当前位置:文档之家› 巧用“旋转”求解一类几何最值问题

巧用“旋转”求解一类几何最值问题

巧用“旋转”求解一类几何最值问题
巧用“旋转”求解一类几何最值问题

巧用“旋转”求解一类几何最值问题

【模型1】如图,正方形ABCD的边长为√2,在对角线BD上有一点P,求当PA+PC+PB 的值最小时,则这个最小值为多少?

【解析】

如图,将△ABP以点B为中心逆时针旋转60o,得到△EBQ,连接PQ,则△BPQ和△ABE均为等边三角形。设y=PA+PC+PB,则y=EQ+QP+PC,故当点E、Q、P、C在同一条直线上时y最小,即y的最小值为CE的长度。

过点E作EM⊥BC,交CB延长线于点M,易知,∠EBM=30o,

∴EM=√2/2,BM=√3·√2/2=√6/2;

∴CE2=(√2/2)2+(√6/2+√2)2

=4+2√3=(√3+1)2,∴CE=√3+1,

即当PA+PC+PB的和最小时,最小值为√3+1。

通过求解过程我们发现,点P在不在BD上与结果并无关系,可以认为点P为△ABC 内部的一点,当∠ABC=90o,BA=BC=√2时,PA+PB+PC的最小值仍然是√3+1。

于是我们设想当∠ABC为其他特殊角,BA和BC不相等时,PA+PB+PC的最小值可以求得吗?

【模型2】在△ABC中,∠BAC=30o,AB=6,AC=8,点P为△ABC内一点,连接PA,PB,PC,求PA+PB+PC的最小值。

【解析】如图,将△ABP以点A为中心逆时针旋转60o,得到△AB′P′,连接PP′。

则△APP′为等边三角形。则PA+PC+PB=B′P′+PP′+PC,故当PA+PC+PB最小时,点B′、P′、P、C在同一条直线上,即PA+PC+PB的最小值为B′C的长度。

易知,∠B′AC=30o+60o=90o,AB′=AB=6,

∴B′C=10,即当PA+PC+PB的和最小时,最小值为10。

【模型3】在△ABC中,∠BAC=60o,AB=2√3,AC=4-√3,点P为△ABC内一点,连接PA,PB,PC,求PA+PB+PC的最小值。

【解析】如图,将△ABP以点A为中心逆时针旋转60o,得到△AB′P′,连接PP′。

则△APP′为等边三角形。则PA+PC+PB=B′P′+PP′+PC,故当PA+PC+PB最小时,点B′、P′、P、C在同一条直线上,即PA+PB+PC的最小值为B′C的长度。

过点B′作B′D⊥AC,交CA延长线于点D,易知,∠B′AD=60o,

∴B′D=2√3·√3/2=3,AD=√3;CD=4-√3+√3=4,

∴B′C=5,即当PA+PC+PB的和最小时,最小值为5。

【模型4】在△ABC中,∠BAC=90o,AB=2√3,AC=3√3-3,点P为△ABC内一点,连接PA,PB,PC,求PA+PB+PC的最小值。

【提示】如下图,与【模型1】情况类似,最小值为√30。

【模型5】在△ABC中,∠ABC=75o,AB=2√2,BC=2,点P为△ABC内一点,连接PA,PB,PC,求PA+PB+PC的最小值。

【提示】如下图,通过旋转可知PA+PC+PB的最小值为CD的长度。过点D作DM⊥BC,交CB延长线于点M,易知,∠DBM=45o。最小值为2√5。

Welcome To Download !!!

欢迎您的下载,资料仅供参考!

