当前位置:文档之家› 巧用“旋转”解几何问题

巧用“旋转”解几何问题

巧用“旋转”解几何问题
巧用“旋转”解几何问题

巧用“旋转”解几何问题

临城镇中学郭粉霞

【摘要】

“旋转”作为图形的三大运动之一,在初中数学第十一章图形的运动中和平移、对称两种运动一起出现,学生在学那个章节包括老师在教那个章节时可能侧重点在如何按照要求画出相应的图形上,或许会忽略对于三种运动的性质及其特点的学习或教学,所以会造成学生在后期学习过程中,尤其是在几何证明时不太会巧用图形运动的性质及特点,特别是“旋转”运动的性质及特点来巧解相应的几何问题。我发现,利用“旋转”运动,能够把条件集中化,使图形中的各种关系明朗化,达到促进思维方法和解题能力的提高的目的。我总结了一下这类题目,发现这些题目和图形的“旋转”运动有些关联,所以我对图形的求解进行了一些研究。下面我主要通过几道例题的求解,对两类问题“角的求解和边的求解”进行讨论,这仅是我的心得体会,供大家参考。

【关键词】“旋转”运动性质及特点巧解几何问题

一、巧用“旋转”的性质求角

根据旋转的性质,我们知道对应点到旋转中心的距离相等,对应线段的长度相等,对应角的大小相等,旋转前后图形的大小和形状没有改变,在性质中“对应线段的长度相等,对应角的大小相等”,我们可以利用这个性质将要求的角转换成求旋转图形的对应角,然而图形在“旋转”运动中,往往会产生特殊的图形,我们再通过这些特殊的图形来求对应角,进而求未知角,这样问题就迎刃而解了。通过“旋转”运动,可以将毫无思路的问题明朗化,有助于他们找到准确的解题思路或方向,达到事半功倍的作用。

我们一起来看这样的一个例子:

如图1,P为正方形ABCD内一点,且PA=1,PB=2,PC=3.求∠APB的度数。

分析:我们分析题目,发现题目所给的条件是边长,而所要求的是角度,显然,只有将这些边长组合成特殊三角形(直角三角形或等腰三角形),通过特殊三角形的已知角来求未知角。要想构造特殊三角形,我们知道,通过“旋转”运动可以得到,从而化未知角为已知角来解决问题。又因为所给的图形是正方形,我们发现,正方形的边长是相等的,旋转时有一条对应边正好与正方形的另一边重合,形成了对应的图形△CMB,从而可将求∠APB转化成求对应角∠CMB。且在“旋转”运动的过程中,构成了两个特殊的三角形,即等腰直角△PBM、直角△PMC,正好∠CMB由∠BMP和∠PMC组成,把∠BMP和∠PMC放在△PBM和△PMC中看问题,我们的问题就可以巧妙的解决啦!具体解答过程如下:

解法一:因为四边形ABCD为正方形,所以BA=BC,将△APB绕点B顺时针方

向旋转90°,则点A 与点C 重合,设点P 落到的位置为点M ,得到△CMB,连接PM ,由旋转可知:

△APB ≌△CMB.

∴∠3=∠1,∠CMB=∠APB. MC=PA=1,MB=PB=2.

∵四边形ABCD 为正方形.

∴∠1+∠2=∠ABC=90°.

∴∠3+∠2=90°.

即△PMB 为等腰直角三角形.

∴PM=2PB=22,∠BMP=45°

又在△PMC 中,2PM +2CM =2(22)+21=8+1=9,

2PC =23=9. ∴2PM +2CM =2PC ,

∴∠PMC=90°.

∴∠CMB=∠PMC+∠BMP=90°+45°=135°. 图1 ∴∠APB=135°.

答:∠APB 的度数是135°。

解法二:同理,如图2,我们将△PBC 绕点B 逆时针方向旋转90°,则点C 与点A 重合,设点P 落到的位置为点M ,得到△AMB,连接PM ,由旋转可知:△BPC ≌△BMA.此旋转方法也可以解决同样的问题。

图2

二、巧用“旋转”的性质求边

(1)拓展探究:以上例题还可以进一步拓展,我们将条件和结论互换可以得到下面两道题,将问题转化成求边的问题。问题如下:

问题一:如图3,已知P 为正方形ABCD 内一点,PA=1,PB=2. 且∠APB=135°,1

2

3

求PC 的长。

问题二:如图3,已知P 为正方形ABCD 内一点,PB=2,PC=3. 且∠APB=135°,求PA 的长。

图3

分析:这两道题的条件和结论之间同样没有明显的内在联系,读完题目后,不知从哪里入手来解这样的题。但是,如果我们记着第一题的解题方法,即巧用旋转,将所给的条件往一起凑,凑成等腰直角三角形和直角三角形,这样问题就迎刃而解了。(具体的解题方法是:将第二题的解题过程逆过来即可求得PC 的长为3,PB 的长为1。)

(2)改变条件

如果把条件稍微做些改变,对有些图形仍然可以得到类似的结论。比如将正方形改成等边三角形,运用同样的方法——巧用“旋转”运动,也可以解决问题。

请看下题:

如图4,已知P 是等边三角形ABC 内一点,PA =2,PB =32,PC =4

求△ABC 的边长

分析:这题咋看似乎没有任何方向,但我们会发现2、32、4是一组勾股数,如果能构造一个以PA 、PB 、PC 的长度为三边的直角三角形,那问题就可以得到解决了,这可能就是解决问题的突破口。显然,如果我们想要出现相等的线段,构造出特殊的三角形,我们可以尝试上述解题方法----巧用“旋转”运动来解决问题。题目中已经有了等边三角形,利用“旋转”把APC ?或者APB ?绕着C 点P

