当前位置:文档之家› 旋转法解几何证明题分类解析

旋转法解几何证明题分类解析

旋转法解几何证明题分类解析
旋转法解几何证明题分类解析

旋转法解题例析

(一)正三角形类型

在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC重合。经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP也为正三角形。

例1. 如图:(1-1):设P是等边ΔABC内的一点,PA=3, PB=4,

PC=5,∠APB的度数是________.

(二)正方形类型

在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转900,使得BA与BC重合。经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP' 为等腰直角三角形。

例4 如图,P是正方形ABCD内一点,且满足PA:PD:PC=1:2:3,则

∠APD= .

分析与解:设PA=k,则PD=2k,PC=3k(k>0),而PA、PD、PC三条线段较为分散,故可考虑旋转法,目的就是将三条线段以等线段替换方式集中在一个三角形中.

3、直角三角形

例1 如图,在△ABC中,∠C=90°,AC=BC,M、N是斜边AB上的点,且

∠MCN=

45°,AM=3,BN=5,则MN= .

分析:基于在△ABC中,∠C=90°,AC=BC及AM、BN、MN共线特点的考虑,选择旋转法解答,目的就是设法将这三条线段以等线段替换的方式集中在一个三角形中

例2 如图,四边形ABCD中,

∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边

形ABCD的面积为y,则y与x之间的函数关系式为()

A.

B.

C.

D.

练习 :如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=()

A.2 B.3 C.

D.

2 如图,P是等边三角形△ABC内一点,∠APC、∠BPC、∠BPA的大小之比是5:6:7,

则以PA、PB、PC的长为边的三角形三个内角从小到大依次是.

分析与解:易得∠APC=100°,∠BPC=120°,∠BPA

=140°.欲求以PA、PB、PC的长为边的三角形三个

内角,因为三条线段分散,故可考虑旋转法,目的就是将三

条线段通过等线段替换方式集中在一个三角形中.

4、与边的中点相关的问题

例5 在△ABC中,AB=7,AC=5,AD是BC边的中线,求AD的取值范围.

例6如图,在正方形ABCD中,E是AB边的点,G、F分别是AD、BC边上的点,且AG=1,BF=2,∠GEF=90°,则GF的长是.

练习:

1. 如图:(1-1):设P是等边ΔABC内的一点,PC=3, PB=4,PA=5,∠APB的度数是________.

2如图,

为正方形

内一点,

,将

绕着

点按逆时针旋转

的位置。

(1)求

的值;(2)求

的度数。

3 在四边形

中,

,求证:

解析法证明平面几何经典问题--举例

五、用解析法证明平面几何问题----极度精彩!充分展现数学之美感!何妨一试? 例1、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引两条直线分别交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二) (例1图) (例2图) 例2、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、 BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 【部分题目解答】 例1、(难度相当于高考压轴题) ; ,、点的方程为:直线的方程为:设直线方程为:轴建立坐标系,设圆的为为原点,轴,为如图,以)(),(,AD ,,)-(2211222y x C y x B nx y mx y AB r a y x Y AO A x MN ===+ 、;则,、,C B )()(4433y x E y x D , 1 - ;12-2-)1,{)-(22 2212212222222+=+=+=++=+=m r a x x m am x x r a amx x m y r a y x mx y 由韦达定理知:得:(消去,1- ;1222 243243+=+=+n r a x x n an x x 同理得: ),-(---23 23 22x x x x y y y y CD = 方程为:直线 ,--Q 3 23 223Q y y y x y x x = 点横坐标:由此得 , --P 1 41441P y y y x y x x = 点横坐标:同理得 ,------1 41441323223P Q y y y x y x y y y x y x x x AQ AP ===;即证:,只需证明:故,要证明 N B

用旋转法………作辅助线证明平面几何题

用旋转法………作辅助线证明平面几何题 旋转法就是在图形具有等邻边特征时,可以把图形的某部分绕等邻边的公共端点,旋转另一位置的引辅助线的方法。 1、旋转方法主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条 件。 2、旋转时要注意旋转中心、旋转方向、旋转角度的大小(三要素:中心、方向、大小); 3、旋转方法常用于竺腰三角形、等边三角形及正方形等图形中。 例1: 例2 已知,在Rt ABC中 B=AC;∠BAC=90?; D为BC边上任意一点,求证:2AD2=BD2+CD2. 证明:把ABD绕点A逆时钍方向旋转90?,得?ACE,则ABD??ACE,∴BD=CE,∠B=∠ACE; ∠BAD=∠CAE, AD=AE。 又∠BAC=90?;∴∠DAE=90? 所以: D E2=AD2+AE2=2AD2。 因为:∠B+∠ACB=90? 所以:∠DCE=90? CD2+CE2=DE2=2AD2 即: 2AD2=BD2+CD2。 注:也可以把ADC顺时针方向旋转90?来证明。 注 E C D