中考数学几何旋转压轴题

中考数学几何旋转压轴 题 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

中考数学几何旋转综合题 1、已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG . (1)求证:EG =CG ; (2)将图①中△BEF 绕B 点逆时针旋转45o ,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立若成立,请给出证明;若不成立,请说明理由. (3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立通过观察你还能得出什么结论(均不要求证明) 2. 在△ABC 中,=BC =2,∠ABC =120°,将△ABC 绕点B 顺时针旋转角(0°<<90°)得△A 1BC 1,A 1交AC 于点E ,A 1C 1分别交AC ,BC 于D ,F 两点. (1)如图22-4(a),观察并猜想,在旋转过程中,线段EA 1与FC 是怎样的数量关系?并证明你的结论; 图23-4(a) (2)如图23-4(b),当=30°时,试判断四边形BC 1DA 的形状,并说明理由; 图23-4(b) (3)在(2)的情况下,求ED 的长. 3. 如图23-8(a),若△ABC 和△ADE 为等边三角形,M ,N 分别为EB ,CD 的中点,易证:CD =BE ,△AMN 是等边三角形. 图23-8 (1)当把△ADE 绕A 点旋转到图23-8(b)的位置时,D ,E ,B 三点共线,CD =BE 是否仍然成立?若成立请证明;若不成立请说明理由; (2)当△ADE 绕A 点旋转到图23-8(c)的位置时,D ,E ,B 三点不共线,△AMN 是否还是等边三角形?若是,请给出证明;并求出当AB =2AD 时,△ADE 与△ABC 及△AMN 的面积之比;若不是,请说明理由. 4. 如图23-9(a),在平面直角坐标系中,O 为坐标原点,点A 的坐标为(-8,0),直线BC 经过点B (-8,6),C (0,6),将四边形OABC 绕点O 按顺时针方向旋转得到四边形OA ′B ′C ′,此时直线OA ′,直线B ′C ′分别与直线BC 相交于点P ,Q . 图23-9 (1)四边形OABC 的形状是______, 当=90°时, BQ BP 的值是______; (2)①如图23-9(b),当四边形OA ′B ′C ′的顶点B ′落在y 轴的正半轴上时,求 BQ BP 的值; A D E G D F A D C E G F A C E

初中数学几何辅助线技巧

几何常见辅助线口诀三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。 四边形 平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。 如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆形

半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径联。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 由角平分线想到的辅助线 一、截取构全等: 如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自己试一试。 二、角分线上点向两边作垂线构全等: 如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180 分析:可由C向∠BAD的两边作垂线。近而证∠ADC与∠B之和为平角。 三、三线合一构造等腰三角形: 如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。四、角平分线+平行线: 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。

用旋转法………作辅助线证明平面几何题

用旋转法………作辅助线证明平面几何题 旋转法就是在图形具有等邻边特征时,可以把图形的某部分绕等邻边的公共端点,旋转另一位置的引辅助线的方法。 1、旋转方法主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条 件。 2、旋转时要注意旋转中心、旋转方向、旋转角度的大小(三要素:中心、方向、大小); 3、旋转方法常用于竺腰三角形、等边三角形及正方形等图形中。 例1: 例2 已知,在Rt ABC中 B=AC;∠BAC=90?; D为BC边上任意一点,求证:2AD2=BD2+CD2. 证明:把ABD绕点A逆时钍方向旋转90?,得?ACE,则ABD??ACE,∴BD=CE,∠B=∠ACE; ∠BAD=∠CAE, AD=AE。 又∠BAC=90?;∴∠DAE=90? 所以: D E2=AD2+AE2=2AD2。 因为:∠B+∠ACB=90? 所以:∠DCE=90? CD2+CE2=DE2=2AD2 即: 2AD2=BD2+CD2。 注:也可以把ADC顺时针方向旋转90?来证明。 注 E C D

已知,P 为等边ABC 内一点,PA=5,PB=4,PC=3,求 ∠BPC 的度数。 证明:把 ABP 绕点B 顺时钍方向旋转90 ?,得?CBD ,则 ABP ??CBD ,∴BP=BD AP=CD=5, ∠ABP=∠CBD ,所以 ∠BAP+∠PBC=∠CBD+∠PBC=60?,所以 BPD 为等边三角形。 ∠PBD=60? PD=PB=4所以: C D 2=PD 2+PC 2。因为: ∠DPC=90?所以: ∠BPC=∠BPD+∠DPC=60?+90?=150? 注:也可以把CAP 绕点C 逆时针方向旋转60?来证明。 D C 例3: 如图:在正方形ABCD 中,E 为AD 边上一点,BF 平分∠CBE 交CD 于F 点。求证:BE=CF+AE 证明:把ABE 绕点B 顺时针方向旋转90?得BCN 。则:ABE ?BCN ,所以: ∠ABE=∠CBN ,BE=BN ,AE=CN 。因为:四边形ABCD 是正方形,所以:CD AB ,∠NFB=NBF 因为:∠ABF=∠ABE+∠EBF ,∠NBF=∠NBC+∠CBF ,而:∠EBF=∠FBC ;∠NBF=∠NFB 所以:BN=NF=CN+CF 所以:BE=AE+CF 。注:也可以把BCF 绕点B 逆时针方向旋转90?来证明。