A B C 图

6 D

P A B C D P

A

B C

图5 图6 图4

或B点顺时针或逆时针旋转

60,即可以得到边重合,对应线段相等,同时还有一个新的等边三角形出现,我们所希望得到的以PA、PB、PC的长度为三边的直角三角形也随之出现,如图5、图6所示,由此可见这种方法是多么的实用。

【总结】

其实这类题在构成上或是在解题思路上都是巧用了“旋转”运动的性质及其特点,把未知的条件转化成已知的特殊图形,使条件集中化,这样图形中的各种关系就清晰可见了,这种方法往往会成为解题的突破口。通过“旋转”运动的性质及其特点来帮助解题,不仅可以巧解学生眼中的难题,还可以促进思维方法和解题能力的提高,达到良好的效果。

“旋转”的性质在几何证明中不仅仅只有这些,它在其他方面也有比较广泛的运用,本文只是结合教学过程中出现的一些问题,总结了一下自己的经验与心得体会,目的更多的是提醒自己今后在教学中,不要仅仅把目光放在如何应付眼前的考试,只是教会学生如何画图是不够的,还应该启发学生们如何运用“旋转”运动的知识来巧解几何问题,熟练掌握图形运动的性质和特点,发散学生的思维,提高他们思考问题的能力,培养他们对数学的兴趣,为今后的学习做准备。

以上就是我对于“旋转”在几何问题中的作用的一些浅显心得,望其他老师能加以指正。

【参考文献】

乌依勤·《浅淡“旋转”在几何证明中的一些应用》西南模范中学

微专题26解析几何中的最值与范围问题(教学案)

微专题26 解析几何中的最值与范围问题 1. 利用数形结合或三角换元等方法解决直线与圆中的部分范围问题. 2. 构造函数模型研究长度及面积相关的范围与最值问题. 3. 根据条件或几何特征构造不等关系解决与离心率相关的范围问题. 4. 熟悉线段的定比分点、弦长、面积等问题的处理手段,深刻体会数形结合、等价转化的数学思想方法的运用. 考题导航 利用数形结合或三角换元等方法解决直线与圆 2. 已知实数x 、y 满足方程x 2+y 2-4x +1=0.则y x 的最大值为________;y -x 的最小 值为________;x 2+y 2的最小值为________. 1. 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 1. 已知A 、B 分别是椭圆x 36+y 20=1长轴的左、右端点,F 是椭圆的右焦点,点P 在 椭圆上,且位于x 轴的上方,PA ⊥PF.设M 是椭圆长轴AB 上的一点,点M 到直线AP 的距离等于MB ,则椭圆上的点到点M 的距离d 的最小值为________. 1. 已知双曲线为C :x 24-y 2 =1,P 为双曲线C 上的任意一点.设点A 的坐标为(3,0), 则PA 的最小值为________.

1. 如图,椭圆的中心在坐标原点,焦点在x 轴上,A 1,A 2,B 1,B 2为椭圆的顶点,F 2为右焦点,延长B 1F 2与A 2B 2交于点P ,若∠B 1PA 2为钝角,则该椭圆离心率的取值范围是________. 1. 椭圆M :x 2 a 2+y 2 b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上的任意一点, 且|PF 1→|·|PF 2→|的最大值的取值范围是[2c 2 ,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是_______. 1. 如图,在平面直角坐标系xOy 中,椭圆C :x a 2+y b 2=1(a >b >0)的左、右焦点分别 为F 1、F 2,P 为椭圆C 上的一点(在x 轴上方),连结PF 1并延长交椭圆C 于另一点Q ,设PF 1→ =λF 1Q → .若PF 2垂直于x 轴,且椭圆C 的离心率e ∈??? ?12,22,求实数λ的取值范围.

中考数学几何图形旋转试题经典问题及解答

中考数学几何图形旋转典型试题 一、填空题 1.(日照市)如图1,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于. 2.(成都市)如图2,将一块斜边长为12cm,∠B=60°的直角三角板ABC,绕点C沿逆时针方向旋转90°至△A′B′C′的位置,再沿CB向右平移,使点B′刚好落在斜边AB 上,那么此三角板向右平移的距离是cm. 3.(连云港市)正△ABC的边长为3cm,边长为1cm的正△RPQ的顶点R 与点A重合,点P,Q分别在AC,AB上,将△RPQ沿着边AB,BC,CA顺时针 连续翻转(如图3所示),直至点P第一次回到原来的位置,则点P运动路径 的长为cm. 4.(泰州市)如图4,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC= 3,∠BCD=45°,将腰CD以点D为中心逆时针旋转90°至ED,连结AE,CE,则△ADE的面积是. 二、解答题 5.(资阳市)如图5-1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F. (1) 求证:BP=DP; (2) 如图5-2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明; (3) 试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论 . 6.(武汉市)如图6-1是一个美丽的风车图案,你知道它是怎样画出来的吗?按下列步骤可画出这个风车图案:在图6-2中,先画线段OA,将线段OA平移至CB处,得到风车

解析几何中的定点和定值问题精编版

解析几何中的定点定值问题 考纲解读:定点定值问题是解析几何解答题的考查重点。此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。 一、 定点问题 解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。 例1、已知A 、B 是抛物线y 2 =2p x (p >0)上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当α、β变化且α+β= 4 π 时,证明直线AB 恒过定点,并求出该定点的坐标。 解析: 设A ( 121 ,2y p y ),B (222 ,2y p y ),则 2 1 2tan , 2tan y p y p ==βα,代入1)tan(=+βα 得2 21214)(2p y y y y p -=+ (1) 又设直线AB 的方程为b kx y +=,则 022222 =+-????=+=pb py ky px y b kx y ∴k p y y k pb y y 2,22121= += ,代入(1)式得pk p b 22+= ∴直线AB 的方程为)2(2p x k p y +=- ∴直线AB 过定点(-)2,2p p 说明:本题在特殊条件下很难探索出定点,因此要从已知出发,把所求的定点问题转化为求直线AB ,再从AB 直线系中看出定点。 例2.已知椭圆C :22 221(0)x y a b a b +=>> ,以原点为圆心,椭圆的短半轴长为半径的 圆与直线0x y -相切. ⑴求椭圆C 的方程; ⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围; ⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.