已知,P 为等边ABC 内一点,PA=5,PB=4,PC=3,求 ∠BPC 的度数。 证明:把 ABP 绕点B 顺时钍方向旋转90 ?,得?CBD ,则 ABP ??CBD ,∴BP=BD AP=CD=5, ∠ABP=∠CBD ,所以 ∠BAP+∠PBC=∠CBD+∠PBC=60?,所以 BPD 为等边三角形。 ∠PBD=60? PD=PB=4所以: C D 2=PD 2+PC 2。因为: ∠DPC=90?所以: ∠BPC=∠BPD+∠DPC=60?+90?=150? 注:也可以把CAP 绕点C 逆时针方向旋转60?来证明。 D C 例3: 如图:在正方形ABCD 中,E 为AD 边上一点,BF 平分∠CBE 交CD 于F 点。求证:BE=CF+AE 证明:把ABE 绕点B 顺时针方向旋转90?得BCN 。则:ABE ?BCN ,所以: ∠ABE=∠CBN ,BE=BN ,AE=CN 。因为:四边形ABCD 是正方形,所以:CD AB ,∠NFB=NBF 因为:∠ABF=∠ABE+∠EBF ,∠NBF=∠NBC+∠CBF ,而:∠EBF=∠FBC ;∠NBF=∠NFB 所以:BN=NF=CN+CF 所以:BE=AE+CF 。注:也可以把BCF 绕点B 逆时针方向旋转90?来证明。

用向量方法解立体几何题(老师用)

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线 l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ--的平面角α=arccos |||| a b a b

法二、设12,,n n 是二面角l αβ --的两个半平面的法向量, 其方向一个指向内侧,另一个指向外侧,则二面角l α β --的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设A O α ⊥于O,利用A O α ⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||A O . (2)求异面直线的距离 法一、找平面β使b β?且a β ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别 为异面直线a 、b 的方向向量,求n (n a ⊥ ,n b ⊥ ),则 异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ== (此方法移植 于点面距离的求法).

解析法在几何中的应用 -

解析法在几何中的应用 姓名:周瑞勇 学号:201001071465 专业:物理学 指导教师:何巍巍

解析法在几何的应用 周瑞勇 大庆师范学院物理与电气信息工程学院 摘要:通过分析几何问题中的各要素之间的关系,用最简练的语言或形式化的符号来表达他们的关系,得出解决问题所需的表达式,然后设计程序求解问题的方法称为解析法。 关键词:几何问题,表达关系,表达式,求解问题 一前言 几何学的历史深远悠久,欧几里得总结前人的成果,所著的《几何原本》。一直是几何学的坚固基石,至今我国中学教学的几何课本仍未脱离他的衣钵。长期的教学实践证明,采用欧式体系学习几何是培养学生逻辑思维能力的行之有效的方法。 但是,事物都有两重性。实践同样证明,过多强调它的作为也是不适当的。初等几何的构思之难,使人们为此不知耗费了多少精力,往往为寻求一条神奇、奥秘的辅助线而冥思苦索。开辟新的途径,已是势在必行。近些年来,用解析法、向量法、复数法、三角法证明几何问题,受到越来越多的数学工作者的重视。 由于平面几何的内容,只研究直线和园的问题,所以我们完全可以用解析法来研究几何问题。解析法不仅具有几何的直观性,而且也还有证明方法的一般性。综合几何叙述较简,但构思困难,而解析法思路清晰,过程简捷,可以作为证明几何问题中一种辅助方法,两者课去唱补短,想得益彰。 二解析法概述 几何数学主要是从几何图形这个侧面去研究客观事物的,其基本元素是点,代数学则主要是从数量关系这个侧面来研究客观事物,其基本元素是数。笛卡尔综合了前人的成果,创立了坐标概念,把代数学和几何学结合起来,于是产生了以研究点的位置和一对有序实数的关系、方程和曲线以及有研究连续运动而产生

巧用旋转法解几何题

百度文库-让每个人平等地提升自我 巧用旋转法解几何题 将一个图形绕着某一点旋转一个角度的图形变换叫做旋转,由旋转的性质可知旋转前后的 图形全 等,对应点到旋转中心的连线所组成的夹角等于旋转角。旋转法是在图形具有公共端点的相 等的线段特征时,可以把图形的某部分绕相等的线段的公共端点, 旋转另一位置的引辅助线的方法, 主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条件。旋转方法常用于等腰三 角形、等边三角形及正方形等图形中。现就旋转法在几何证题中的应用举例加以说明,供同学们参 考。 例1.如图,在Rt △ ABC 中,/ C=90°, D 是AB 的中点,E , F 分别 AC 和BC 上,且 DEL DF, 求证:EF 2=A ^+B F" 分析:从 所证的结论来看,令人联想到勾股定理,但注意到 EF , AE BF 三条线段不在同一个三角 形中,由于D 是中点,我们可以考虑以 D 为旋转中心,将 BF 旋转到和AE 相邻的位置,构造一个直 角三角形,问题便迎刃而解。 证明:延长 FD 到G 使DG=DF 连接AG EG ?/ AD=DB / ADG=/ BDF ???" ADd " BDF ( SAS ???/ DAG=/ DBF BF=AG ? AG// BC ???/ C=90°A Z EAG=90 ? EG=Ah+AG=AE+BF ?/ DEI DF ? EG=EF 2 2 2 ? EF=AE+BF 例 2,如图 2,在"ABC 中,/ ACB=90 , AC=BC P 是"ABC 内一点,且 PA=3 PB=1, PC=2 求/ BPC 的度数. 分析:题目已知条件中给出了三条线段的长度和一个直角,但已知的三条线段不在同一三角形中, 故可考虑通过旋转变换移至一个三角形中,由于" ACB 是等腰直角三角形,宜以直角顶点 C 为旋转 中心。 解:作 MC L CP,使 MC=CP 连接 PM , BM F E A

