当前位置:文档之家› 抗氯离子渗透性及其研究现状

抗氯离子渗透性及其研究现状

抗氯离子渗透性及其研究现状
抗氯离子渗透性及其研究现状

抗氯离子渗透性及其研究现状

结合国内外高性能商品混凝土耐久性研究的现状,在近年来基于氯离子渗透的高性能商品混凝土耐久性预测模型,分析了将抗氯离子渗透性作为评价高性能商品混凝土耐久性的综合指标的可行性和必要性,对于制定高性能商品混凝土的耐久性设计规范具有参考意义。

1引言

近年来,国内外土木工程界对高性能商品混凝土耐久性问题十分关注,作了大量的试验研究,工程技术人员对商品混凝土耐久性的认识程度也不断加深。我国新出台的商品混凝土结构设计规范中很多章节已经提出了具体的耐久性规定。同时,我国第一部《商品混凝土结构耐久性设计及施工指南》也在2003年底正式颁布实施,该指南为设计和施工人员提供了环境作用下商品混凝土结构耐久性设计与施工的基本要求。大量科研成果的取得和国家规范的实施将实现商品混凝土结构全功能设计的目标向前推进了坚实的一步。然而,目前对于高性能商品混凝土耐久性的评定没有统一的指标和方法,对其抗冻性、抗化学侵蚀性、抗钢筋锈蚀性、抗碳化性、抗碱—集料反应性、抗磨耗性、抗火性等等的试验和评价,基本上仍沿用对普通商品混凝土的试验和检测方法。但是,由于低水灰比、以及高效减水剂和矿物掺合料的掺入,高性能商品混凝土的性能与普通商品混凝土的性能相比产生了较大的差异,因此,普通商品混凝土的一些试验和检测方法已不适用于高性能商品混凝土,更无法将耐久性指标融入到商品混凝土结构设计理论中。我国规范一贯按承载力极限状态来设计结构构件,再按正常使用极限状态来校核构件的设计思想,这样就决定了高性能商品混凝土耐久性设计应在肯定原

水中氯离子含量的测试方法

测定水中氯离子含量的测试方法 1.适用范围* 1.1如下三个测试方法包括了水、污水(仅测试方法C)及盐水中氯离子含量的测定: 部分 测试方法A(汞量滴定法)7~10 测试方法B(硝酸银滴定法)15~21 测试方法C(离子选择电极法)22~29 1.2测试方法A、B和C在应用(practice)D2777-77下有效,仅仅测试方法B在应用D2777-86下也同样有效,详细的信息参照14、21和29部分。 1.3本标准并不意味着罗列了所有的,如果存在,与本标准的使用有关的安全注意事项。本标准的使用者的责任,是采用适当的安全和健康措施并且在使用前确定规章制度上的那些限制措施的适用性。明确的危害声明见26.1.1。 1.4以前的比色法不再继续使用。参照附录X1查看历史信息。 2.参考文献 2.1ASTM标准 D1066蒸汽的取样方法2 D1129与水相关的术语2 D1193试剂水的规范2 D2777D-19水委员会应用方法的精确性及偏差的测定2 D3370管道内取水样的方法2 D4127离子选择电极用术语2 3.专用术语 3.1定义——这些测试方法中使用的术语的定义参照D1129和D4127中的术语。 4.用途及重要性 4.1氯离子是,因此应该被精确的测定。它对高压锅炉系统和不锈钢具有高度危害,所以为防止危害产生监测是必要的。氯分析作为一个工具被广泛的用于评估循环浓度,如在冷却塔的应用。在食品加工工业中使用的处理水和酸洗溶液也需要使用可靠的方法分析氯含量。 5.试剂纯度 5.1在所有的试验中将使用试剂级化学物质。除非另有说明,所有试剂应符合美国化学品协会分析试剂委员会的规范要求。如果能断定其他等级的试剂具有足够高的纯度,使用它不会减少试验的精度,则这种等级的试剂也可以使用。 5.2水的纯度——除非另有说明,关于水的标准应理解为指的是如Specification D1193中由第二类所定义的试剂水。 6.取样 6.1根据标准D1066和标准D3370取样。