用旋转法………作辅助线证明平面几何题

用旋转法………作辅助线证明平面几何题 旋转法就是在图形具有等邻边特征时,可以把图形的某部分绕等邻边的公共端点,旋转另一位置的引辅助线的方法。 1、旋转方法主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条 件。 2、旋转时要注意旋转中心、旋转方向、旋转角度的大小(三要素:中心、方向、大小); 3、旋转方法常用于竺腰三角形、等边三角形及正方形等图形中。 例1: 例2 已知,在Rt ABC中 B=AC;∠BAC=90?; D为BC边上任意一点,求证:2AD2=BD2+CD2. 证明:把ABD绕点A逆时钍方向旋转90?,得?ACE,则ABD??ACE,∴BD=CE,∠B=∠ACE; ∠BAD=∠CAE, AD=AE。 又∠BAC=90?;∴∠DAE=90? 所以: D E2=AD2+AE2=2AD2。 因为:∠B+∠ACB=90? 所以:∠DCE=90? CD2+CE2=DE2=2AD2 即: 2AD2=BD2+CD2。 注:也可以把ADC顺时针方向旋转90?来证明。 注 E C D

已知,P 为等边ABC 内一点,PA=5,PB=4,PC=3,求 ∠BPC 的度数。 证明:把 ABP 绕点B 顺时钍方向旋转90 ?,得?CBD ,则 ABP ??CBD ,∴BP=BD AP=CD=5, ∠ABP=∠CBD ,所以 ∠BAP+∠PBC=∠CBD+∠PBC=60?,所以 BPD 为等边三角形。 ∠PBD=60? PD=PB=4所以: C D 2=PD 2+PC 2。因为: ∠DPC=90?所以: ∠BPC=∠BPD+∠DPC=60?+90?=150? 注:也可以把CAP 绕点C 逆时针方向旋转60?来证明。 D C 例3: 如图:在正方形ABCD 中,E 为AD 边上一点,BF 平分∠CBE 交CD 于F 点。求证:BE=CF+AE 证明:把ABE 绕点B 顺时针方向旋转90?得BCN 。则:ABE ?BCN ,所以: ∠ABE=∠CBN ,BE=BN ,AE=CN 。因为:四边形ABCD 是正方形,所以:CD AB ,∠NFB=NBF 因为:∠ABF=∠ABE+∠EBF ,∠NBF=∠NBC+∠CBF ,而:∠EBF=∠FBC ;∠NBF=∠NFB 所以:BN=NF=CN+CF 所以:BE=AE+CF 。注:也可以把BCF 绕点B 逆时针方向旋转90?来证明。

解析法证明平面几何经典问题--举例

五、用解析法证明平面几何问题----极度精彩!充分展现数学之美感!何妨一试? 例1、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引两条直线分别交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二) (例1图) (例2图) 例2、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、 BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 【部分题目解答】 例1、(难度相当于高考压轴题) ; ,、点的方程为:直线的方程为:设直线方程为:轴建立坐标系,设圆的为为原点,轴,为如图,以)(),(,AD ,,)-(2211222y x C y x B nx y mx y AB r a y x Y AO A x MN ===+ 、;则,、,C B )()(4433y x E y x D , 1 - ;12-2-)1,{)-(22 2212212222222+=+=+=++=+=m r a x x m am x x r a amx x m y r a y x mx y 由韦达定理知:得:(消去,1- ;1222 243243+=+=+n r a x x n an x x 同理得: ),-(---23 23 22x x x x y y y y CD = 方程为:直线 ,--Q 3 23 223Q y y y x y x x = 点横坐标:由此得 , --P 1 41441P y y y x y x x = 点横坐标:同理得 ,------1 41441323223P Q y y y x y x y y y x y x x x AQ AP ===;即证:,只需证明:故,要证明 N B

巧用旋转法解几何题

百度文库-让每个人平等地提升自我 巧用旋转法解几何题 将一个图形绕着某一点旋转一个角度的图形变换叫做旋转,由旋转的性质可知旋转前后的 图形全 等,对应点到旋转中心的连线所组成的夹角等于旋转角。旋转法是在图形具有公共端点的相 等的线段特征时,可以把图形的某部分绕相等的线段的公共端点, 旋转另一位置的引辅助线的方法, 主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条件。旋转方法常用于等腰三 角形、等边三角形及正方形等图形中。现就旋转法在几何证题中的应用举例加以说明,供同学们参 考。 例1.如图,在Rt △ ABC 中,/ C=90°, D 是AB 的中点,E , F 分别 AC 和BC 上,且 DEL DF, 求证:EF 2=A ^+B F" 分析:从 所证的结论来看,令人联想到勾股定理,但注意到 EF , AE BF 三条线段不在同一个三角 形中,由于D 是中点,我们可以考虑以 D 为旋转中心,将 BF 旋转到和AE 相邻的位置,构造一个直 角三角形,问题便迎刃而解。 证明:延长 FD 到G 使DG=DF 连接AG EG ?/ AD=DB / ADG=/ BDF ???" ADd " BDF ( SAS ???/ DAG=/ DBF BF=AG ? AG// BC ???/ C=90°A Z EAG=90 ? EG=Ah+AG=AE+BF ?/ DEI DF ? EG=EF 2 2 2 ? EF=AE+BF 例 2,如图 2,在"ABC 中,/ ACB=90 , AC=BC P 是"ABC 内一点,且 PA=3 PB=1, PC=2 求/ BPC 的度数. 分析:题目已知条件中给出了三条线段的长度和一个直角,但已知的三条线段不在同一三角形中, 故可考虑通过旋转变换移至一个三角形中,由于" ACB 是等腰直角三角形,宜以直角顶点 C 为旋转 中心。 解:作 MC L CP,使 MC=CP 连接 PM , BM F E A