第7章 向量代数与空间解析几何 习题 7- (4)

第四节 空间直线及其方程 习题 7-4 1. 求过点(1,1,2)?且与平面20x y z +?=垂直的直线方程. 解 取已知平面的法向量(1,2,1)=?n 为所求直线的方向向量, 则直线的对称式方程为 112 .121 x y z ?+?==? 2. 求过点(1,3,2)??且平行两平面35202340x y z x y z ?++=+?+=及的直 线的方程. 解 因为两平面的法向量12(3,1,5)(1,2,3)=?=?n n 与不平行, 所以两平面相交 于一直线, 此直线的方向向量为 1231 5(7,14,7)7(1,2,1),1 2 3 =×=?=?=??i j k s n n 故可取所求直线的方向向量为(1,2,1)?, 由题设, 所求的直线方程为 132 .121 x y z ++?==? 3. 用点向式方程及参数方程表示直线 10 2340 x y z x y z +++=?? ?++=?. 解 先在直线上找一点. 令1x =, 解方程组2, 36,y z y z +=????=? 得0,2y z ==?, 故(1,0,2)?是直线上一点. 再求直线的方向向量s . 交于已知直线的两平面的法向量为: 12(1,1,1),(2,1,3)==?n n , 12,,⊥⊥s n s n ∵

121 11(4,1,3),213 ∴=×==???i j k s n n 故所给直线的点向式方程为 12 ,413x y z ?+==?? 参数方程为 14,,23.x t y t z t =+?? =???=??? 4. 求过点(2,0,3)?且与直线2470, 35210x y z x y z ?+?=?? +?+=? 垂直的平面方程. 解 要求所求平面垂直于直线, 所以直线的方向向量为所求平面的法向量, 取 1212 4(16,14,11),3 5 2 ==×=?=??i j k n s n n 由点法式可得 16(2)14(0)11(3)0,x y z ??+?++= 即161411650x y z ???=为所求的平面方程. 5. 求过点(3,1,2)?且通过直线 43521 x y z ?+==的平面的方程. 解 法1 所求平面过点0(3,1,2)M ?及1(4,3,0)M ?, 设其法向量为n , 则01,M M ⊥⊥ n n s , 其中(5,2,1)=s . 取01(1,4,2)(5,2,1)(8,9,22)M M =×=?×=?n s , 则平面方程为 8(3)9(1)22(2)0,x y z ??+?++= 即8922590x y z ???=. 法2 直线L 的交面式方程为25230, 230,x y y z ??=???+=? 过L 的平面束方程为 (23)(2523)0.y z x y λ?++??= 点(3,1,2)?在平面上, 因此(143)(6523)0λ+++??=, 解得4 11 λ=, 因此平面的方程为

立体几何割补法

立体几何割补法 立体几何中的割补法解题技巧 邹启文 ※ 高考提示 立体几何中常用割补法解题.特别是高考中的立体几何题很多可用割补法解,有时解起来 还比较容易. ※ 解题钥匙 例1 (2005湖南高考,理5)如图,正方体ABCD—ABCD的棱长为1,O是底面ABCD11111111 的中心,则O到平面ACD的距离为( ) 11 2231A、 B、 C、 D、 4222 分析:求点到面的距离通常是过点做面的垂线,而由于该图的局限性显然不太好做垂线,考虑O为AC的中点,故将要求的距离 11 与A到面ACD的距离挂钩,从而与棱锥知识挂钩,所以可在该 111 图中割出一个三棱锥A—ACD而进行解题。 111 解:连AC,可得到三棱锥A—ACD,我们把这个正方体的其 1111

它部分都割去就只剩下这个三棱锥,可以知道所求的距离正好为这个三棱锥的高的一半。这个三棱锥底面为直角边为1与的直 2角三角形。这个三棱维又可视为三棱锥C—AAC,后者高为1,底为腰是1的等腰直角三角111 2形,利用体积相等,立即可求得原三棱锥的高为,故应选B。 2 例2 (2007湖南高考,理8)棱长为1的正方体ABCD—ABCD1111 的8个顶点都在球O的表面上,E,F分别是棱AA、DD的中点, 11则直线EF被球O截得的线段长为( ) 22A、 B、1 C、1+ D、 222 分析:在该题中我们若再在正方体上加上一个球,则该图形变得复杂而烦琐,而又考虑到面AADD截得的球的截面为圆,且EF 11 在截面内,故可连接球心抽出一个圆锥来。 解:如图,正方体ABCD—ABCD,依题O亦为此正方体的中心,补侧面 1111 可得圆锥0—AD(如下图), AD为平面AD,球0截平面A D1111 其底面圆心正为线段AD之中点,亦为线段EF之中点,割去正方体和球 1 的其它部分,只看这个圆锥,容易看出球O截直线EF所得线段长就等于这个圆锥底面圆的直径AD之长,故选D。 1