解析法证明平面几何经典问题--举例

五、用解析法证明平面几何问题----极度精彩!充分展现数学之美感!何妨一试? 例1、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引两条直线分别交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二) (例1图) (例2图) 例2、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、 BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 【部分题目解答】 例1、(难度相当于高考压轴题) ; ,、点的方程为:直线的方程为:设直线方程为:轴建立坐标系,设圆的为为原点,轴,为如图,以)(),(,AD ,,)-(2211222y x C y x B nx y mx y AB r a y x Y AO A x MN ===+ 、;则,、,C B )()(4433y x E y x D , 1 - ;12-2-)1,{)-(22 2212212222222+=+=+=++=+=m r a x x m am x x r a amx x m y r a y x mx y 由韦达定理知:得:(消去,1- ;1222 243243+=+=+n r a x x n an x x 同理得: ),-(---23 23 22x x x x y y y y CD = 方程为:直线 ,--Q 3 23 223Q y y y x y x x = 点横坐标:由此得 , --P 1 41441P y y y x y x x = 点横坐标:同理得 ,------1 41441323223P Q y y y x y x y y y x y x x x AQ AP ===;即证:,只需证明:故,要证明 N B

最新初中数学几何题解题技巧

最新初中数学几何题解题技巧 初中数学几何题解题技巧一.添辅助线有二种情况 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此"添线"应该叫做"补图"!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线

(2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整

时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形

巧用旋转法解几何题

百度文库-让每个人平等地提升自我 巧用旋转法解几何题 将一个图形绕着某一点旋转一个角度的图形变换叫做旋转,由旋转的性质可知旋转前后的 图形全 等,对应点到旋转中心的连线所组成的夹角等于旋转角。旋转法是在图形具有公共端点的相 等的线段特征时,可以把图形的某部分绕相等的线段的公共端点, 旋转另一位置的引辅助线的方法, 主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条件。旋转方法常用于等腰三 角形、等边三角形及正方形等图形中。现就旋转法在几何证题中的应用举例加以说明,供同学们参 考。 例1.如图,在Rt △ ABC 中,/ C=90°, D 是AB 的中点,E , F 分别 AC 和BC 上,且 DEL DF, 求证:EF 2=A ^+B F" 分析:从 所证的结论来看,令人联想到勾股定理,但注意到 EF , AE BF 三条线段不在同一个三角 形中,由于D 是中点,我们可以考虑以 D 为旋转中心,将 BF 旋转到和AE 相邻的位置,构造一个直 角三角形,问题便迎刃而解。 证明:延长 FD 到G 使DG=DF 连接AG EG ?/ AD=DB / ADG=/ BDF ???" ADd " BDF ( SAS ???/ DAG=/ DBF BF=AG ? AG// BC ???/ C=90°A Z EAG=90 ? EG=Ah+AG=AE+BF ?/ DEI DF ? EG=EF 2 2 2 ? EF=AE+BF 例 2,如图 2,在"ABC 中,/ ACB=90 , AC=BC P 是"ABC 内一点,且 PA=3 PB=1, PC=2 求/ BPC 的度数. 分析:题目已知条件中给出了三条线段的长度和一个直角,但已知的三条线段不在同一三角形中, 故可考虑通过旋转变换移至一个三角形中,由于" ACB 是等腰直角三角形,宜以直角顶点 C 为旋转 中心。 解:作 MC L CP,使 MC=CP 连接 PM , BM F E A