浙江高考数学复习专题四解析几何第3讲圆锥曲线中的定点、定值、最值与范围问题学案

第3讲 圆锥曲线中的定点、定值、最值与范围问题 高考定位 圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一,一般以椭圆或抛物线为背景,试题难度较大,对考生的代数恒等变形能力、计算能力有较高的要求. 真 题 感 悟 (2018·北京卷)已知抛物线C :y 2 =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围; (2)设O 为原点,QM →=λQO →,QN →=μQO → ,求证:1λ+1μ 为定值. 解 (1)因为抛物线y 2 =2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2 =4x . 由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0). 由? ????y 2 =4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2 ×1>0, 解得k <0或0

解析法在几何中的应用 -

解析法在几何中的应用 姓名:周瑞勇 学号:201001071465 专业:物理学 指导教师:何巍巍

解析法在几何的应用 周瑞勇 大庆师范学院物理与电气信息工程学院 摘要:通过分析几何问题中的各要素之间的关系,用最简练的语言或形式化的符号来表达他们的关系,得出解决问题所需的表达式,然后设计程序求解问题的方法称为解析法。 关键词:几何问题,表达关系,表达式,求解问题 一前言 几何学的历史深远悠久,欧几里得总结前人的成果,所著的《几何原本》。一直是几何学的坚固基石,至今我国中学教学的几何课本仍未脱离他的衣钵。长期的教学实践证明,采用欧式体系学习几何是培养学生逻辑思维能力的行之有效的方法。 但是,事物都有两重性。实践同样证明,过多强调它的作为也是不适当的。初等几何的构思之难,使人们为此不知耗费了多少精力,往往为寻求一条神奇、奥秘的辅助线而冥思苦索。开辟新的途径,已是势在必行。近些年来,用解析法、向量法、复数法、三角法证明几何问题,受到越来越多的数学工作者的重视。 由于平面几何的内容,只研究直线和园的问题,所以我们完全可以用解析法来研究几何问题。解析法不仅具有几何的直观性,而且也还有证明方法的一般性。综合几何叙述较简,但构思困难,而解析法思路清晰,过程简捷,可以作为证明几何问题中一种辅助方法,两者课去唱补短,想得益彰。 二解析法概述 几何数学主要是从几何图形这个侧面去研究客观事物的,其基本元素是点,代数学则主要是从数量关系这个侧面来研究客观事物,其基本元素是数。笛卡尔综合了前人的成果,创立了坐标概念,把代数学和几何学结合起来,于是产生了以研究点的位置和一对有序实数的关系、方程和曲线以及有研究连续运动而产生

解析几何最值问题

解析几何最值问题的赏析 丹阳市珥陵高级中学数学组:李维春 教学目标:1.掌握解析几何中图形的处理方法和解析几何中变量的选择; 2.掌握利用基本不等式和函数的思想处理最值问题. 重点难点:图形的处理和变量的选择及最值的处理. 问题提出: 已知椭圆方程:14 32 2=+y x ,A ,B 分别为椭圆的上顶点和右顶点。过原点作一直线与线段AB 交于点G ,并和椭圆交于E 、F 两点,求四边形AEBF 面积的最大值。 问题分析: 1、 图形的处理: 不规则图形转化为规则图形(割补法) ABF ABE AENF S S S ??+= BEF AEF AENF S S S ??+= 2、 变量的选择: (1) 设点:设点),(00y x E 则),(00y x F --,可得到二元表达式; (2) 设动直线的斜率k (可设AF,BF,EF,AE,BE 中任意一条直线的斜率),可得 一元表达式。 3,最值的处理方法: (1) 一元表达式可用基本不等式或函数法处理; (2) 二元表达式可用基本不等式或消元转化为一元表达式。 X

问题解决: 解法一: 由基本不等式得62 24)34(2322 02000==+≤+=y x y x S 时取“=” 当且仅当0032 y x = 解法二: 00000 0(,),(,),(0,0)x y F x y x y -->>设E ,四边形的面积为S (0,2),A B 因为,12 y += 20x +-=即1d =点E 到直线的距离:00( ,)x y 因为E 在直线AB 的上方,0020x ->所以1d =所以2d =点F 到直线的距离:00(,)x y --因为F 在直线的下方2d =所以)(21)(212121d d AB d AB d AB S +=+=002S x =+所以AB =因为00(,)F x y 又因为22134 x y +=在椭圆上22004312x y +=所以max S =所以

