石棒直径1cm,长度7.5cm , Cr + 3浓度为 cm 3 1910*2-,巨脉冲宽度为 10ns ,求输出激光的最大能量和脉冲功率。 解:由于红宝石为三能级激光系统,最多有一般的粒子能产生激光: J nhc nh E 1710*3.69410 *3*10*626.6*10*2*5.7*)5.0(2 19 8 34 19 2 max 2 121====--πλυW E P R 10*7.19 max ==τ 5.试证明,由于自发辐射,原子在 E 2 能级的平均寿命 A s 21 1=τ 证明:自发辐射,一个原子由高能级 E 2自发跃迁到E 1,单位时间内能级E 2减少的粒子

激光原理及应用思考练习题答案

思考练习题1 1. 试计算连续功率均为1W 的两光源,分别发射λ=0.5000μm ,ν=3000MHz 的光,每秒 从上能级跃迁到下能级的粒子数各为多少? 答:粒子数分别为:18 8 34634110 5138.21031063.6105.01063.61?=????=? ?= =---λ ν c h q n 23 9 342100277.510 31063.61?=???==-νh q n 2.热平衡时,原子能级E 2的数密度为n 2,下能级E 1的数密度为n 1,设21g g =,求:(1)当原子跃迁时相应频率为ν=3000MHz ,T =300K 时n 2/n 1为若干。(2)若原子跃迁时发光波长λ=1μ,n 2/n 1=0.1时,则温度T 为多高? 答:(1)(//m n E E m m kT n n n g e n g --=)则有:1]300 1038.110 31063.6exp[2393412≈?????-==---kT h e n n ν (2)K T T e n n kT h 36238 34121026.61.0]1011038.11031063.6exp[?=?=???????-==----ν 3.已知氢原子第一激发态(E 2)与基态(E 1)之间能量差为1.64×l0- 18J ,设火焰(T =2700K)中含有1020个氢原子。设原子按玻尔兹曼分布,且4g 1=g 2。求:(1)能级E 2上的原子数n 2为多少?(2)设火焰中每秒发射的光子数为l08 n 2,求光的功率为多少瓦? 答:(1)1923 181221121011.3]2700 1038.11064.1exp[4----?=???-?=?=??n n e g n g n kT h ν 且20 2110=+n n 可求出312≈n (2)功率=W 918 8 10084.51064.13110--?=??? 4.(1)普通光源发射λ=0.6000μm 波长时,如受激辐射与自发辐射光功率体密度之比 q q 激自 1 = 2000 ,求此时单色能量密度νρ为若干?(2)在He —Ne 激光器中若34/100.5m s J ??=-νρ,λ为0.6328μm ,设μ=1,求 q q 激自 为若干? 答:(1)

激光原理与技术习题一样本

《激光原理与技术》习题一 班级序号姓名等级 一、选择题 1、波数也常见作能量的单位, 波数与能量之间的换算关系为1cm-1 = eV。 ( A) 1.24×10-7 (B) 1.24×10-6 (C) 1.24×10-5 (D) 1.24×10-4 2、若掺Er光纤激光器的中心波长为波长为1.530μm, 则产生该波长的两能级之间的能量 间隔约为 cm-1。 ( A) 6000 (B) 6500 (C) 7000 (D) 10000 3、波长为λ=632.8nm的He-Ne激光器, 谱线线宽为Δν=1.7×109Hz。谐振腔长度为50cm。 假设该腔被半径为2a=3mm的圆柱面所封闭。则激光线宽内的模式数为个。 ( A) 6 (B) 100 (C) 10000 (D) 1.2×109 4、属于同一状态的光子或同一模式的光波是 . (A) 相干的 (B) 部分相干的 (C) 不相干的 (D) 非简并的 二、填空题 1、光子学是一门关于、、光子的科学。 2、光子具有自旋, 而且其自旋量子数为整数, 大量光子的集合, 服从统计分布。 3、设掺Er磷酸盐玻璃中, Er离子在激光上能级上的寿命为10ms, 则其谱线宽度 为。 三、计算与证明题 1.中心频率为5×108MHz的某光源, 相干长度为1m, 求此光源的单色性参数及线宽。