抗氯离子渗透性

评价高性能混凝土耐久性综合指标-抗氯离子渗透性及其研究现状 摘要:结合国内外高性能混凝土耐久性研究的现状,在近年来基于氯离子渗透的高性能混凝土耐久性预测模型,分析了将抗氯离子渗透性作为评价高性能混凝土耐久性的综合指标的可行性和必要性,对于制定高性能混凝土的耐久性设计规范具有参考意义。 关键词:高性能混凝土;耐久性;氯离子抗渗;综合指标 Aggregative indicator evaluating the durabil ity of HPC:Chloride ion resistance and present status BA Heng jing ,ZHA N G Wu man ,DEN G Hong wei (Civil Engineering Institute ,Harbin University of Technology ,Harbin 150006 ,China) Abstract :Based on the prediction models and the domestic and foreign present status of the durability of HPC, the chloride ion resistance was used as an aggregative indicator to evaluate the durability of HPC. The importance and the feasibility were analyzed, which had significant reference for constituting standard of the durability of HPC. Key words :HPC;durability ;chloride ion resistance ;aggregative indicator 1 引言 近年来,国内外土木工程界对高性能混凝土耐久性问题十分关注,作了大量的试验研究,工程技术人员对混凝土耐久性的认识程度也不断加深。我国新出台的混凝土结构设计规范中很多章节已经提出了具体的耐久性规定。同时,我国第一部《混凝土结构耐久性设计及施工指南》也在2003年底正式颁布实施,该指南为设计和施工人员提供了环境作用下混凝土结构耐久性设计与施工的基本要求。大量科研成果的取得和国家规范的实施将实现混凝土结构全功能设计的目标向前推进了坚实的一步。 然而,目前对于高性能混凝土耐久性的评定没有统一的指标和方法,对其抗冻性、抗化学侵蚀性、抗钢筋锈蚀性、抗碳化性、抗碱—集料反应性、抗磨耗性、抗火性等等的试验和评价,基本上仍沿用对普通混凝土的试验和检测方法。但是,由于低水灰比、以及高效减水剂和矿物掺合料的掺入,高性能混凝土的性能与普通混凝土的性能相比产生了较大的差异,因此,普通混凝土的一些试验和检测方法已不适用于高性能混凝土,更无法将耐久性指标融入到混凝土结构设计理论中。 我国规范一贯按承载力极限状态来设计结构构件,再按正常使用极限状态来校核构件的设计思想,这样就决定了高性能混凝土耐久性设计应在肯定原有结构设计理论的基础上补充耐久性方面的要求,使得所选用的混凝土材料在满足结构承载能力的同时也可以达到足够的耐久性,在工程选材的环节把好“耐久性”关,实现从源头上解决结构的耐久性问题。 因此,目前亟待解决问题是:创建一个高性能混凝土耐久性的综合评价指标,该指标能够将各种环境因素影响效应集于一身。将其作为指导高性能混凝土结构耐久性设计的统一标准,便可以消除混凝土耐久性参数众多,各参数之间相关性难于把握的客观制约,为实现完全规范化的混凝土结构耐久性设计奠定坚实的基础。 国内外学者[1~4 ]经过大量调查和研究表明:绝大多数高性能混凝土结构的破坏是由于氯离子侵入到混凝土钢筋表面,并达到一定临界浓度时引起的钢筋锈蚀所致;钢筋锈蚀使其