解析法在几何中的应用 -

解析法在几何中的应用 姓名:周瑞勇 学号:201001071465 专业:物理学 指导教师:何巍巍

解析法在几何的应用 周瑞勇 大庆师范学院物理与电气信息工程学院 摘要:通过分析几何问题中的各要素之间的关系,用最简练的语言或形式化的符号来表达他们的关系,得出解决问题所需的表达式,然后设计程序求解问题的方法称为解析法。 关键词:几何问题,表达关系,表达式,求解问题 一前言 几何学的历史深远悠久,欧几里得总结前人的成果,所著的《几何原本》。一直是几何学的坚固基石,至今我国中学教学的几何课本仍未脱离他的衣钵。长期的教学实践证明,采用欧式体系学习几何是培养学生逻辑思维能力的行之有效的方法。 但是,事物都有两重性。实践同样证明,过多强调它的作为也是不适当的。初等几何的构思之难,使人们为此不知耗费了多少精力,往往为寻求一条神奇、奥秘的辅助线而冥思苦索。开辟新的途径,已是势在必行。近些年来,用解析法、向量法、复数法、三角法证明几何问题,受到越来越多的数学工作者的重视。 由于平面几何的内容,只研究直线和园的问题,所以我们完全可以用解析法来研究几何问题。解析法不仅具有几何的直观性,而且也还有证明方法的一般性。综合几何叙述较简,但构思困难,而解析法思路清晰,过程简捷,可以作为证明几何问题中一种辅助方法,两者课去唱补短,想得益彰。 二解析法概述 几何数学主要是从几何图形这个侧面去研究客观事物的,其基本元素是点,代数学则主要是从数量关系这个侧面来研究客观事物,其基本元素是数。笛卡尔综合了前人的成果,创立了坐标概念,把代数学和几何学结合起来,于是产生了以研究点的位置和一对有序实数的关系、方程和曲线以及有研究连续运动而产生

初中数学最值问题解题技巧,初中几何最值问题方法归纳总结

几何最值问题大一统 追本溯源化繁为简 目有千万而纲为一,枝叶繁多而本为一。纲举则目张,执本而末从。如果只在细枝末节上下功夫,费了力气却讨不了好。学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。 关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 AD一定,所以D是定点,C是直线 的最短路径,求得当CD⊥AC时最短为 是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

神奇的旋转几何题

例1.有公共顶点C 的△ABC 和△CDE 都是等边三角形. (1)求证:AD=BE ; (2)如果将△CDE 绕点C 沿顺时针方向旋转一个任意角,AD=BE 还成立吗? 推广:四边形ABDE 和ACFG 都是正方形,连结EC,BG ,如果将ABDE 绕点A 旋转一个任意角,问EC 与BG 有何关系. 例2.课本例题推广: (1)如图,在四边形ABCD 中,AB =AD ,∠BAD=∠BCD=90°,且四边形ABCD 的面积36,求线段BC 与CD 的和. (2)已知:在五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°. 求证:AD 是∠CDE 的平分线. (3)如图,在梯形ABCD 中,AD ∥BC ,且BC >AD ;∠D =90°,BC =CD =12,∠ABE =45°.若AE =10,求CE 的长. 例3.已 知E 、F 分别在正方形ABCD 边AB 和BC 上,AB=1,∠EDF=45°.求 △BEF 的周长. 例4.已知:在△ACB 中,∠ACB =90°,AC =BC ,D 、E 在AB 边上,且使得∠DCE =45°.求证:AD 、DE 、EB 三条线段确定的数 量关系 练习: 1. 在△ABC 中,AB=AC ,如图,∠BAC=90°,∠DAE=45°,BD=2,CE=3 . 求DE 的长. 拓展:如图,在等腰三角形ABC 中,AB=AC , (1)P 是三角形内的一点,且∠APB=∠APC .求证:PB=PC . (2)D 是三角形内一点,若∠ADB >∠ADC .求证∠DBC >∠DCB . (3)若P 为正方形ABCD 内一点,PA ∶PB ∶PC=1∶2∶3.试证∠APB=135° P C B A D C B A F E D C B A 2.(正方形中的三角形旋转)已知:如图,E 是正方形ABCD 边BC 上任意一点,AF 平分∠EAD 交CD 于F , F C M A E D C B A