解析法巧解中考数学压轴题

解析法巧解中考压轴题 在平面几何题中,适当的建立直角坐标系,利用代数的方法解决几何问题,即解析法,有时会显得更简洁高效.现以近年中考压轴题为例,分析说明解析法之妙.例1 (2013泰州)如图1,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连结PQ,M为PQ中点. 若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M 落在矩形ABCD外部时,求a的取值范围. 分析本题将矩形、三角形、动点、参数相结合,考察学生利用相似解决问题的综合能力,难度较大,区分度高,按照参考答案给出的解题思路,如图2所示,当点M落在矩形ABCD外部时,须满足的条件是“BE>MN”.分别求出BE与MN的表达式,列不等式求解,即可求出a的取值范围. 由△ADP∽△ABQ,解得QB=4 5 a. 由△QBE∽△QCP,同样由比例关系得出BE= () 28 225 a a a - + . 又因为MN为QCP的中位线,得出 MN=1 2 PC= 1 2 (a-8). 再由BE>MN, 即 () 28 225 a a a - + () 1 8 2 a >- 得出a> . 当点M落在矩形ABCD外部时,a的取值范围为a>. 这种解法不仅要想到添加辅助线,还两次运用了相似比,计算量大,易出错.比较稳妥而简洁的做法是将图形放进直角坐标系中,利用数形结合的方法来解决此类问题. 一如何建立合适、恰当的坐标系呢通常需要考虑以下两点: 第一,让尽可能多的点落在直角坐标系上,这些点的坐标含有数字O,可以起到简化运算的功效; 第二,考虑图形的对称性,同样,也能起到简化运算的作用. 解答如图3所示,建立以B点为原点,BC方向为x轴正半轴,BA方向为y轴正半轴的直角坐标系.

初中几何经典旋转问题试题集

中考旋转问题汇编(经典) 一、选择题 1.如图,把一个斜边长为2且含有300 角的直角三角板ABC 绕直角顶点C 顺时针旋转900 到△A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是( ) A .π B . 34π D .1112π 2.如图,O 是正△ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转 中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O′的距离为4;③∠AOB=150°;④ AOBO S 四形边AOC AOB S S += .其中正确的结论是( ) A .①②③⑤ B.①②③④ C.①②③④⑤ D.①②③ 3.如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=( )。 A .1:2 B .1:2 C .3:2 D .1:3 4.点P 是正方形ABCD 边AB 上一点(不与A 、B 重合),连接PD 并将线段PD 绕点P 顺时针旋转90°,得线段PE ,连接BE ,则∠CBE 等于( ) A .75° B.60° C.45° D.30° 5.如图,等边△ABC 的周长为6π,半径是1的⊙O 从与AB 相切于 点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相 切于点D 的位置,则⊙O 自转了:( ) A .2周 B .3周 C .4周 D .5周 二、填空题 6.如图,四边形ABCD 中,∠BAD=∠BCD=900 ,AB=AD,若四边形ABCD 的面积是24cm 2 .则AC 长是 cm.

解析几何范围最值问题(教师)详解

第十一讲 解析几何范围最值问题 解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理. 一、几何法求最值 【例1】 抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足+=(-4,-12). (1)求直线l 和抛物线的方程; (2)当抛物线上一动点P 从点A 运动到点B 时,求△ABP 面积的最大值. [满分解答] (1)根据题意可设直线l 的方程为y =kx -2,抛物线方程为x 2=-2py (p >0). 由????? y =kx -2,x 2=-2py , 得x 2+2pkx -4p =0 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4. 所以+=(-4,-12),所以??? ? ? -2pk =-4,-2pk 2 -4=-12, 解得? ???? p =1,k =2.故直线l 的方程为y =2x -2,抛物线方程为x 2=-2y . (2)设P (x 0,y 0),依题意,知当抛物线过点P 的切线与l 平行时,△ABP 的面积最大. 对y =-12x 2求导,得y ′=-x ,所以-x 0=2,即x 0=-2,y 0=-12x 20=-2,即P (-2,-2). 此时点P 到直线l 的距离d = |2·(-2)-(-2)-2|22+(-1)2 =45=4 5 5. 由? ???? y =2x -2, x 2=-2y ,得x 2+4x -4=0,则x 1+x 2=-4,x 1x 2=-4, |AB |= 1+k 2· (x 1+x 2)2-4x 1x 2= 1+22·(-4)2-4·(-4)=4 10. 于是,△ABP 面积的最大值为12×4 10×4 55=8 2. 二、函数法求最值 【示例】在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的离心率e = 2 3 ,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程; (2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由. (1)由e =c a = a 2- b 2 a 2= 23,得a =3 b ,椭圆C :x 23b 2+y 2 b 2=1,即x 2+3y 2=3b 2,

巧用旋转法解几何题

巧用旋转法解几何题 将一个图形绕着某一点旋转一个角度的图形变换叫做旋转,由旋转的性质可知旋转前后的 图形全 等,对应点到旋转中心的连线所组成的夹角等于旋转角。旋转法是在图形具有公共端点的相 等的线段特征时,可以把图形的某部分绕相等的线段的公共端点, 旋转另一位置的引辅助线的方法, 主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条件。旋转方法常用于等腰三 角形、等边三角形及正方形等图形中。现就旋转法在几何证题中的应用举例加以说明,供同学们参 考。 例1.如图,在Rt △ ABC 中,/ C=90°, D 是AB 的中点,E , F 分别 AC 和BC 上,且 DEL DF, 求证:EF 2=A ^+B F" 分析:从 所证的结论来看,令人联想到勾股定理,但注意到 EF , AE BF 三条线段不在同一个三角 形中,由于D 是中点,我们可以考虑以 D 为旋转中心,将 BF 旋转到和AE 相邻的位置,构造一个直 角三角形,问题便迎刃而解。 证明:延长 FD 到G 使DG=DF 连接AG EG ?/ AD=DB / ADG=/ BDF ???" ADd " BDF ( SAS ???/ DAG=/ DBF BF=AG ? AG// BC ???/ C=90°A Z EAG=90 ? EG=Ah+AG=AE+BF ?/ DEI DF ? EG=EF 2 2 2 ? EF=AE+BF 例 2,如图 2,在"ABC 中,/ ACB=90 , AC=BC P 是"ABC 内一点,且 PA=3 PB=1, PC=2 求/ BPC 的度数. 分析:题目已知条件中给出了三条线段的长度和一个直角,但已知的三条线段不在同一三角形中, 故可考虑通过旋转变换移至一个三角形中,由于" ACB 是等腰直角三角形,宜以直角顶点 C 为旋转 中心。 解:作 MC L CP,使 MC=CP 连接 PM , BM F E A

解析几何中的最值问题.