向量代数与空间解析几何期末复习题高等数学下册

第七章 空间解析几何 一、选择题 1. 在空间直角坐标系中,点(1,-2,3)在[ D ] A. 第一卦限 B. 第二卦限 C. 第三卦限 D. 第四卦限 2.方程2222=+y x 在空间解析几何中表示的图形为[ C ] A. 椭圆 B. 圆 C. 椭圆柱面 D. 圆柱面 3.直线3 1 2141: 1+= +=-z y x l 与?? ?=-++=-+-0 20 1:2z y x y x l ,的夹角是 [ C ] A. 4 π B. 3π C. 2 π D. 0 4. 在空间直角坐标系中,点(1,2,3)关于xoy 平面的对称点是[ D ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 5.将xoz 坐标面上的抛物线x z 42=绕z 轴旋转一周,所得旋转曲面方程是[B ] A. )(42y x z += B. 2224y x z +±=

C. x z y 422=+ D. x z y 422±=+ 6.平面2x-2y+z+6=0与xoy 平面夹角的余弦是[B ] A. 13 - B. 13 C. 23 - D. 23 7. 在空间直角坐标系中,点(1,2,3)关于yoz 平面的对称点是[ A ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 8.方程22 222x y z a b +=表示的是 [ B ] A.椭圆抛物面 B.椭圆锥面 C. 椭球面 D. 球面 9. 已知a ={0, 3, 4}, b ={2, 1, -2},则=b proj a [ C ] A. 3 B.3 1- C. -1 10.已知,a b 为不共线向量,则以下各式成立的是 D A. 222()a b a b =? B. 222()a b a b ?=? C. 22()()a b a b ?=? D. 2222()()a b a b a b ?+?= 11.直线1l 的方程为0 3130290 x y z x y z ++=?? --=?,直线2l 的方程为

解析法巧解中考数学压轴题

解析法巧解中考压轴题 在平面几何题中,适当的建立直角坐标系,利用代数的方法解决几何问题,即解析法,有时会显得更简洁高效.现以近年中考压轴题为例,分析说明解析法之妙.例1 (2013泰州)如图1,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连结PQ,M为PQ中点. 若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M 落在矩形ABCD外部时,求a的取值范围. 分析本题将矩形、三角形、动点、参数相结合,考察学生利用相似解决问题的综合能力,难度较大,区分度高,按照参考答案给出的解题思路,如图2所示,当点M落在矩形ABCD外部时,须满足的条件是“BE>MN”.分别求出BE与MN的表达式,列不等式求解,即可求出a的取值范围. 由△ADP∽△ABQ,解得QB=4 5 a. 由△QBE∽△QCP,同样由比例关系得出BE= () 28 225 a a a - + . 又因为MN为QCP的中位线,得出 MN=1 2 PC= 1 2 (a-8). 再由BE>MN, 即 () 28 225 a a a - + () 1 8 2 a >- 得出a> . 当点M落在矩形ABCD外部时,a的取值范围为a>. 这种解法不仅要想到添加辅助线,还两次运用了相似比,计算量大,易出错.比较稳妥而简洁的做法是将图形放进直角坐标系中,利用数形结合的方法来解决此类问题. 一如何建立合适、恰当的坐标系呢通常需要考虑以下两点: 第一,让尽可能多的点落在直角坐标系上,这些点的坐标含有数字O,可以起到简化运算的功效; 第二,考虑图形的对称性,同样,也能起到简化运算的作用. 解答如图3所示,建立以B点为原点,BC方向为x轴正半轴,BA方向为y轴正半轴的直角坐标系.

中考复习数学思想方法之二:割补法“补形”在初中几何问题中的应用

中考复习数学思想方法之一:割补法“补形”在初中几何问题中的应用 平面几何中的“补形”就是根据题设条件,通过添加辅助线,将原题中的图形补成某种熟悉的,较规则的,或者较为简单的几何基本图形,使原题转化为新的易解的问题.从“补形”的角度思考问题,常能得到巧妙的辅助线,而使解题方向明朗化,所以,补形是添加辅助线的重要方法.下面举例加以说明,供参考. 例1 如图1,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于. 解析题中六边形是不规则的图形,现将它补形为较规则的正三角形,分别向两方延长AB、CD、EF相交于G、H、I (如图2). ∵六边形ABCDEF的六个内角都相等, ∴六边形的各角为120°, ∴△AFI、△BCG、△DEH均是正三角形,从而△GHI为正三角形,则有 GC=BC=3,DH=EH=DE=2, IF=AF, IH=GH=GC+CD+DH =3+3+2=8, ∴IE=IH-EH=8-2=6. ∴六边形的周长等于: AB+BC+CD+DE+EF+F A =AB+BC+CD+DE+IE =1+3+3+2+6=15. 注:本题亦可补成平行四边形求解,如图3. 例2 如图4,在Rt△ABC中,AC=BC,AD是∠A的平分线,过点B作AD的垂线交AD的延长线于点E,求证:AD=2BE. 解析从等腰三角形的性质得到启示:顶角平分线垂直底边且平分底边.结合AE平分∠CAB,B E⊥AE,启发我们补全一个等腰三角形.所以延长BE交AC的延长线于点F(如