数学几何解题技巧

初中数学教学中几何解题思路分析 【摘要】平面几何在初中数学中一直占据着很重要的位置。而学生在对几何知识进行学习和掌握的过程中,最重要的一个部分就是能够应用到实践中进行解题。正像美国一位著名的数学家曾经所说过的那样:“数学这门学科,真正的组成部分就是问题和解题,在问题与解题中,解题就是数学的心脏所在。”学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习效果有直接的影响。对教师来说,学生对基本的解题能力进行掌握,也是“双基”教学的一个方面。在数学中对基本的解题方法和技巧进行注意,对学生的学习能力的提高无疑有着重要的促进作用,与此同时还能够对学生良好学习习惯的形成有推动作用。 【关键词】初中数学;教学;几何;解题思路; 对初中的几何教学来说,初中几何中的重要部分是解题技巧与规律教学。尤其是在初中几何的后期与复习阶段,通过对学生的几何解题技巧的培养,能够使学生对知识有系统性的掌握,同时能够培养其对知识进行灵活应用的能力。当然,处了解题技巧与规律的培养,还应该注意对学生思维能力的培养。只有思维能力得到提高,才能更好地掌握解题技巧与规律。下面我们通过具体的实例进行详细分析初中数学几何题的解题思路, 一、初中数学几何的解题技巧 1、对常见的题型与解题方法进行归纳总结 初中的几何题中,其实常见的题型并不多,所以这对经常见的几何题型与解题方法进行归纳与总结,是初中几何解题一个和实用的解题技巧。初中几何,证明题是最常见的,而证明题中,又以线段或角的一些关系的证明最为常见。对线段的关系的证明通常包括相等及其和差关系等的证明。在这些中,相等关系的证明是学生应该进行的基本掌握,对线段相等关系的证明,在思路与方法上常用的包括“三角形全等”、“比例线段”以及“等角对等边”和对中间量的过渡进行选取等思路。在这些方法中,“三角形全等”是最常用的,也是应该掌握的基本解题方法。对线段不等关系则一般常用“线段公理”,而对线段的和差及其它(如倍、分)关系,在解题过程中要注意使用截长、补短等技巧。对常见技巧进行掌握,能有效提高学生的解题效率。 2、注意对辅助线进行添加和使用 在对初中几何进行解题的过程中,除了要对常用的解题方法与规律进行掌握外,还要对辅助线的添加与使用加以关注。在初中几何题中,当直接解题出现障碍使,添加辅助线是常见的解题技巧,往往会让人产生一种“柳暗花明又一村”的感觉。对常见技巧进行掌握,能有效提高学生的解题效率。下面我们通过一道例题详细进行分析几何证明题的解题方法及技巧: 如下图所示,已知:在ABC ?中,?=∠90C ,BC AC =,DB AD =,BF AE =,求证:DF DE =,

解析法巧解中考数学压轴题

解析法巧解中考压轴题 在平面几何题中,适当的建立直角坐标系,利用代数的方法解决几何问题,即解析法,有时会显得更简洁高效.现以近年中考压轴题为例,分析说明解析法之妙.例1 (2013泰州)如图1,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连结PQ,M为PQ中点. 若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M 落在矩形ABCD外部时,求a的取值范围. 分析本题将矩形、三角形、动点、参数相结合,考察学生利用相似解决问题的综合能力,难度较大,区分度高,按照参考答案给出的解题思路,如图2所示,当点M落在矩形ABCD外部时,须满足的条件是“BE>MN”.分别求出BE与MN的表达式,列不等式求解,即可求出a的取值范围. 由△ADP∽△ABQ,解得QB=4 5 a. 由△QBE∽△QCP,同样由比例关系得出BE= () 28 225 a a a - + . 又因为MN为QCP的中位线,得出 MN=1 2 PC= 1 2 (a-8). 再由BE>MN, 即 () 28 225 a a a - + () 1 8 2 a >- 得出a> . 当点M落在矩形ABCD外部时,a的取值范围为a>. 这种解法不仅要想到添加辅助线,还两次运用了相似比,计算量大,易出错.比较稳妥而简洁的做法是将图形放进直角坐标系中,利用数形结合的方法来解决此类问题. 一如何建立合适、恰当的坐标系呢通常需要考虑以下两点: 第一,让尽可能多的点落在直角坐标系上,这些点的坐标含有数字O,可以起到简化运算的功效; 第二,考虑图形的对称性,同样,也能起到简化运算的作用. 解答如图3所示,建立以B点为原点,BC方向为x轴正半轴,BA方向为y轴正半轴的直角坐标系.

初中数学几何专题旋转

初中数学几何专题——旋转 一.选择题(共5小题) 1.如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于() A.B.2 C.D. 2.下列轴对称图形中,只用一把无刻度的直尺不能画出对称轴的是()A.菱形B.矩形C.等腰梯形D.正五边形 3.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为() A.4 B.8 C.16 D.8 4.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=() A.1: B.1:2 C.:2 D.1: 5.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于() A.1﹣ B.1﹣ C.D. 二.填空题(共5小题) 6.如图,矩形ABCD中,AB=4,BC=8,E为CD的中点,点P、Q为BC上两个动点,且PQ=3,当CQ= 时,四边形APQE的周长最小. 7.如图,在平面直角坐标系中有一矩形ABCD,其中A(0,0),B (8,0),D (0,4),若将△ABC沿AC所在直线翻折,点B落在点E处.则E点的坐标是.