解析几何中的最值问题 解析几何中的最值问题是很有代表性的一类问题,具有题形多样,涉及知识面广等特点。解决这类问题,需要扎实的基础知识和灵活的解决方法,对培养学生综合解题能力和联想思维能力颇有益处。本文通过实例,就这类问题的解法归纳如下: 一、 转化法 例1、 点Q 在椭圆 22 147 x y +=上,则点Q 到直线32160x y --=的距 离的最大值为 ( ) A B C D 分析:可转化为求已知椭圆平行于已知直线的切线,其中距离已知直线较远的一条切线到该直线的距离即为所求的最大值。 解:设椭圆的切线方程为 3 2 y x b =+,与 22 147 x y +=消去y 得 224370x bx b ++-=由?=01272=+-b 可得4(4)b b ==-舍去,与 32160x y --=平行且距离远的切线方程为3280x y -+= 所以所求最大值为d = = ,故选C 二 、配方法 例2、 在椭圆 22 221x y a b +=的所有内接矩形中,何种矩形面积最大? 分析:可根据题意建立关系式,然后根据配方法求函数的最值。 解:设椭圆内接矩形在第一象限的顶点坐标为A (),x y ,则由椭圆对称性,矩形的长为2x ,宽为2y ,面积为4xy ,与 22 221x y a b +=消去 y 得: 22b S x a =?=

可知当x a = 时,max 2S ab = 三、 基本不等式法 例3、 设21,F F 是椭圆14 22 =+y x 的两个焦点,P 是这个椭圆上任一点,则21PF PF ?的最大值是 解: 124PF PF += 由12PF PF +≥得 44 )(2 2121=+≤ ?PF PF PF PF 即21PF PF ?的最大值是4 。 四、 利用圆锥曲线的统一定义 例4 、设点A (-,P 为椭圆22 11612 x y +=的右焦点,点 M 在椭 圆上,当取2AM PM +最小值时,点M 的坐标为 ( ) A (- B (- C D 解:由已知得椭圆的离心率为1 2 e = , 过M 作右准线L 的垂线,垂足为N ,由圆锥曲线的统一定义得 2MN PM = 2AM PM AM MN ∴+=+ 当点M 运动到过A 垂直于L 的直线上时, AM MN +的值最小,此时点M 的坐标为,故选 C 五、 利用平面几何知识 例5 、平面上有两点(1,0),(1,0)A B -,在圆22 (3)(4)4x y -+-=上取一点 P ,求使22 AP BP +取最小值时点P 的坐标。

初中数学几何专题旋转

初中数学几何专题——旋转 一.选择题(共5小题) 1.如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于() A.B.2 C.D. 2.下列轴对称图形中,只用一把无刻度的直尺不能画出对称轴的是()A.菱形B.矩形C.等腰梯形D.正五边形 3.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为() A.4 B.8 C.16 D.8 4.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=() A.1: B.1:2 C.:2 D.1: 5.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于() A.1﹣ B.1﹣ C.D. 二.填空题(共5小题) 6.如图,矩形ABCD中,AB=4,BC=8,E为CD的中点,点P、Q为BC上两个动点,且PQ=3,当CQ= 时,四边形APQE的周长最小. 7.如图,在平面直角坐标系中有一矩形ABCD,其中A(0,0),B (8,0),D (0,4),若将△ABC沿AC所在直线翻折,点B落在点E处.则E点的坐标是.

8.如图,将等边△ABC沿BC方向平移得到△A 1B 1 C 1 .若BC=3,,则BB 1 = . 9.已知一个直角三角板PMN,∠MPN=30°,MN=2,使它的一边PN与正方形ABCD 的一边AD重合(如图放置在正方形内)把三角板绕点P旋转,使点M落在直线BC上一点F处,则CF的长为. 10.如图,在矩形ABCD中,AB=9,AD=3,E为对角线BD上一点,且DE=2BE,过E作FG⊥BD,分别交AB、CD于F、G.将四边形BCGF绕点B旋转180°,在此过程中,设直线GF分别与直线CD、BD交于点M、N,当△DMN是以∠MDN为底角的等腰三角形时,则DN的长是. 三.解答题(共6小题) 14.已知,直角三角形ABC中,∠C=90°,点D、E分别是边AC、AB的中点,BC=6.(1)如图1,动点P从点E出发,沿直线DE方向向右运动,则当EP= 时,四边形BCDP是矩形; (2)将点B绕点E逆时针旋转. ①如图2,旋转到点F处,连接AF、BF、EF.设∠BEF=α°,求证:△ABF是直角三角形; ②如图3,旋转到点G处,连接DG、EG.已知∠BEG=90°,求△DEG的面积. 15.问题发现:如图1,△ABC是等边三角形,点D是边AD上的一点,过点D 作DE∥AC交AC于E,则线段BD与CE有何数量关系 拓展探究:如图2,将△ADE绕点A逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立如果成立,请就图中给出的情况加以证明. 问题解决:如果△ABC的边长等于2,AD=2,直接写出当△ADE旋转到DE与AC 所在的直线垂直时BD的长. 16.如图,正方形ABCD的面积为4,对角线交于点O,点O是正方形A 1B 1 C 1 O的