图5),易证△ABF 为等腰三角形,∴ BF =2BE ,再证△ACD ≌△BCF ,全等的条件显然满足,故结论成立. 例3 某片绿地的形状如图6所示,其中∠A =60°,A B ⊥BC ,C D ⊥AD ,AB =200m ,CD =100m ,求AD ,BC 的长. 解析 由题设∠A=60°,A B ⊥BC ,可将四边形补成图7所示的直角三角形. 易得∠E =30°,AE =400,CE =200,然后再由勾股定理或三角函数求出BE , DE 由此得到AD =400-200。 例4 如图8,在平面直角坐标系中直线y =x -2与y 轴相交于点A ,与反比例函数在第一象限内的图像相交于点B (m ,2). (1) 求反比例函数的关系式; (2) 将直线y =x -2向上平移后与反比例函数图像在第一象限内交于点C ,且△ABC 的面积为18,求平移后的直线的函数关系式. 解析 (1) 所求解析式为y =8 x ; (2) 本题方法不一,下面着重对此题进行分析解答.

平面几何证明题的一般思路及方法简述

平面几何证明题的一般思路及方法简述 【摘要】惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。本文试对平面几何证明题中常用的几种解题思路及方法进行分析。 【关键词】平面几何证明题思路方法 平面几何难学,是很多初中生在学习中的共识,这里面包含了很多主观和客观因素,而学习不得法,没有适当的解题思路则是其中的一个重要原因。波利亚曾说过,“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒。为了辨别哪一条思路正确,哪一个方向可接近它,就要试探各种方向和思路。”由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。常见的证题思路有直接式思路和间接式思路。 一、直接式思路 证题时,首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。由于思维方式的逆顺,在证题时运用的方法主要有“分析法”和“综合法”。 1.分析法。分析法是从命题的结论入手,先承认它是正确的,执果索因,寻求结论正确的条件,这样一步一步逆而推之,直到与题设会合,于是就得出了由题设通往结论的思维过程。在由结论向已知条件的寻求追溯过程中,则由于题设条件的不同,或已知条件之间关系的隐含程度不同等,寻求追溯的形式会有一定差异,因而常把分析法分为以下四种类型。 (1)选择型分析法。选择型分析法解题,首先要从题目要求解的结论A出发,逐步把问题转化为分析要得出结论A需要哪些充分条件。假设有条件B,就有结论A,那么B就成为选择找到的使A成立的充分条件,然后再分析在什么条件下能选择得到B……最终追溯到命题中的某一题设条件。 (2)可逆型分析法。如果再从结论向已知条件追溯的过程中,每一步都是推求的充分必要条件,那么这种分析法又叫可逆型分析法,因而,可逆型分析法是选择型分析法的特殊情形。用可逆型分析法证明的命题用选择型分析法一定能证明,反之用选择型分析法证明的命题,用可逆型分析不一定能证明。 (3)构造型分析法。如果在从结论向已知条件追溯的过程中,在寻找新的充分条件的转化“三岔口”处,需采取相应的构造型措施:如构造一些条件,作某些辅助图等,进行探讨、推导,才能追溯到原命题的已知条件的分析法叫做构造型分析法。 (4)设想型分析法。在向已知条件追溯的过程中,借助于有根据的设想、假定,形成“言之成理”的新构思,再进行“持之有据”的验证,逐步地找出正确途径的分析法称为设想型分析法。 2.综合法。综合法则是由命题的题设条件入手,由因导果,通过一系列的正确推理,逐步靠近目标,最终获得结论。再从已知条件着手,根据已知的定义、公式、定理,逐步推导出结论。在这一过程中,由于思考角度不同,立足点不同,综合法常分为四种类型: (1)分析型综合法。我们把分析法解题的叙述倒过来,稍加整理而得到的解法称为分析型综合法。 (2)奠基型综合法。当由已知条件着手较难,或没有熟悉的模式可供归纳推导,就可转而寻找简单的模式,然后再将一般情形化归到这个简单的模式中来,这样的综合法称为奠基型综合法。 (3)媒介型综合法。当问题给出的已知条件较少,且看不出与所求结论的直接联系时,或条