8.如图,将等边△ABC沿BC方向平移得到△A 1B 1 C 1 .若BC=3,,则BB 1 = . 9.已知一个直角三角板PMN,∠MPN=30°,MN=2,使它的一边PN与正方形ABCD 的一边AD重合(如图放置在正方形内)把三角板绕点P旋转,使点M落在直线BC上一点F处,则CF的长为. 10.如图,在矩形ABCD中,AB=9,AD=3,E为对角线BD上一点,且DE=2BE,过E作FG⊥BD,分别交AB、CD于F、G.将四边形BCGF绕点B旋转180°,在此过程中,设直线GF分别与直线CD、BD交于点M、N,当△DMN是以∠MDN为底角的等腰三角形时,则DN的长是. 三.解答题(共6小题) 14.已知,直角三角形ABC中,∠C=90°,点D、E分别是边AC、AB的中点,BC=6.(1)如图1,动点P从点E出发,沿直线DE方向向右运动,则当EP= 时,四边形BCDP是矩形; (2)将点B绕点E逆时针旋转. ①如图2,旋转到点F处,连接AF、BF、EF.设∠BEF=α°,求证:△ABF是直角三角形; ②如图3,旋转到点G处,连接DG、EG.已知∠BEG=90°,求△DEG的面积. 15.问题发现:如图1,△ABC是等边三角形,点D是边AD上的一点,过点D 作DE∥AC交AC于E,则线段BD与CE有何数量关系 拓展探究:如图2,将△ADE绕点A逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立如果成立,请就图中给出的情况加以证明. 问题解决:如果△ABC的边长等于2,AD=2,直接写出当△ADE旋转到DE与AC 所在的直线垂直时BD的长. 16.如图,正方形ABCD的面积为4,对角线交于点O,点O是正方形A 1B 1 C 1 O的

初二数学几何解题技巧

初二数学几何解题技巧 【知识梳理】 1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2、掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【专题一】证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 【专题二】证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 【专题三】证明线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) (二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)

巧用旋转法解几何题

巧用旋转法解几何题 将一个图形绕着某一点旋转一个角度的图形变换叫做旋转,由旋转的性质可知旋转前后的 图形全 等,对应点到旋转中心的连线所组成的夹角等于旋转角。旋转法是在图形具有公共端点的相 等的线段特征时,可以把图形的某部分绕相等的线段的公共端点, 旋转另一位置的引辅助线的方法, 主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条件。旋转方法常用于等腰三 角形、等边三角形及正方形等图形中。现就旋转法在几何证题中的应用举例加以说明,供同学们参 考。 例1.如图,在Rt △ ABC 中,/ C=90°, D 是AB 的中点,E , F 分别 AC 和BC 上,且 DEL DF, 求证:EF 2=A ^+B F" 分析:从 所证的结论来看,令人联想到勾股定理,但注意到 EF , AE BF 三条线段不在同一个三角 形中,由于D 是中点,我们可以考虑以 D 为旋转中心,将 BF 旋转到和AE 相邻的位置,构造一个直 角三角形,问题便迎刃而解。 证明:延长 FD 到G 使DG=DF 连接AG EG ?/ AD=DB / ADG=/ BDF ???" ADd " BDF ( SAS ???/ DAG=/ DBF BF=AG ? AG// BC ???/ C=90°A Z EAG=90 ? EG=Ah+AG=AE+BF ?/ DEI DF ? EG=EF 2 2 2 ? EF=AE+BF 例 2,如图 2,在"ABC 中,/ ACB=90 , AC=BC P 是"ABC 内一点,且 PA=3 PB=1, PC=2 求/ BPC 的度数. 分析:题目已知条件中给出了三条线段的长度和一个直角,但已知的三条线段不在同一三角形中, 故可考虑通过旋转变换移至一个三角形中,由于" ACB 是等腰直角三角形,宜以直角顶点 C 为旋转 中心。 解:作 MC L CP,使 MC=CP 连接 PM , BM F E A

初中数学旋转解题几何

旋转基础练习一 一、选择题 1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有 () A.6个B.7个C.8个 D.9个 2.从5点15分到5点20分,分针旋转的度数为 () A.20°B.26°C.30° D.36° 3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于 () A.70°B.80°C.60° D.50° (图1) (图2) (图3) 二、填空题. 1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________. 2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB 上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________. 3.如图3,△ABC为等边三角形,D为△ABC内一点,△ABD经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)旋转角度是________;(3)△ADP是________三角形. 三、解答题. 1.阅读下面材料: 如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置.如图5,以BC为轴把△ABC翻折180°,可以变到△DBC的位置.