2.某光源面积为10cm 2, 波长为500nm, 求距光源0.5m 处的相干面积。 3.证明每个模式上的平均光子数为 1 )/ex p(1-kT hv 。 《激光原理与技术》习题二 班级 姓名 等级 一、 选择题 1、 在某个实验中, 光功率计测得光信号的功率为-30dBm, 等于 W 。 ( A) 1×10-6 (B) 1×10-3 (C) 30 (D) -30 2、 激光器一般工作在 状态. (A) 阈值附近 (B) 小信号 (C) 大信号 (D) 任何状态 二、 填空题 1、 如果激光器在=10μm λ输出1W 连续功率, 则每秒从激光上能级向下能级跃迁的粒子数 是 。 2、 一束光经过长度为1m 的均匀激励的工作物质。如果出射光强是入射光强的两倍, 则该物 质的增益系数为 。 三、 问答题 1、 以激光笔为例, 说明激光器的基本组成。 2、 简要说明激光的产生过程。 3、 简述谐振腔的物理思想。 4、 什么是”增益饱和现象”? 其产生机理是什么? 四、 计算与证明题 1、 设一对激光能级为2E 和1E (设g 1=g 2), 相应的频率为ν(波长为λ), 能级上的粒子数密度 分别为2n 和1n , 求 (a) 当ν=3000MHz , T=300K 时, 21/?n n =

激光原理及应用习题

《激光原理及应用》习题 1. 激光的产生分为理论预言和激光器的诞生两个阶段?简述激光理论的创始人,理论要点和提出理论的时间。简 述第一台激光诞生的时间,发明人和第一台激光器种类? 答:激光理论预言是在1905年爱因斯坦提出的受激辐射理论。世界上第一台激光器是于1960年美国的梅曼研制成功的。第一台激光器是红宝石激光器。 2. 激光谱线加宽分为均匀加宽和非均匀加宽,简述这两种加宽的产生机理、谱线的基本线型。 答:如果引起加宽的物理因数对每一个原子都是等同的,则这种加宽称为均匀加宽,线型为洛仑兹线型。自然加宽、碰撞加宽及晶格振动加宽均属均匀加宽类型。 非均匀加宽是原子体系中每一个原子只对谱线内与它的表观中心频率相应的部分有贡献,线型为高斯线型。多普勒加宽和固体晶格缺陷属于非均匀加宽。 3. 军事上的激光器主要应用那种激光器?为什么应用该种激光器? 答:军事上主要用的是CO 2激光器,这是因为CO 2激光波长处于大气窗口,吸收少,功率大,效率高等特点。 4. 全息照相是利用激光的什么特性的照相方法?全息照相与普通照相相比有什么特点? 答:全息照相是利用激光的相干特性的。全息照片是三维成像,记录的是物体的相位。 1. 激光器的基本结构包括三个部分,简述这三个部分 答:激光工作物质、激励能源(泵浦)和光学谐振腔; 2. 物质的粒子跃迁分辐射跃迁和非辐射跃迁,简述这两种跃迁的区别。 答:粒子能级之间的跃迁为辐射跃迁,辐射跃迁必须满足跃迁定则;非辐射跃迁表示在不同的能级之间跃迁时并不伴随光子的发射或吸收,而是把多余的能量传给了别的原子或吸收别的原子传给他的能量。 3. 工业上的激光器主要有哪些应用?为什么要用激光器? 答:焊接、切割、打孔、表面处理等等。工业上应用激光器主要将激光做热源,利用激光的方向性好,能量集中的特点。 4. 说出三种气体激光器的名称,并指出每一种激光器发出典型光的波长和颜色。 答:He-Ne 激光器,632.8nm (红光),Ar+激光器,514.5nm (绿光),CO 2激光器,10.6μm (红外) 计算题 1.激光器为四能级系统,已知3能级是亚稳态能级,基态泵浦上来的粒 子通过无辐射跃迁到2能级,激光在2能级和1能级之间跃迁的粒子产 生。1能级与基态(0能级)之间主要是无辐射跃迁。 (1)在能级图上划出主要跃迁线。 (2)若2能级能量为4eV ,1能级能量为2eV ,求激光频率; 解:(1)在图中画出 (2)根据爱因斯坦方程 21h E E ν=- 得 ()1914213442 1.610 4.829106.62610E E Hz h ---??-===??ν 2.由凸面镜和凹面镜组成的球面腔,如图。凸面镜的曲率半径为2m ,凹面镜的曲率半径为3m ,腔长为1.5m 。发光波长600nm 。判断此腔的稳定性; 解: 激光腔稳定条件 R3 32ω 21ω