解析几何的范围问题

A .() 1,2 B . ( ) 2,2 C .()1,2 D . ( ) 2,+∞ 2.(2020·湖北高考模拟(理))设椭圆222 14 x y m +=与双曲线22 214x y a -=在第一象限的交点为12,,T F F 为其共同的左右的焦点,且14TF <,若椭圆和双曲线的离心率分别为12,e e ,则22 12e e +的取值范围为 A .262, 9? ? ??? B .527, 9?? ??? C .261, 9?? ??? D .50,9?? +∞ ??? 3.(2020六安市第一中学模拟)点在椭圆上, 的右焦点为,点在圆 上,则 的最小值为( ) A . B . C . D . 类型二 通过建立目标问题的表达式,结合参数或几何性质求范围 【例2】(2020·玉林高级中学高考模拟(理))已知椭圆22 :143 x y C +=的左、右顶点分别为,A B ,F 为椭圆 C 的右焦点,圆22 4x y +=上有一动点P ,P 不同于,A B 两点,直线PA 与椭圆C 交于点Q ,则PB QF k k 的取 值范围是( ) A .33,0,44????-∞- ? ? ????? B .()3,00,4??-∞? ??? C .()(),10,1-∞-? D .()(),00,1-∞ 【举一反三】 1.抛物线上一点 到抛物线准线的距离为 ,点关于轴的对称点为,为坐标原点, 的内切圆与 切于点,点为内切圆上任意一点,则 的取值范围为__________. 2.(2020哈尔滨师大附中模拟)已知直线 与椭圆: 相交于,两点,为坐标原点. 当的面积取得最大值时,( )A . B . C . D . 类型三 利用根的判别式或韦达定理建立不等关系求范围

高中竞赛数学讲义第56讲解析法证几何题

第56讲 解析法证 几何题 解析法是利用代数方法解决几何问题的一种常用方法.其一般的顺序是:建立坐标系,设出各点坐标及各线的方程,然后根据求解或求证要求进行代数推算.它的优点是具有一般性与程序性,几何所有的平面几何问题都可以用解析法获解,但对于有些题目演算太繁. 此外,如果建立坐标系或设点坐标时处理不当,也可能增加计算量.建系设点坐标的一般原则是使各点坐标出现尽量多的0,但也不可死搬教条,对于一些“地位平等”的点、线,建系设点坐标时,要保持其原有的“对称性”. A 类例题例1.如图,以直角三角形ABC 的斜边A B 及直角边B C 为边向三角形两侧作正方形ABDE 、CBFG . 求证:DC ⊥FA . 分析 只要证k C D ·k AF =-1,故只要求点D 的坐标. 证明 以C 为原点,CB 为x 轴正方向建立直角坐标系.设A (0,a ),B (b ,0),D (x ,y ). 则直线AB 的方程为ax +by -ab =0. 故直线BD 的方程为bx -ay -(b ·b -a ·0)=0, 即bx -ay -b 2=0. ED 方程设为ax +by +C =0. 由AB 、ED 距离等于|AB |,得 |C +ab | a 2+b 2=a 2+b 2, 解得C =±(a 2+b 2)-ab . 如图,应舍去负号. 所以直线ED 方程为ax +by +a 2+b 2-ab =0. 解得x =b -a ,y =-b .(只要作DH ⊥x 轴,由△DBH ≌△BAC 就可得到这个结果). 即D (b -a ,-b ). 因为k AF =b -a b ,k CD =-b b -a ,而k AF ·k CD =-1.所以DC ⊥FA . 例2.自ΔABC 的顶点A 引BC 的垂线,垂足为D ,在AD 上任取一点H ,直线BH 交AC 于E ,CH 交AB 于F . 试证:AD 平分ED 与DF 所成的角. 证明 建立直角坐标系,设A (0,a ),B (b ,0),C (c ,0),H (0,h ),于是 BH :x b +y h =1 AC :x c +y a =1 过BH 、AC 的交点E 的直线系为: λ(x b +y h -1)+μ(x c +y a -1)=0. 以(0,0)代入,得λ+μ=0. y x H F E D C B A y x O A B C D E F G

解析几何中的最值问题教案

解析几何中的最值问题 一、教学目标 解析几何中的最值问题以直线或圆锥曲线作为背景,以函数和不等式等知识作为工具,具有较强的综合性,这类问题的解决没有固定的模式,其解法一般灵活多样,且对于解题者有着相当高的能力要求,正基于此,这类问题近年来成为了数学高考中的难关。基本内容:有关距离的最值,角的最值,面积的最值。 二、教学重点 方法的灵活应用。 三、教学程序 1、基础知识 探求解析几何最值的方法有以下几种: (1)函数法(设法将一个较复杂的最值问题,通过引入适当的变量能归为某初等函数(常见)的有二次函数和三角函数)的最值问题,然后通过对该函数单调性和最值的考察使问题得以解决。 (2)不等式法:(常用的不等式法主要有基本不等式等) (3)曲线定义法:利用圆锥曲线的定义刻画了动点与动点(或定直线)距离之间的不变关系,一般来说涉及焦半径、焦点弦的最值问题可以考虑该方法 (4)平面几何法:有些最值问题具有相应的几何意义(如分式最值联想到斜率公式,求平方和最值联想到距离公式等等) (1)函数法 例1、已知P 点在圆()2241x y +-=上移动,Q 点在椭圆2 219 x y +=上移动,试求PQ 的最大值。 分析:两个都是动点,看不出究竟,P 、Q 在什么位置时|PQ|最大 故先让Q 点在椭圆上固定,显然当PQ 通过圆心O 1时|PQ|最大,因此要求|PQ| 的最大值,只要求|OQ|的最大值。 说明:函数法其我们探求解析几何最值问题的首选方法,其中所涉及到的函数最常见的有二次函数等,值得注意的是函数自变量取值范围的考察不易忽视。 例2 在平面直角坐标系xOy 中,点(),P x y 是椭圆2 213 x y +=上的一个动点,求S x y =+的最大值 (2)不等式法