(图4) (图5) (图6) (图7) 如图6,以A点为中心,把△ABC旋转90°,可以变到△AED的位置,像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换. 回答下列问题 如图7,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=1 2 AB. (1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE移到△ADF的位置? (2)指出如图7所示中的线段BE与DF之间的关系. 2.一块等边三角形木块,边长为1,如图,现将木块沿水平线翻滚五个三角形,那么B点从开始至结束所走过的路径长是多少? 旋转基础练习二 一、选择题 1.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于() A.50°B.210°C.50°或210°D.130°2.在图形旋转中,下列说法错误的是 () A.在图形上的每一点到旋转中心的距离相等 B.图形上每一点转动的角度相同 C.图形上可能存在不动的点 D.图形上任意两点的连线与其对应两点的连线长度相等 3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()

初中数学代数几何解题技巧

如何用好题目中的条件暗示 有一类题目,我们在解前面几小题时,其解题思路和方法往往对解后面问题起着很好的暗示作用,现以一次函数中出现的两道题目为例予以说明,供同学们在学习过程中参考。 【例1】直线与x轴、y轴分别交于B、A两点,如图1。 图1 (1)求B、A两点的坐标; (2)把△AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为一边作等边△BCD。求D点的坐标。 解析:(1)容易求得,A(0,1)。 (2)如图2, 图2 ∵,A(0,1), ∴OB=,OA=1。 ∴在Rt△AOB中,容易求得∠OBA=30° ∵把△AOB以直线AB为轴翻折, ∴∠OBC=2∠OBA=60°,BO=BC。 ∴△OBC是等边三角形 以BC为一边作等边△BCD,则D的落点有两种情形,可分别求得D的坐标为(0,0),。 反思:在求得第(1)小题中B、A两点的坐标分别为B(,0),A(0,1),实质上暗示着Rt△AOB中,OA=1,OB=,即暗示着∠OBA=30°,为解第(2)小题做了很好的铺垫。

【例2】直线与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点,如图3。 图3 (1)求三解形ABC的面积。 (2)证明不论a取任何实数,三角形BOP的面积是一个常数; (3)要使得△ABC和△ABP的面积相等,求实数a的值。 解析:(1)容易求得:A(,0),B(0,1), ∴。 (2)如图4,连接OP、BP,过点P作PD垂直于y轴,垂足为D,则三角形BOP的面积为,故不论a取任何实数,三角形BOP的面积是一个常数。 图4 (3)如图4,①当点P在第四象限时由第(2)小题中的结果:,和第(3)小题的条件可得: ∴, ∵,

初中数学旋转解题几何之令狐文艳创作

旋转基础练习一 令狐文艳 一、选择题 1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有() A.6个B.7个C.8个D.9个 2.从5点15分到5点20分,分针旋转的 度数为() A.20° B.26° C.30° D.36° 3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心, 将△ABC旋转到△A′B′C的位置,其中 A′、B′分别是A、B的对应点,且点B 在斜边A′B′上,直角边CA′交AB于 D,则旋转角等于() A.70° B.80° C.60°

D.50° (图1) (图2) (图3) 二、填空题. 1.在平面内,将一个图形绕一个定点沿着 某个方向转动一个角度,这样的图形运动 称 为________,这个定点称为________,转 动的角为________. 2.如图2,△ABC与△ADE都是等腰直角三 角形,∠C和∠AED都是直角,点E在AB 上,如果△ABC经旋转后能与△ADE重 合,那么旋转中心是点_________;旋转 的度数是__________. 3.如图3,△ABC为等边三角形,D为△ABC 内一点,△ABD经过旋转后到达△ACP的 位置,则,(1)旋转中心是________; (2)旋转角度是________;(3)△ADP