2010激光原理技术与应用 习题解答

习题I 1、He-Ne 激光器m μλ63.0≈,其谱线半宽度m μλ12 10-≈?,问λλ/?为多少?要使其相干长度达到1000m ,它的单色性λλ/?应是多少? 解:63.01012 -=?λλ λλδτ?= ==2 1v c c L c 相干 = = ?相干 L λ λ λ 2、He-Ne 激光器腔长L=250mm ,两个反射镜的反射率约为98%,其折射率η=1,已知Ne 原子m μλ6328.0=处谱线的MHz F 1500=?ν,问腔内有多少个纵模振荡?光在腔内往返一次其光子寿命约为多少?光谱线的自然加宽ν?约为多少? 解:MHz Hz L c v q 60010625 210328 10=?=??==?η

5 .2=??q F v v s c R L c 8 10 1017.410 3)98.01(25)1(-?=??-=-=τ MHz Hz L c R v c c 24104.2)1(21 7=?=-≈=πτδ 3、设平行平面腔的长度L=1m ,一端为全反镜,另一端反射镜的反射率90.0=γ,求在1500MHz 频率范围内所包含的纵模数目和每个纵模的频带宽度? 解:MHz Hz nL c v q 150105.1100 210328 10=?=??==? 10 150 1500==??q v v L c R v c c )1(21 -≈ =πτδ 4、已知CO 2激光器的波长m μλ60.10=处 光谱线宽度MHz F 150=?ν,问腔长L 为多少时,腔内为单纵模振荡(其中折射率η=1)。

解:L c v v F q η2=?=?, F v c L ?=2 5、Nd 3 —YAG 激光器的m μ06.1波长处光 谱线宽度MHz F 5 1095.1?=?ν,当腔长为10cm 时,腔中有多少个纵模?每个纵模的频带宽度为多少? 解:MHz L c v q 3 10105.110 21032?=??==?η 130 =??q F v v L c R v c c )1(21 -≈ =πτδ 6、某激光器波长m μλ7.0=,其高斯光束束腰光斑半径mm 5.00=ω。 ①求距束腰10cm 、20cm 、100cm 时, 光斑半径)(z ω和波阵面曲率半径)(z R 各为多少? ②根据题意,画出高斯光束参数分布图。

激光原理与技术习题一

《激光原理与技术》习题一 班级 序号 姓名 等级 一、选择题 1、波数也常用作能量的单位,波数与能量之间的换算关系为1cm -1 = eV 。 (A )1.24×10-7 (B) 1.24×10-6 (C) 1.24×10-5 (D) 1.24×10-4 2、若掺Er 光纤激光器的中心波长为波长为1.530μm ,则产生该波长的两能级之间的能量间 隔约为 cm -1。 (A )6000 (B) 6500 (C) 7000 (D) 10000 3、波长为λ=632.8nm 的He-Ne 激光器,谱线线宽为Δν=1.7×109Hz 。谐振腔长度为50cm 。假 设该腔被半径为2a=3mm 的圆柱面所封闭。则激光线宽内的模式数为 个。 (A )6 (B) 100 (C) 10000 (D) 1.2×109 4、属于同一状态的光子或同一模式的光波是 . (A) 相干的 (B) 部分相干的 (C) 不相干的 (D) 非简并的 二、填空题 1、光子学是一门关于 、 、 光子的科学。 2、光子具有自旋,并且其自旋量子数为整数,大量光子的集合,服从 统计分布。 3、设掺Er 磷酸盐玻璃中,Er 离子在激光上能级上的寿命为10ms ,则其谱线宽度为 。 三、计算与证明题 1.中心频率为5×108MHz 的某光源,相干长度为1m ,求此光源的单色性参数及线宽。 2.某光源面积为10cm 2,波长为500nm ,求距光源0.5m 处的相干面积。 3.证明每个模式上的平均光子数为 1 )/exp(1 kT hv 。