CFTR型氯离子通道研究进展

万方数据

190生命科学第19卷 6条染色体,大鼠位于第5条染色体。CFTR分布广泛,许多器官,如肺、肝、胰腺、肠、生殖腺等的细胞膜中都有表达,尽管称为氯离子通道,但还涉及到其他一价阴离子的运输,由于生理条件下氯离子最为重要,故称为氯离子通道。 图1CFlR型氯离子通道推测的结构模型12】 MSD:跨膜结构域;NBD:核苷酸结合结构域;R:调节结构域;PKA:cAMP依赖的蛋白激酶 CFTR是一种跨膜蛋白质,较难获得理想的晶体,至今未获得完整的结构图像,但由于它属于ABC家族,而ABC家族的部分成员结构已经阐明,因此,根据序列比对推测得到了CFTR的结构(图1)。最近获得了CFTR的一般晶体结构,使用电子显微镜初步获得了它的空间结构,与真核生物另一个ABC家族成员P.糖蛋白在结构上具有相似性【51,说明了推测的合理性。现在可以肯定的是CFTR由5个功能结构域组成:两个跨膜结构域(membrane— spanningdomains,MSD)MSD1和MSD2;两个核苷酸结合结构域(nucleotide-bindingdomains,NBD)NBDl和NBD2;一个调节结构域R。这些结构域中两个MSD形成了选择性氯离子通道,两个NBD结构域调节了氯离子通道的门控性,而R基团的磷酸化控制了通道活性【:】。 2CFTR的调节机制 两个六跨膜结构域MSDl和MSD2共同构成了对氯离子具有选择性的通道,通道最狭窄部位的直径为0.53—0.60nm,在正常情况下,被其他大的阴离子或调节结构域R阻断;当胞内氯离子浓度升高激活了cAMP依赖的蛋白激酶最终可使通道打开,通过这种方式而有效调节了通道的开闭。此 外,胞外的氯离子浓度也可以影响通道的门控,它 的浓度升高也可以促进通道的打开【61。和其他ABC蛋白不同的是CFTR允许氯离子双向通透,而不是定向转运【7】。两个MSD的部分氨基酸构成了对氯离子的选择性运输,如带有正电荷K95、R134、R334、K335、R347和R1030在物种间具有高度保守性,它们的突变会影响到通道对氯离子的通透性【z】,由于CFTR完整结构还未阐明,因此对氯离 子的选择性分子机理也还未完全阐明。 C网t的门控性则主要由两个NBD来调节,对它们的研究则最为详细。NBD含有大量高度保守的序列,每一个NBD结构域都含有一个保守的磷酸结合环(被称为P环或WalkerA基序),此外还含有保守的walkerB基序和LsGGQ基序,推测这些结构域对于ATP的结合和水解发挥着重要作用【扪。 很早就发现√册的结合是通道打开所必需的[4】,ATP的结合和随后的水解有效的调节了通道的门控,而最近研究发现ADP可以抑制通道的打开【8】。NBDl和NBD2都含有ATP结合结构域,同时具有ATP酶活性,可以通过水解ATP的方式来驱动通道的打开。在这个过程中需要大量ATP,但氯离子通道主要介导的是氯离子的被动运输,因此不应该耗费太多能量,研究人员最新发现NBD除了具有ATP酶活性外,还具有腺苷酸激酶活性,腺苷酸激酶主要催化ATP+伽仰?—+2ADP的反应,因此尽管需要大量的ATP,但在生理条件下是腺苷酸激酶活性而不是ATP酶活性主要调节了门控,因此并不耗费太多能量【9】。 那么两个NBD如何在ATP的驱动下实现对氯离子通道的门控作用的呢?Ⅺdd等【101研究表明,当两个结构域单独存在时,ATP酶活性较低,而只有当两者形成二聚体才时可以有效增加酶活性,特别是Ve穆aIli等【ll】最近发现,当NBDl和NBD2独立存在时,氯离子通道关闭,当形成紧密结合的二聚体后氯离子通道打开,并且形成二聚体的过程需要ATP,因此j旧驱动的两个NBD结构域的紧密二聚体化是离子通道打开的前提【12】,从而实现将ATP水解和通道的门控作用有机结合【13】。那么形成的二聚体中两个结构域的功能是否相同呢?研究发现,两个结构域都可以和ATP结合,但只有NBD2可以水解ATP促使通道的打开,说明两个结构域通过各自的机制完成了ATP水解和门控的偶联过程【?引。 相对于ABC家族的其他成员,CFlR是唯一已 万方数据

电位滴定法测定水中氯离子的含量

电位滴定法测定水中氯离子的含量 1 / 1 电位滴定法测定水中氯离子的含量 一 实验目的:学习电位滴定法的基本原理和操作技术 掌握了解氯离子的测定过程和现象 二 实验原理 利用滴定分析中化学计量点附近的突跃,以一对适当的电极对监测滴定过程中的电位变化,从而确定滴定终点,并由此求得待测组分的含量的方法称为电位滴定法。本实验根据Nerst 方程E = E θ- RT/nF lgC Cl- ,滴定过程中, Cl - + Ag + = AgCl ↓,使得氯离子浓度降低,电位发生改变,接近化学计量点时,氯离子浓度发生突变,电位相应发生突变,而后继续加入滴定剂,溶液电位变化幅度减缓。以突变时滴定剂的消耗体积(mL )来确定滴定终点(AgNO 3标准溶液的体积)。 三 仪器和试剂 酸度计(mv 计),磁力搅拌器,转子。KNO 3甘汞参比电极,银电极,滴定管,烧杯(电解池),0.05mol·L -1NaCl ,0.05mol·L -1AgNO 3,KNO 3固体 四 实验内容和步骤 1 0.05mol·L -1AgNO 3标准溶液的标定 准确移取0.05mol.L -1NaCl 标准溶液10.00mL 于烧杯中,加蒸馏水20mL ,KNO 3固体2g ,搅拌均匀。 开启酸度计,开关调在mv 位置,加入滴定剂,记录溶液电位随滴定剂的体积变化情况。随着AgNO 3标准溶液的滴入,电位读数将不断变化,读数间隔可先大些(1-2mL ),至一定量后,电位读数变化较大,则预示临近终点,此时应逐滴加入AgNO 3标准溶液(0.5-0.2mL ),并记录电位变化,直至继续加入AgNO 3标准溶液后电位变化不再明显为止。做E(mv)-V(mL)曲线,求得终点时所消耗AgNO 3标准溶液的确切体积。 2水中氯离子含量的测定 准确移取水样10.00mL 于烧杯中,加蒸馏水20mL ,KNO 3固体2g ,搅拌均匀。加入滴定剂,记录溶液电位随滴定剂的体积变化情况。同标定的步骤,做E(mv)-V(mL)曲线,求出与水样中氯离子反应至终点所消耗的AgNO 3标准溶液的确切体积。 五数据处理 根据实验数据做E(mv)-V(mL)曲线,从两个图中获得终点所消耗的AgNO 3标准溶液体积,从而根据物质反应平衡公式C Cl-V Cl-=V Ag+C Ag+计算求出水中氯离子的含量(mol·L -1)。 实验过程中的注意事项:1参比电极所装电解液应为饱和KNO 3溶液。 2甘汞电极比银电极略低些,有利于提高灵敏度。 3读数应在相对稳定后再读数,若数据一直变化,可考虑读数时降低转子的转数。 问题:实验中KNO 3的作用? 终点滴定剂体积的确定方法有哪几种?