巧用旋转法解几何题

巧用旋转法解几何题 将一个图形绕着某一点旋转一个角度的图形变换叫做旋转,由旋转的性质可知旋转前后的 图形全 等,对应点到旋转中心的连线所组成的夹角等于旋转角。旋转法是在图形具有公共端点的相 等的线段特征时,可以把图形的某部分绕相等的线段的公共端点, 旋转另一位置的引辅助线的方法, 主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条件。旋转方法常用于等腰三 角形、等边三角形及正方形等图形中。现就旋转法在几何证题中的应用举例加以说明,供同学们参 考。 例1.如图,在Rt △ ABC 中,/ C=90°, D 是AB 的中点,E , F 分别 AC 和BC 上,且 DEL DF, 求证:EF 2=A ^+B F" 分析:从 所证的结论来看,令人联想到勾股定理,但注意到 EF , AE BF 三条线段不在同一个三角 形中,由于D 是中点,我们可以考虑以 D 为旋转中心,将 BF 旋转到和AE 相邻的位置,构造一个直 角三角形,问题便迎刃而解。 证明:延长 FD 到G 使DG=DF 连接AG EG ?/ AD=DB / ADG=/ BDF ???" ADd " BDF ( SAS ???/ DAG=/ DBF BF=AG ? AG// BC ???/ C=90°A Z EAG=90 ? EG=Ah+AG=AE+BF ?/ DEI DF ? EG=EF 2 2 2 ? EF=AE+BF 例 2,如图 2,在"ABC 中,/ ACB=90 , AC=BC P 是"ABC 内一点,且 PA=3 PB=1, PC=2 求/ BPC 的度数. 分析:题目已知条件中给出了三条线段的长度和一个直角,但已知的三条线段不在同一三角形中, 故可考虑通过旋转变换移至一个三角形中,由于" ACB 是等腰直角三角形,宜以直角顶点 C 为旋转 中心。 解:作 MC L CP,使 MC=CP 连接 PM , BM F E A

空间解析几何与向量代数复习题答案

第八章 空间解析几何与向量代数答案 一、选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是(A ) A 5 B 3 C 6 D 9 2. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B ) A (-1,1,5). B (-1,-1,5). C (1,-1,5). D (-1,-1,6). 3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A ) A -i -2j +5k B -i -j +3k C -i -j +5k D -2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是( C ) A 2π B 4π C 3 π D π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C ) A 2π B 4π C 3 π D π 6. 求点)10,1,2(-M 到直线L :12213+=-=z y x 的距离是:( A ) A 138 B 118 C 158 D 1

7. 设,23,a i k b i j k =-=++r r r r r r r 求a b ?r r 是:( D ) A -i -2j +5k B -i -j +3k C -i -j +5k D 3i -3j +3k 8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A ) A 2 B 364 C 3 2 D 3 9. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程是:( D ) A 2x+3y=5=0 B x-y+1=0 C x+y+1=0 D 01=-+y x . 10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C ); A -+a b =a b ; B =a b ; C 0?a b =; D ?a b =0. 11、设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=- C +=-a b a b D +=-a b a b 12、已知()()2,1,21,3,2---a =,b =,则Pr j b a =( D ); A 5 3; B 5; C 3;

立体几何巧思妙解之割补法

立体几何巧思妙解之割补法 在立体几何解题中,对于一些不规则几何体,若能采用割补法,往往能起到化繁为简、一目了然的作用。 一 、求异面直线所成的角 例1、如图1,正三棱锥S-ABC 的侧棱与底面边长相等,如果E 、F 分别为SC 、AB 的中点,那么异面直线EF 与SA 所成的角等于( ) 000090604530A B C D 分析:平移直线法是求解异面直线所成角最基本的方法。如图1,只要AC 的中点G ,连EG ,FG ,解△EFG 即可.应该是情理之中的事。若把三棱锥巧妙补形特殊的正方体,定会叫人惊喜不已。 巧思妙解:如图2,把正三棱锥S-ABC 补成一个正方体11AGBH A CB S -, 1//,EF AA ∴Q 异面直线EF 与SA 所成的角为0145A AS ∠=。故选C 。 二、体积问题 例2、如图3,已知三棱锥子P —ABC ,234,10,241PA BC PB AC PC AB ======,则三棱锥子P —ABC 的体积为( )。 4080160240A B C D 分析:若按常规方法利用体积公式求解,底面积可用海伦公式求出,但顶 点到底面的高无法作出,自然无法求出。若能换个角度来思考,注意到三 棱锥的有三对边两两相等,若能把它放在一个特定的长方体中,则问题不 难解决。 巧思妙解:如图4所示,把三棱锥P —ABC 补成一个长方体AEBG —FPDC ,易 知三棱锥P —ABC 的各边分别是长方体的面对角线。 PE=x,EB=y,EA=z 不妨令,则由已知有: 2222221001366,8,10164x y x z x y z y z ?+=?+=?===??+=? ,从而知 416810468101606 P ABC AEBG FPDC P AEB C ABG B PDC A FPC AEBG FPDC P AEB V V V V V V V V --------=----=-=??-????= 例3、如图5,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形, 且BCF ADE ??、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为 ( ) (A ) 32 (B )33 (C )34 (D )23