《激光原理与技术》习题二 班级 姓名 等级 一、选择题 1、在某个实验中,光功率计测得光信号的功率为-30dBm ,等于 W 。 (A )1×10-6 (B) 1×10-3 (C) 30 (D) -30 2、激光器一般工作在 状态. (A) 阈值附近 (B) 小信号 (C) 大信号 (D) 任何状态 二、填空题 1、如果激光器在=10μm λ输出1W 连续功率,则每秒从激光上能级向下能级跃迁的粒子数 是 。 2、一束光通过长度为1m 的均匀激励的工作物质。如果出射光强是入射光强的两倍,则该物 质的增益系数为 。 三、问答题 1、以激光笔为例,说明激光器的基本组成。 2、简要说明激光的产生过程。 3、简述谐振腔的物理思想。 4、什么是“增益饱和现象”?其产生机理是什么? 四、计算与证明题 1、设一对激光能级为2E 和1E (设g 1=g 2),相应的频率为ν(波长为λ),能级上的粒子数密度分 别为2n 和1n ,求 (a) 当ν=3000MHz ,T=300K 时,21/?n n = (b) 当λ=1μm ,T=300K 时,21/?n n = (c) 当λ=1μm ,21/0.1n n =时,温度T=? 2、设光振动随时间变化的函数关系为 (v 0为光源中心频率), 试求光强随光频变化的函数关系,并绘出相应曲线。 ???<<=其它,00),2exp()(00c t t t v i E t E π

《激光原理及应用》习题参考答案仅供大家学习参考用

《激光原理及应用》习题参考答案 思考练习题1 1.解答:设每秒从上能级跃迁到下能级的粒子数为n 。 单个光子的能量:λνε/hc h == 连续功率:εn p = 则,ε/p n = a. 对发射m μλ5000 .0=的光: ) (10514.2100.31063.6105000.01188346 个?=?????= =--hc p n λ b. 对发射MHz 3000=ν的光 )(10028.51030001063.6123634个?=???= = -νh p n 2.解答:νh E E =-12……………………………………………………………………..(a) T E E e n n κ121 2--=……………………………………………………………………….(b) λν/c =…………………………………………………………………………….(c) (1)由(a ),(b )式可得: 11 2==-T h e n n κν (2)由(a ),(b ),(c)式可得: )(1026.6ln 31 2 K n n hc T ?=- =κλ 3.解答: (1) 由玻耳兹曼定律可得 T E E e g n g n κ121 12 2//--=, 且214g g =,20 2110=+n n 代入上式可得: ≈2n 30(个)

(2))(10028.5)(1091228W E E n p -?=-= 4.解答: (1) 由教材(1-43)式可得 31733 634 3/10860.3/) 106000.0(1063.68200018q m s J m s J h q ??=??????=?=---πλπρν自激 (2)9 34 4363107.59210 63.68100.5)106328.0(8q ?=?????==---ππρλνh q 自激 5.解答:(1)红宝石半径cm r 4.0=,长cm L 8=,铬离子浓度318102-?=cm ρ,发射波 长m 6 106943.0-?=λ,巨脉冲宽度ns T 10=?则输出最大能量 )(304.2)(106943.0100.31063.684.0102)(6 8 342 182 J J hc L r E =?????????==--πλπρ 脉冲的平均功率: )(10304.2)(10 10304 .2/89 W W T E p ?=?=?=- (2)自发辐射功率 )(10304.2)(10106943.0)84.0102(100.31063.6) (22 621883422 W W L r hc hcN Q ?=??????????== ---πλτ πρλτ = 自 6.解答:由λν/c =,λλνd c d 2 =及λρνρλd d v =可得 1 1 85 -== kT hc e hc d d λνλλ πλνρρ 7.解答: 由 0) (=ννρd d 可得: 31 =-kT h kT h m m m e e kT h υυυ; 令 x kT h m =υ,则)1(3-=x x e xe ;解得:82.2=x 因此:11 82.2--=kh T m ν 同样可求得: 96.4=kT hc m λ 故c m m 568.0=λν