植物钾离子通道的分子生物学研究进展

植物钾离子通道的分子生物学研究进展 闵水珠 (浙江大学生命科学学院,浙江杭州,310029) 摘 要:钾离子通道是植物钾离子吸收的重要途径之一。近年来,已从多种植物或同种植物的不同组织器官 中分离到多种钾离子通道基因,包括内向整流型钾离子通道基因( 如OsAKT1,DKT1,Ktrrl ,KIl l ,KZM1,ZMK2 等) 和外向整流型钾离子通道基因(如CORK ,PTOR K ,STOR K 等) 。文章分别从结构、功能以及相关基因等三 方面综述了关于植物钾离子通道的分子生物学研究进展,并对应用生物工程技术改良植物的钾营养性状进 行了讨论。 关键词:钾离子通道;结构;基因 中图分类号:Q945;Q735 文献标识码:A 文章编号:1 004 —1 524(2005)03—01 63—07 T he progress on the m olecular biology of t h e K channels in plants M G Shui— zhu ( Co/e ge o f Li fe Science , 慨 Un ive rsity ,Ha.~ hou 310029 ,China ) A bstract :Tif s review summar i zed recent progresses on molecular biology of K channels in plants ,including structure and their elevant genes in specialty.The latter is d i v i ded into inward-rectifying K channel(K in) genes(OsAKT 1,DKT1, KFrl ,KDC1,KZM1,ZMK2,etc.) and o utward-~ tifyin g K channel(K out) gene s (C O R K ,FIDR K ,STOR K ,etc.) .The possibilit y of impr o v i n g potassium nutr i tion of pla n t by bioengineerin g is also d i scussed in this paper. K ey words :K channel;structure ;gene 离子通道(ion channe1) 是跨膜蛋白,每个蛋 白分子能以高达l08个/秒的速度进行离子的被 动跨膜运输,离子在跨膜电化学势梯度的作用下 进行的运输,不需要加入任何的自由能。一般来 讲,离子通道具有两个显著特征:一是离子通道 是门控的,即离子通道的活性由通道开或关两种 构象所调节,并通过开关应答相应的信号。根据 门控机制,离子通道可分为电压门控、配体门控、

氯离子通道异常引发的肌强直(一)解读

氯离子通道异常引发的肌强直(一) 【摘要】细胞膜离子通道结构和功能正常是细胞进行生理活动的基础。钠、钾离子通道在肌肉收缩中的作用一直受人关注。最近的研究表明,氯离子通道在肌肉收缩中也占有很重要的地位,甚至比钠、钾通道更具有决定性的意义。 【关键词】肌强直;CLC突变 骨骼肌的收缩的整个生理过程是以膜的电位变化为特征的兴奋过程和以肌丝滑动为基础的收缩过程,不同的离子通道共同完成这一过程(兴奋-收缩偶联)。肌强直是因为离子通道的功能异常而导致的一种疾病。它的特征是突发自主收缩后肌肉松弛延缓。这是因为离子通道的功能障碍影响了细胞膜的静息电位,从而使骨骼肌纤维浆膜过度兴奋,造成了动作电位的重复产生。 由两种基因独立编码的电压门控氯离子通道和钠离子通道的突变是形成单纯遗传性肌强直的基础。氯离子通道和钠离子通道对细胞膜的作用是相反的:氯离子通道主要是抑制细胞膜的兴奋,稳定静息电位,而钠离子通道主要是兴奋细胞膜,使之产生动作电位〔1〕。 事实上,肌强直的诱发原因是多样的:一方面可以是氯离子通道失去性功能突变降低了氯离子的电导;另一方面,也可以是钠离子通道获得性功能突变导致的多余的离子通道的开放。本文仅就氯离子通道异常所引发的肌强直做一总结论述。 1 CLC氯通道 氯离子在体内含量极为丰富多种细胞存在氯离子浓度梯度。CLC是氯通道 家族的一大类,Mw约75?110kU,均有12个跨膜区和相同的离子选择顺序 (CI->Br->l-)及较低的单位电导值。 CLC基因存在于几乎所有的生物体中,在哺乳动物中发现了9种CLC同源体。 根据它们简单的序列将CLC通道分成三组,其中CLC-0 CLC-1、CLC-Ka和CLC-Kb属于细胞跨膜通道,其他两组可能构成细胞膜内的通道〔2〕。氯离子 通道在功能和结构上与其他离子通道有很大不同,它独一无二的结构特征是双筒型构造〔3〕,CLC可能是由两种完全相同但是相互独立的protopore构成,它们能在开放一段时间后不约而同的关闭。最近的克隆CLC实验证明,这种双 筒构造实际上是同源蛋白的两种形态的分化传导通路〔4〕。相比而言,钠通道是一种蛋白四聚体,四个亚单位沿中央的孔道对称分布,其中每个亚单位在其中行使相同的功能,通道直接垂直于细胞膜表面。而氯离子通道没有这种对称性,既不垂直于膜也不弯曲于膜内。一种更远的关于不对称的推测是一些在空间上相互接近但是在蛋白质一级结构上相隔甚远的区域构成了孔道。这种特殊的构造决定了它在细胞活动中的特殊地位和作用。CLC g离子通道和其他常规 通道的不同点是在通透和门控上的相互影响。阴离子的通透需要通道的开放,这个通透过程又反馈性的调节通道的开放〔5〕。 2氯离子通道与相关疾病