第56讲 解析法证几何题教学内容

第56讲解析法证 几何题

第56讲解析法证 几何题 解析法是利用代数方法解决几何问题的一种常用方法.其一般的顺序是:建立坐标系,设出各点坐标及各线的方程,然后根据求解或求证要求进行代数推算.它的优点是具有一般性与程序性,几何所有的平面几何问题都可以用解析法获解,但对于有些题目演算太繁. 此外,如果建立坐标系或设点坐标时处理不当,也可能增加计算量.建系设点坐标的一般原则是使各点坐标出现尽量多的0,但也不可死搬教条,对于一些“地位平等”的点、线,建系设点坐标时,要保持其原有的“对称性”. A类例题 收集于网络,如有侵权请联系管理员删除

斜边AB及直角边BC为边向三角形两 侧作正方形ABDE、CBFG. 求证:DC⊥FA. 分析只要证k CD·k AF=-1,故只要求点D的坐标. 证明以C为原点,CB为x轴正方向建立直角坐标 系.设A(0,a),B(b,0),D(x,y). 则直线AB的方程为ax+by-ab=0. 故直线BD的方程为bx-ay-(b·b-a·0)=0, 即bx-ay-b2=0. ED方程设为ax+by+C=0. 由AB、ED距离等于|AB|,得 |C+ab| =a2+b2, a2+b2 解得C=±(a2+b2)-ab. 如图,应舍去负号. 收集于网络,如有侵权请联系管理员删除

所以直线ED方程为ax+by+a2+b2-ab=0. 解得x=b-a,y=-b.(只要作DH⊥x轴,由△DBH≌△BAC就可得到这个结果). 即D(b-a,-b). 因为k AF=b-a b,k CD= -b b-a,而k AF·k CD=-1.所以 DC⊥FA. 例2.自ΔABC的顶点A引BC的垂线,垂足为D,在AD上任取一点H,直线BH交AC于E,CH交AB于F.试证:AD平分ED与DF所成的角. 证明建立直角坐标系,设A(0,a),B(b,0),C(c,0),H(0,h),于是 BH:x b+ y h=1 AC:x c+ y a=1 x

用向量方法解立体几何题

用向量方法求空间角和距离 前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 a l ⊥,在β内 b l ⊥,其方向如图,则二 方法一:在α内 平面角α=arccos |||| a b a b 面角l αβ--的 方法二:设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角 α=12 12arccos |||| n n n n

2.求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的 距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 方法一:设n 是平面α的法向量,在α内取一点B, 则 A 到 α的距离|| |||cos ||| AB n d AB n θ== 方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 方法一:找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 方法二:在a 上取一点A, 在b 上取一点B, 设a 、b 分别为异面直 线a 、b 的方向向量,求n (n a ⊥, n b ⊥),则异面直线a 、b 的距离 || |||cos ||| AB n d AB n θ== (此方法移植于点面距离的求法). 例1.如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是 棱1111,A D A B 的中点. (Ⅰ)求异面直线1DE FC 与所成的角; (II )求1BC 和面EFBD 所成的角; (III )求1B 到面EFBD 的距离 记异面直线1DE FC 与所成的角为α, 解:(Ⅰ) 则α 等于向量 1 DE FC 与的夹角或其补角, 1 1 ||||111111cos || ()() ||||||DE FC DE FC DD D E FB B C DE FC α∴=++=

高中竞赛数学讲义第56讲解析法证几何题

第56讲 解析法证 几何题 解析法是利用代数方法解决几何问题的一种常用方法.其一般的顺序是:建立坐标系,设出各点坐标及各线的方程,然后根据求解或求证要求进行代数推算.它的优点是具有一般性与程序性,几何所有的平面几何问题都可以用解析法获解,但对于有些题目演算太繁. 此外,如果建立坐标系或设点坐标时处理不当,也可能增加计算量.建系设点坐标的一般原则是使各点坐标出现尽量多的0,但也不可死搬教条,对于一些“地位平等”的点、线,建系设点坐标时,要保持其原有的“对称性”. A 类例题例1.如图,以直角三角形ABC 的斜边A B 及直角边B C 为边向三角形两侧作正方形ABDE 、CBFG . 求证:DC ⊥FA . 分析 只要证k C D ·k AF =-1,故只要求点D 的坐标. 证明 以C 为原点,CB 为x 轴正方向建立直角坐标系.设A (0,a ),B (b ,0),D (x ,y ). 则直线AB 的方程为ax +by -ab =0. 故直线BD 的方程为bx -ay -(b ·b -a ·0)=0, 即bx -ay -b 2=0. ED 方程设为ax +by +C =0. 由AB 、ED 距离等于|AB |,得 |C +ab | a 2+b 2=a 2+b 2, 解得C =±(a 2+b 2)-ab . 如图,应舍去负号. 所以直线ED 方程为ax +by +a 2+b 2-ab =0. 解得x =b -a ,y =-b .(只要作DH ⊥x 轴,由△DBH ≌△BAC 就可得到这个结果). 即D (b -a ,-b ). 因为k AF =b -a b ,k CD =-b b -a ,而k AF ·k CD =-1.所以DC ⊥FA . 例2.自ΔABC 的顶点A 引BC 的垂线,垂足为D ,在AD 上任取一点H ,直线BH 交AC 于E ,CH 交AB 于F . 试证:AD 平分ED 与DF 所成的角. 证明 建立直角坐标系,设A (0,a ),B (b ,0),C (c ,0),H (0,h ),于是 BH :x b +y h =1 AC :x c +y a =1 过BH 、AC 的交点E 的直线系为: λ(x b +y h -1)+μ(x c +y a -1)=0. 以(0,0)代入,得λ+μ=0. y x H F E D C B A y x O A B C D E F G