第一章激光原理练习题

第一章激光原理练习题 一、填空题(本大题共4个小题,每题3分,共12分) 1.光学谐振腔的稳定与否是由谐振腔的决定的。 2.平凹腔是由一块平面镜和一块曲率半径为R的凹面镜组成的光学谐振腔, 按照两镜之间距离可分为半共焦腔和。 3.一般情况下粒子数密度反转分布与的线型函数有关。 4.小信号粒子数密度反转与能级寿命有关。 二、选择题(本大题共4个小题,每题3分,共12分) 1. 粒子数密度反转分布的表达式表明了粒子数密度按照谐振腔内光波频率 分布,与有关。 A光强B饱和光强C中心频率D小信号粒子数密度反转 2.光学谐振腔的作用是。 A倍增工作介质作用长度提高单色光能密度 B控制光束传播方向。 C对激光进行选频 D改变激光频率 3. 饱和光强I s是激光工作物质的光学性质,不同物质差别很大,氦氖激光器 (632.8nm谱线)I s大约为。 A. 0.3W/mm2 B. 7.0W/mm2 C. 0.6W/mm2 D. 0.5W/mm2 4.平凹腔按照两镜之间距离可分为。 A半共焦腔 B半共心腔 C共焦腔 D共心腔 三、简答题(本大题共4个小题,每题5分,共20分)

1.请解释增益饱和的物理意义。 2.请解释什么是不稳定腔。 3.什么是平行平面腔? 4 .请解释粒子数密度反转分布值的饱和效应。 四、计算题(本大题共4个小题,共56分) 1.四能级激光器中,激光上能级寿命为τ3 =10-3 s,总粒子数密度n0 =3×108m-3 , 当抽运几率达到W14 =500/s时,求小信号反转粒子数密度为多少?(10分)

2.某激光介质的增益系数G=2/m,初始光强为I0 ,求光在介质中传播z=0.5m 后的光强。(不考虑损耗与增益饱和)(14分) 3.激光器为四能级系统,已知3能级是亚稳态能级,基态泵浦上来的粒子通 过无辐射跃迁到2能级,激光在3能级和2能级之间跃迁的粒子产生。1能级与基态(0能级)之间主要是无辐射跃迁。 (1)在能级图上划出主要跃迁线。 (2)若2能级能量为4eV,1能级能量为2eV,求激光频率;(16分) 4.求非均匀加宽激光器入射强光频率为 101 2H ννν =-?,光强为 13 s I I ν =时,该强光大信号增益系数下降到峰值增益系数的多少倍?(16分)

激光原理与技术试题答案

2006-2007学年 第1学期 《激光原理与技术》B 卷 试题答案 1. 填空题(每题4分)[20] 激光的相干时间τc 和表征单色性的频谱宽度Δν之间的关系为___1c υτ?= 一台激光器的单色性为5x10-10,其无源谐振腔的Q 值是_2x109 如果某工作物质的某一跃迁波长为100nm 的远紫外光,自发跃迁几率A 10等于105 S -1,该跃迁的受激辐射爱因斯坦系数B 10等于_____6x1010 m 3s -2J -1 设圆形镜共焦腔腔长L=1m ,若振荡阈值以上的增益线宽为80 MHz ,判断可能存在_两_个振荡频率。 对称共焦腔的 =+)(2 1 D A _-1_,就稳定性而言,对称共焦腔是___稳定_____腔。 2. 问答题(选做4小题,每小题5分)[20] 何谓有源腔和无源腔如何理解激光线宽极限和频率牵引效应 有源腔:腔内有激活工作物质的谐振腔。无源腔:腔内没有激活工作物质的谐振腔。 激光线宽极限:无源腔的线宽极限与腔内光子寿命和损耗有关:122' c R c L δ υπτπ?= = ;有源腔由于受到自发辐射影响,净损耗不等于零,自发辐射的随机相位造成输出激光的线宽极限 220 2()t c s t out n h n P πυυυ?= ?。 频率牵引效应:激光器工作物质的折射率随频率变化造成色散效应,使得振荡模的谐振频率总是偏离无源腔相应的模的频率,并且较后者更靠近激活介质原子跃迁的中心频率。这种现象称为频率牵引效应。 写出三能级和四能级系统的激光上能级阈值粒子数密度,假设总粒子数密度为n ,阈值反转粒子数密度为 n t. 三能级系统的上能级阈值粒子数密度22 t t n n n += ;四能级系统的上能级阈值粒子数密度2t t n n ≈。 产生多普勒加宽的物理机制是什么 多普勒加宽的物理机制是热运动的原子(分子)对所发出(或吸收)的辐射的多普勒频移。 均匀加宽介质和非均匀加宽介质中的增益饱和有什么不同分别对形成的激光振荡模式有何影响 均匀加宽介质:随光强的增加增益曲线会展宽。每个粒子对不同频率处的增益都有贡献,入射的强光不仅使自身的增益系数下降,也使其他频率的弱光增益系数下降。满足阀值条件的纵模