离子通道研究进展

离子通道研究进展 陆亚宇(江苏教育学院生物系) 指导老师:戴谷(江苏教育学院生物系) 摘要:随着对离子通道研究的逐步深入, 各种研究方法都暴露出一定的局限性. 目前, 对于离子通道的研究工作进入了一个新阶段,即对不同方法的综合应用阶段,这不仅有助于人们在分子水平上认识离子通道的结构和功能的关系,也为不同领域的科学家提供了更多的合作机会.首先介绍了离子通道理论及实验研究方法, 并分析了各种研究方法综合应用的必要性,展望了这一领域的发展前景及其所面临的挑战性问题.并介绍最新的全自动膜片钳技术及其最新进展,它具有直接性、高信息量及高精确性的特点。近来在多个方面作出新的突破,如高的实验通量表现,较高的自动化程度、良好的封接质量、微量加样等。目前,该技术在以离子通道为靶标的药物研发,药物毒理测试以及虚拟药筛等方面有广阔的应用前景。全文对全自动膜片钳仪器的原理和技术细节作简单介绍。并简单介绍最新的关于K+通道在烟草中的发现,并对利用现代生物技术手段提高烟叶含钾量进行了展望。 关键字:离子通道; 实验方法; 全自动膜片钳;钾离子通道 前言: 细胞是通过细胞膜与外界隔离的,在细胞膜上 有很多种离子通道(如右图),细胞通过这些 通道与外界进行离子交换。离子通道在许多细 胞活动中都起关键作用,它是生物电活动的基 础,在细胞内和细胞间信号传递中起着重要作 用。随着基因组测序工作的完成,更多的离子 通道基因被鉴定出来,离子通道基因约占 1 . 5% ,至少有400个基因编码离子通道。相应的 由于离子通道功能改变所引起的中枢及外周疾 病也越来越受到重视。 离子通道的实验研究最初主要来源于生理学实 验。1949~1952年, Hodgkin等发展的“电压钳 技术” 为离子通透性的研究提供技术条件。60 年代中期,一些特异性通道抑制剂的发现为离 子通道的研究提供有力武器。1976年Neher和 Sakmann发展的膜片钳技术直接记录离子单通 道电流,为从分子水平上研究离子通道提供直 接手段。80年代中期,生化技术的进步,分子生物学以及基因重组技术的发展,使人们能够分离纯化许多不同的通道蛋白,直接研究离子通道的结构与功能关系。 通道结构和功能的研究日益成为电生理学、分子生物学、生物化学、物理学等多学科交叉的热点问题.对离子通道进行研究,传统的实验方法是电压钳技术、膜片钳技术等电生理学研究方法[; 传统的理论方法主要包括PNP模型和布朗动力学模型, 伴随计算机技术的迅猛发展和X 射线晶体衍射图谱技术在离子通道研究中的应用, 以及Mackinnon 等用X 射线晶体衍射技术成功解析出多个高分辨率离子通道三维空间结构,使得人们得以使用分子动力学模拟和量子化学计算等模拟在分子水平认识离子通道结构和功能的关系;随着分子生物学快速发展,又出现了定点突变技术、人工膜离子通道重建技术等实验技术手段本文中,笔者将