高中物理运用割补法解电场强度问题

高中物理运用割补法解电场强度问题 所谓割补法,就是在求解电场强度时根据给出的条件建立起物理模型,如果这个模型是一个完整的标准模型,则容易解决,但有时由题给的条件建立起的模型不是一个完整的标准模型,比如说A不是一个标准的、完整的模型,可设法补上一个B,补偿的原则是使A+B成为一个完整的模型,从而使A+B变得易于求解,而且补上的B也必须容易求解,那样待求的A便可从两者的差中获得,这种转换思维角度的方法常常使一些难题的求解变得简单明了。我们只学到有关点电荷的电场强度、匀强电场的电场强度的计算公式,但不能看成点电荷的带电体产生的电场强度,没有现成公式能用,这时我们就可用割补法使带电体变成标准模型来求解。例、如图所示,用金属AB弯成半径r=1m的圆弧,但在A、B之间留出宽度d=2cm的间隙,将Q=3.13×10-9C的正电荷分布于金属丝上,求圆心处的电场强度。分析:我们可以应用割补思维,假设将图中圆环缺口补上,并且它的电荷密度与缺了口的环体原有电荷密度一样,这样就形成了一个电荷均匀分布的完整带电环,环上处于同一直径两端的微小部分可视为两个相对应的点电荷,它们产生的电场在圆心O处叠加后合电场强度为零,根据对称性可知,带电圆环在圆心O处的总电场强度E=0。至于补上的带电小段,由题给条件

可视作点电荷,它在圆心O处的电场强度E1是可求的,设题中待求电场强度为E2,则E1+E2=E=0,便可求得E2。本题中如果在A、B之间留出宽度比较大的间隙,则不能运用上面的方法求圆心处的电场强度,因为此时AB段带电体不能当作点电荷来处理,库仑定律不能直接使用。解析:设原缺口环所带电荷的线密度为,,则补上的金属小段的带电荷量,求出它在O处的电场强度。设待求的电场强度为E2,因为E1+E2=0,可得E2=-E1=-9×10-2N/C负号表示E2与E1反向,背向球心向左。

巧用旋转法解几何题

巧用旋转法解几何题

∵AD=DB ,∠ADG=∠BDF ∴⊿ADG ≌⊿BDF (SAS ) ∴∠DAG=∠DBF ,BF=AG ∴AG ∥BC ∵∠C=90°∴∠EAG=90° ∴EG 2 =AE 2 +AG 2 =AE 2 +BF 2 ∵DE ⊥DF ∴EG=EF ∴EF 2 =AE 2 +BF 2 例2,如图2,在⊿ABC 中,∠ACB=90°,AC=BC ,P 是⊿ABC 内一点,且PA=3,PB=1,PC=2,求∠BPC 的度数. 分析:题目已知条件中给出了三条线段的长度和一个直角,但已知的三条线段不在同一三角形中,故可考虑通过旋转变换移至一个三角形中,由于⊿ACB 是等腰直角三角形,宜以直角顶点C 为旋转中心。 解:作MC ⊥CP ,使MC=CP ,连接PM ,BM ∵∠ACB=90°,∠PCM=90°∴∠1=∠2 ∵AC=BC , ∴⊿CAP ≌⊿CBM (SAS ) ∴MB=AP=3 G F E D C B A

∵PC=MC ,∠PCM=90° ∴∠MPC=45° 由勾 股定理 PM== 2 2MC PC = 2 2PC =22, 在⊿MPB 中,PB 2 +PM 2 =(22)2 +12=9=BM 2 ∴⊿MPB 是直角三角形 ∴∠BPC=∠CPM+∠MPB=45°+90°=135° 例3,如图3,直角三角形ABC 中,AB=AC ,∠BAC=90°,∠EAF=45°,求证:EF 2=BE 2+CF 2 分析:本题求证的结论和例1十分相似,无法直接用勾股定理,可通过旋转变换将BE ,CF 转移到同一个直角三角形中,由于⊿BAC 是等腰直角三角形,不妨以A 为旋转中心,将∠BAE 和∠CAF 合在一起,取零为整。 证明:过A 作AP ⊥AE 交BC 的垂线CP 于P ,连结 PF ∵∠EAP=90°,∠EAF=45° ∴∠PAF=45° ∵∠BAC=90° ∴∠BAE=∠PAC A P M C B A

相关主题
文本预览
相关文档 最新文档