解析几何中的范围问题

解析几何中的范围问题 一般解题思路是,首先寻觅出(或直接利用)相关的不等式,进而通过这一不等式的演变解出有关变量的取值范围。 一、“题设条件中的不等式关系” 题设条件中明朗或隐蔽的不等关系,可作为探索或寻觅范围的切入点而提供方便。 例1、(2004全国卷 I )椭圆 的两个焦点是 ,且 椭圆上存在点P 使得直线 垂直.求实数m 的取值范围; 分析:对于(1),要求m 的取值范围,首先需要导出相关的不等式,由题设知,椭圆方程为标准方程,应有 , 便是特设条件 中隐蔽的不等关系. 解:(1)由题设知 设点P 坐标为 ,则有 得① 将①与 联立,解得 ∵m>0,且 ∴m≥1 即所求m 的取值范围为 . 二、“圆锥曲线的有关范围” 椭圆、双曲线和抛物线的“范围”,是它们的第一几何性质。 例2、已知椭圆以坐标原点为中心,坐标轴为对称轴,且该椭圆以抛物线x y 162 =的焦点P 为其一个焦点,以双曲线19 162 2=-y x 的焦点Q 为顶点。 (1)求椭圆的标准方程; (2)已知点)0,1(),0,1(B A -,且C ,D 分别为椭圆的上顶点和右顶点,点M 是线段CD 上的动点,求BM AM ?的取值范围。 解:(1)抛物线x y 162 =焦点P 为(4,0),双曲线19 162 2=-y x 的焦点Q 为(5,0) ∴可设椭圆的标准方程为122 22=+b y a x (a>b>0),且a=5,c=4

916252 =-=∴b ,∴椭圆的标准方程为 19 252 2=+y x (2)设),(00y x M ,线段CD 方程为135=+y x ,即353+-=x y )50(≤≤x 点M 是线段CD 上,∴35 3 00+-=x y )50(0≤≤x ),1(00y x AM +=,),1(00y x BM -=,12 020-+=?∴y x AM , 将35300+- =x y )50(0≤≤x 代入得BM ?1)35 3(202 0-+-+=x x BM AM ??85 182534020+-= x x 34191 )3445(253420+-=x 500≤≤x , BM AM ?∴的最大值为24,BM AM ?的最小值为34 191 。 BM AM ?∴的范围是]24,34 191 [。 三、“一元二次方程有二不等实根的充要条件” 在直线与曲线相交问题中,直线与某圆锥曲线相交的大前提,往往由“相关一元二次方程有二不等实根”来体现。因此,对于有关一元二次方程的判别式△>0,求某量的值时,它是去伪存真的鉴别依据,求某量的取值范围时,它是导出该量的不等式的原始不等关系。 例3、如图,直角梯形ABCD 中∠DAB =90°,AD ∥BC ,AB =2,AD =23,BC =2 1 .椭圆C 以A 、B 为焦点且经过点D . (1)建立适当坐标系,求椭圆C 的方程; (2)若点E 满足EC 2 1 = AB ,问是否存在不平行AB 的直线l 与椭圆C 交于M 、N 两点且||||NE ME =,若存在,求 出直线l 与AB 夹角的范围,若不存在,说明理由. 解:(1)以AB 所在直线为x 轴,AB 中垂线为y 轴建立直角坐标系,则 A (-1,0),B (1,0) 设椭圆方程为:12222=+b y a x 令c b y C x 2 0=?= ∴?? ?==??????= =322 31 2 b a a b C ∴ 椭圆C 的方程是:13 42 2=+y x 。 (2)1(02EC AB E =?,)2 1 ,l ⊥AB 时不符,设l : y =kx +m (显然k ≠0)

巧用旋转法解几何题

巧用旋转法解几何题

∵AD=DB ,∠ADG=∠BDF ∴⊿ADG ≌⊿BDF (SAS ) ∴∠DAG=∠DBF ,BF=AG ∴AG ∥BC ∵∠C=90°∴∠EAG=90° ∴EG 2 =AE 2 +AG 2 =AE 2 +BF 2 ∵DE ⊥DF ∴EG=EF ∴EF 2 =AE 2 +BF 2 例2,如图2,在⊿ABC 中,∠ACB=90°,AC=BC ,P 是⊿ABC 内一点,且PA=3,PB=1,PC=2,求∠BPC 的度数. 分析:题目已知条件中给出了三条线段的长度和一个直角,但已知的三条线段不在同一三角形中,故可考虑通过旋转变换移至一个三角形中,由于⊿ACB 是等腰直角三角形,宜以直角顶点C 为旋转中心。 解:作MC ⊥CP ,使MC=CP ,连接PM ,BM ∵∠ACB=90°,∠PCM=90°∴∠1=∠2 ∵AC=BC , ∴⊿CAP ≌⊿CBM (SAS ) ∴MB=AP=3 G F E D C B A

∵PC=MC ,∠PCM=90° ∴∠MPC=45° 由勾 股定理 PM== 2 2MC PC = 2 2PC =22, 在⊿MPB 中,PB 2 +PM 2 =(22)2 +12=9=BM 2 ∴⊿MPB 是直角三角形 ∴∠BPC=∠CPM+∠MPB=45°+90°=135° 例3,如图3,直角三角形ABC 中,AB=AC ,∠BAC=90°,∠EAF=45°,求证:EF 2=BE 2+CF 2 分析:本题求证的结论和例1十分相似,无法直接用勾股定理,可通过旋转变换将BE ,CF 转移到同一个直角三角形中,由于⊿BAC 是等腰直角三角形,不妨以A 为旋转中心,将∠BAE 和∠CAF 合在一起,取零为整。 证明:过A 作AP ⊥AE 交BC 的垂线CP 于P ,连结 PF ∵∠EAP=90°,∠EAF=45° ∴∠PAF=45° ∵∠BAC=90° ∴∠BAE=∠PAC A P M C B A

相关主题
文本预览
相关文档 最新文档