水灰比对混凝土强度及氯离子渗透性的影响

王立峰等:水灰比对混凝土强度及氯离子渗透性的影响 水灰比对混凝土强度及氯离子渗透性的影响 王立峰1 , 李家和2 , 朱广祥3 , 朱卫中 3 (1.中铁建设集团有限公司, 哈尔滨 150001; 2.哈尔滨工业大学土木工程学院, 哈尔滨 150001; 3.黑龙江省寒地建筑科学研究院, 哈尔滨 150080) 摘 要 主要研究了水灰比对混凝土强度和氯离子电通量的影响。试验结果表明:水灰比增大混凝土的强度明显降低,氯离子电通量增大;水灰比从0.33增加到0.37和0.41时,混凝土28d 氯离子电通量的增加幅度接近或超过了50%。 关键词 混凝土;水灰比;氯离子渗透;抗压强度 中图分类号 TU 528 0 文献标识码 B 文章编号 1001-6864(2011)05-0007-02 INFLUENCE OF W ATER CEMENT RATIO ON STRENGTH AND C HLOR IDE ION PERMEABILI TY OF CONCRETE WANG L i feng 1 , LI Jia he 2 , ZHU Guang x iang 3 , Z HU W e i zhong 3 (1.Ch i n a Ra il w ay C onstr uction G r oup Co .,L t d ,H arb i n 150001,China ; 2.School of C i v ilEng ineeri n g ,H I T ,H arbin 150001,Chi n a ; 3.H eilong jiang Prov i n ce A cade m y of Co ld A rea Bu ilding Research,H arb i n 150080,China) Abst ract :Infl u ence of w ater ce m ent ratio on strength and ch l o ri d e i o n per m eability o f concrete is stud ied in th is paper .The resu lts show that strength decreased si g nificantl y ,electric fl u x i n creased when w ater ce m ent rati o i n creased .W hen w ater ce m en t ratio i n creased fro m 0.33to 0.37and 0.41,28d e lectric fl u x of concrete increased close to 50%. K ey w ords :concrete ,;w ater ce m en t ratio ;ch lori d e per m eab ility ;co m pressi v e strength [基金项目] 973 计划项目 水泥低能耗制备与高效应用的基础研究 第六课题 水泥基材料的产物与结构稳定性及服役行为 (2009CB623106);中铁建设集团项目 新建哈尔滨西客站工程严寒气候条件下结构混凝土冬期施工技术研究 随着混凝土技术的进步,影响混凝土的可变因素越来越多,这些因素影响着混凝土的两个最重要的性能参数,即渗透性和强度。混凝土的渗透性是其耐久性的最重要方面,实际工程中的混凝土往往是受环境中的水、气体以及侵蚀性介质的侵入而劣化。产生上述劣化作用需要内、外两个因素[2],内部因素是指混凝土的成分和结构,外部因素是指环境中侵蚀性介质和水等。为此有必要从内部因素入手提高混凝土的耐久性能[3]。由于渗透性是混凝土最根本的性质之一,并且与耐久性直接相关,所以成为混凝土试验和研究中的一项重要内容[4]。本文通过试验测试了不同水灰比的混凝土强度和氯离子电通量,目的在于为配制更加抗渗的混凝土提供基础数据。1 试验 (1) 原材料:水泥:P O 42 5水泥;粗集料:表面粗糙、级配良好的碎石,粒径为5~25mm,压碎指标为3%,含泥量为0 2%;砂:山砂,细度模数为2 8,满足 区级配的要求,含泥量为0 9%;减水剂:菏泽联强建筑材料有限公司生产的聚羧酸高效减水剂;水:哈尔滨自来水。 (2) 混凝土配合比设计。本试验中混凝土的砂率为40%,固定砂石用量,改变拌合用水,通过调整高效减水剂的用量使混凝土坍落度控制在200 20mm,如表1所示。 表1 混凝土配合比设计 kg m -3 编号水灰比水泥砂碎石水G -0 330 335107*********G -0 370 375107*********G -0 41 0 41 510 714 1028 209 (3) 试验方法:试验采用A STM C1202法测试混凝土氯离子电通量。将每组新拌混凝土制成3个尺寸为 100mm 50mm 的试块,标准养护至28d 后进行真空饱水,饱水结束后进行测试。测试时在试件轴向施加60V 的直流电压,试件两端的正负试验槽内分别注满摩尔浓度为0 3mo l/L 的N a OH 溶液和质量浓度为3.0%的N aC l 溶液,记录6h 内通过试件的总电量即为试件的电通量。 抗压强度采用100mm 100mm 100mm 的立方体试7