是________三角形. 三、解答题. 1.阅读下面材料: 如图4,把△ABC沿直线BC平行移动线段 BC的长度,可以变到△ECD的位置. 如图5,以BC为轴把△ABC翻折180°, 可以变到△DBC的位置. (图4) (图5) (图6) (图7) 如图6,以A点为中心,把△ABC旋转 90°,可以变到△AED的位置,像这样,其 中一个三角形是由另一个三角形按平行移 动、翻折、旋转等方法变成的,这种只改变 位置,不改变形状和大小的图形变换,叫做 三角形的全等变换. 回答下列问题 如图7,在正方形ABCD中,E是AD的中 AB. 点,F是BA延长线上一点,AF=1 2

初中数学几何证明题解题方法--

初中数学几何证明题解题方法--

————————————————————————————————作者:————————————————————————————————日期:

浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程 关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线 初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。 学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。 一、几何证明题的一般结构 初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。 例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . 求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB ,AB = DC ,AC = DB ,AC 与DB 交于点M 图形给出的有:BC=CB,∠BMA 与∠CMD 是对顶角等等 求证目标是:△ABC ≌△DCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等 二、做几何证明题的一般步骤 (一)、审题 审题就是读题,这一步是解决几何证明题的关键,非常重要。许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。和读其它类型的题有所不同,读几何证明题要求 B A M N

巧用旋转法解几何题

巧用旋转法解几何题

∵AD=DB ,∠ADG=∠BDF ∴⊿ADG ≌⊿BDF (SAS ) ∴∠DAG=∠DBF ,BF=AG ∴AG ∥BC ∵∠C=90°∴∠EAG=90° ∴EG 2 =AE 2 +AG 2 =AE 2 +BF 2 ∵DE ⊥DF ∴EG=EF ∴EF 2 =AE 2 +BF 2 例2,如图2,在⊿ABC 中,∠ACB=90°,AC=BC ,P 是⊿ABC 内一点,且PA=3,PB=1,PC=2,求∠BPC 的度数. 分析:题目已知条件中给出了三条线段的长度和一个直角,但已知的三条线段不在同一三角形中,故可考虑通过旋转变换移至一个三角形中,由于⊿ACB 是等腰直角三角形,宜以直角顶点C 为旋转中心。 解:作MC ⊥CP ,使MC=CP ,连接PM ,BM ∵∠ACB=90°,∠PCM=90°∴∠1=∠2 ∵AC=BC , ∴⊿CAP ≌⊿CBM (SAS ) ∴MB=AP=3 G F E D C B A

∵PC=MC ,∠PCM=90° ∴∠MPC=45° 由勾 股定理 PM== 2 2MC PC = 2 2PC =22, 在⊿MPB 中,PB 2 +PM 2 =(22)2 +12=9=BM 2 ∴⊿MPB 是直角三角形 ∴∠BPC=∠CPM+∠MPB=45°+90°=135° 例3,如图3,直角三角形ABC 中,AB=AC ,∠BAC=90°,∠EAF=45°,求证:EF 2=BE 2+CF 2 分析:本题求证的结论和例1十分相似,无法直接用勾股定理,可通过旋转变换将BE ,CF 转移到同一个直角三角形中,由于⊿BAC 是等腰直角三角形,不妨以A 为旋转中心,将∠BAE 和∠CAF 合在一起,取零为整。 证明:过A 作AP ⊥AE 交BC 的垂线CP 于P ,连结 PF ∵∠EAP=90°,∠EAF=45° ∴∠PAF=45° ∵∠BAC=90° ∴∠BAE=∠PAC A P M C B A

初中数学九大几何模型解题思路

九大几何模型 一、手拉手模型----旋转型全等 (1)等边三角形 【条件】:△OAB 和△OCD 均为等边三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形 【条件】:△OAB 和△OCD 均为等腰直角三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED O A B C D E 图 1 O A B C D E 图 2 O A B C D E 图 1 O A C D E 图 2

(3)顶角相等的两任意等腰三角形 【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB 【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED 二、模型二:手拉手模型----旋转型相似 (1)一般情况 【条件】:CD ∥AB , 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC= ∠BOA (2)特殊情况 【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; O C O C D E O B C D E O A C D

②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③ ===OA OB OC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有22 22CD AB B C AD +=+;⑥BD AC 21 S △BCD ?= 三、模型三、对角互补模型 (1)全等型-90° 【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 2 1 S S S =+= 证明提示: ①作垂直,如图2,证明△CDM ≌△CEN ②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21 S S =- (2)全等型-120° 【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB A O B C D E 图 1 A O B C D E M N 图 2 A O B C D E F 图 3 A O B C D E M N 图 4

相关主题
文本预览
相关文档 最新文档