激光原理复习题

激光原理复习题 填空 6424''?= 简答 6636''?= 计算 121527'''+= 论述 11313''?= 1.什么是光波模式和光子态什么是相格Page5 答:光波模式(page5):在一个有边界条件限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波。这种能够存在于腔内的驻波(以某一波矢k 为标志)称为光波模式。 光子态(page6):光子在由坐标与动量所支撑的相空间中所处的状态,在相空间中,光子的状态对应于一个相格。 相格(page6):在三维运动情况下,测不准关系为3 x y z x y z P P P h ??????≈,故在六位相空间中, 一个光子态对应(或占有)的相空间体积元为3 x y z x y z P P P h ??????≈,上述相空间体积元称 为相格。 2.如何理解光的相干性何谓相干时间、相干长度、相干面积和相干体积Page7 答:光的相干性(page7):在不同的空间点上、在不同的时刻的光波场的某些特性的相关性。 相干时间(page7):光沿传播方向通过相干长度c L 所需的时间,称为相干时间。 相干长度(page7):相干光能产生干涉效应的最大光程差,等于光源发出的光波的波列长度。 相干面积:垂直于传播方向的截面上相干面积Ac ,则Ac 称为相干面积。

相干体积(page7):如果在空间体积c V内各点的光波场都具有明显的相干性,则c V称为相干体积。 3.何谓光子简并度,有几种相同的含义激光源的光子简并度与它的相干性什么联系Page9答:光子简并度(page9):处于同一光子态的光子数称为光子简并度。 光子简并度有以下几种相同含义(page9):同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。 联系:激光源的光子简并度决定着激光的相干性,光子简并度越高,激光源的相干性越好。 4.什么是黑体辐射写出Planck公式,并说明它的物理意义。Page10 答:黑体辐射(page10):当黑体处于某一温度T的热平衡情况下,它所吸收的辐射能量应等于发出的辐射能量,即黑体与辐射场之间应处于能量(热)平衡状态,这种平衡必然导致空腔内存在完全确定的辐射场,这种辐射场称为黑体辐射或平衡辐射。 Planck公式(page10): 3 3 81 1 b h k T h c e νν πν ρ= - 物理意义(page10):在单位体积内,频率处于ν附近的单位频率间隔中黑体的电磁辐射能量。 5.描述能级的光学跃迁的三大过程,并写出它们的特征和跃迁几率。Page10 答:(1)自发辐射 过程描述(page10):处于高能级2E的一个原子自发的向1E跃迁,并发射一个能量为hν的

《激光原理及技术》1-4习题问题详解

激光原理及技术部分习题解答(鹤鸣) 第一章 4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ?应当是多少? 解:相干长度C c L υ = ?,υ?是光源频带宽度 85 3*10/3*101C c m s Hz L km υ?=== 22 510 8 (/) 632.8*3*10 6.328*103*10/c c c c nm Hz c m s λλυυυυλλλυλ-=??=?=???=?== 第二章 4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为 21,n n ,求: (1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=? 解: T k E E b e n 121 2 n --= 其中1 2**E E c h E c h -=?=λ ν λ h c h == ?*E (1) (2)010*425.12148300 *10*38.11010*3* 10 *63.61 2 236 8 34 ≈====--- ----e e e n n T k c h b λ

(3) K n n k c h b 3 6 238341 210*26.6)1.0(ln *10*10*8.3110*3*10*63.6ln *T =-=-=---λ 9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数101.0-=mm α (2) 010010100003660I .e I e I e I I .z ====-?-α 即经过厚度为0.1m 时光能通过36.6% 10. 解: m /..ln .G e .e I I G .Gz 6550314 013122020===?=?

相关主题
文本预览
相关文档 最新文档