氯离子通道ClC_3研究进展_陈临溪

r 讲座与综述r 氯离子通道ClC -3研究进展* 陈临溪 关永源 (中山大学中山医学院药理学教研室,广州 510080) 2002-01-16收稿,2002-03-20修回 * 国家自然科学基金(No 39970849)、国家科技部攀登计划(国科基 字[1999]045号)和2000年广东省自然科学基金团队项目资助作者简介:陈临溪,男,37岁,博士研究生,副教授。Tel:020-********,E -mail:ch enlinxi@https://www.doczj.com/doc/a07616941.html,;关永源,男,56岁,教授,博士生导师 中国图书分类号 R 329125 文献标识码 A 文章编号 1001-1978(2002)05-0481-06摘要 ClC -3氯离子通道广泛分布于组织器官和各种细胞,ClC -3氯离子电流呈外向整合电流,在正性电位通道灭活,0mV 左右出现反转电位,通道的离子渗透选择性是I ->Cl -,能被氯通道阻断剂DIDS 、tamox ifen 和细胞外A T P 抑制,被PK C 磷酸化调节,参与细胞容积调控。关键词 氯离子通道;ClC -3;容积激活;电生理学 氯离子(Cl -)是生物体内最多的阴离子,通过跨膜转运和阴离子通道参与各种生物功能,Cl -的跨膜转运形成Cl - 电流,很久以前就用电生理方法记录到了,一直当作/漏电流0而被忽视,近来由于膜片钳技术的应用,特别是分子生物学技术的发展,大大推进了Cl -通道(chloride channel)的研究,1990年Jentsch 和同事首先在电鳐电器官上克隆了电压门控Cl -通道(voltage -gated chloride channel),取得了突破性进展[1]。之后发现了大量的Cl -通道,形成了一个Cl -通道家族(ClC),ClC 基因存在于几乎所有生物体。在哺乳动物已发现9种ClC 同源体,ClC 1~17,ClCKa,ClCKb,分属于A B C 3个亚族,各Cl -通道有30%~80%的同源序列。 维持细胞容积的稳态十分重要,细胞内外渗透压变化、细胞生长分裂等可引起细胞容积发生改变,而在细胞容积调节中Cl -通道起重要作用。多项研究提示ClC -3是容积激活(volume -activated )Cl -通道,参与许多生理功能。ClC -3属ClC 家族B 亚族,已成为ClC 研究的热点,现将有关ClC -3的研究进展介绍如下。1 ClC -3的基因克隆、蛋白质结构 编码ClC -3蛋白的基因已从大鼠肾[2]、小鼠肝、人胎脑[3]、豚鼠心脏[4]等组织克隆,与其他的ClC 结构相似,ClC -3蛋白有13个跨膜区域,N 和C 末 端均位于细胞内(Fig 1,引自Duan,1997),人ClC -3基因编码的是一个760个氨基酸的蛋白,从豚鼠心脏克隆的ClC -3与大鼠肾ClC -3在核苷酸有9115%的同源性,在氨基酸序列有9814%的同源性。豚鼠、犬、大鼠的心房和心室的ClC -3蛋白分子质量约为85ku [5],但在65和70ku 还有两条额外的ClC -3样免疫反应带,可能是ClC -3的糖基化形式或蛋白水解产物。大鼠肝细胞ClC -3蛋白约为80ku [6] 。从人结肠癌细胞系T 84克隆的hClC -3蛋白约90~120ku [7]。在转染豚鼠ClC -3的NIH /3T3细胞,把编码跨膜区域末端天门冬氨酰胺的g p ClC -3cDNA 人为突变,579位的天门冬氨酰胺突变为赖氨酸(N579K ClC -3通道),外向整合电流消失,通道的离子渗透选择性从I ->Cl -改变为Cl ->I -,说明ClC -3蛋白579位的天门冬氨酰胺与外向整合电流和通道的离子渗透选择性有密切关系。如果把转染了ClC -3的N IH/3T3细胞上的ClC -3通道51位丝氨酸突变成丙氨酸,PDBu 激活蛋白激酶C(protein kinase C,PKC)时低渗激活的I ClC -3不能被抑制,而在362位的丝氨酸突变时PKC 抑制低渗激活的I ClC -3作用依然存在,说明ClC -3胞内氨基末端丝氨酸残基是PKC 磷酸化位点,也是通道的容积感受器[8,9] 。在大鼠肝、肺、肾、心脏、大脑皮质、小脑和嗅球的组织mRNA 还发现ClC -3有长型和短型两亚型[6],肝ClC -3短型与豚鼠心脏ClC -3一致,长型是在N -末端还附加58个氨基酸,但用Western blot 方法检测肝组织蛋白未能把两种同源形式分辨出 来。 Fig 1 Structure of ClC -3

《混凝土结构耐久性设计规程》中抗氯离子渗透性检测方法的试验研究

《混凝土结构耐久性设计规程》中抗氯离子渗透性检 测方法的试验研究 来源:《混凝土》2007年第2期( 总第208期)中国混凝土与水泥制品网[2007-4-12] 摘要: 针对山东省《混凝土结构耐久性设计规程》中混凝土抗氯离子渗透性检测方法进行了试验研究。试验结果表明《, 规程》中的交流电法和RCM法可以便捷准确的评定混凝土中氯离子的渗透性, 有广阔的应用前景。但不同的试块制备方法对氯离子渗透性电测法的试验结果影响很大, 考虑到工程上混凝土的实际情况, 建议《规程》中的混凝土抗氯离子渗透性试验评定方法应对试块的制备方法应提出更明确的要求。 关键词: 混凝土; 氯离子; 渗透性; 交流电法; RCM法 中图分类号: TU528.01 文献标志码: A 文章编号: 1002- 3550-( 2007) 02- 0005- 03 0 前言 根据山东省地理、环境特点并结合山东地区混凝土结构耐久性现状及实践经验编写的DBJ14-S6-2005《混凝土结构耐久性设计规程》( 以下简称《规程》) , 已于2005 年12 月1 日在山东省内颁布实施, 填补了之前国内尚无结构耐久性设计规范的一项空白。《规程》规定了混凝土结构耐久性设计的原则、内容、结构构造和材料选用基本要求, 提出了施工、检测与维护的基本要求及防腐蚀附加措施及试验方法。 由于山东省大规模工程建设比较集中, 并且地处沿海, 有长达3 000 多公里的海岸线, 有盐土地区分布, 而且作为北方地区, 山东省每年冬季仍大量使用氯盐类“ 融雪剂”( 如氯化钠、氯化钙、氯化镁等) , 因此存在着广泛的氯盐侵蚀环境《, 规程》就此提出了三种混凝土抗氯离子渗透性试验评定方法, 包括美国ASTM C1202 混凝土抗氯离子渗透性标准试验方法直流电量法) , 用交流电测量混凝土氯离子渗透性方法和氯离子扩散系数快速测定的RCM 法。ASTM C1202 在国际上应用普遍, 但试验时间较长, 施加电压较高易对试块产生影响[1]; 交流电法最早由Monfore[2]提出并曾被Hansen[3]和Feldman[4]采用, 赵铁军[5]对其进行了完善并形成了一套比较成熟的试验方法; 而RCM 法则是目前被欧洲国家广泛采用的一种方法。 上述三种方法都可以快速评价氯离子在混凝土内的传输性质, 但其机理和具体试验过程有较大差异。由于之前围绕ASTM C1202 法的试验研究已有很多[6~8], 本文就交流电法和RCM 法重点进行了试验研究, 并结合试验结果对《规程》中的氯离子试验方法提出了一些意见和建议。 1 原材料及配合比

氯离子通道异常引发的肌强直(一)解读

氯离子通道异常引发的肌强直(一) 【摘要】细胞膜离子通道结构和功能正常是细胞进行生理活动的基础。钠、钾离子通道在肌肉收缩中的作用一直受人关注。最近的研究表明,氯离子通道在肌肉收缩中也占有很重要的地位,甚至比钠、钾通道更具有决定性的意义。 【关键词】肌强直;CLC;突变 骨骼肌的收缩的整个生理过程是以膜的电位变化为特征的兴奋过程和以肌丝滑动为基础的收缩过程,不同的离子通道共同完成这一过程(兴奋-收缩偶联)。肌强直是因为离子通道的功能异常而导致的一种疾病。它的特征是突发自主收缩后肌肉松弛延缓。这是因为离子通道的功能障碍影响了细胞膜的静息电位,从而使骨骼肌纤维浆膜过度兴奋,造成了动作电位的重复产生。 由两种基因独立编码的电压门控氯离子通道和钠离子通道的突变是形成单纯遗传性肌强直的基础。氯离子通道和钠离子通道对细胞膜的作用是相反的:氯离子通道主要是抑制细胞膜的兴奋,稳定静息电位,而钠离子通道主要是兴奋细胞膜,使之产生动作电位〔1〕。 事实上,肌强直的诱发原因是多样的:一方面可以是氯离子通道失去性功能突变降低了氯离子的电导;另一方面,也可以是钠离子通道获得性功能突变导致的多余的离子通道的开放。本文仅就氯离子通道异常所引发的肌强直做一总结论述。 1 CLC氯通道 氯离子在体内含量极为丰富多种细胞存在氯离子浓度梯度。CLC是氯通道家族的一大类,Mw 约75~110kU, 均有12个跨膜区和相同的离子选择顺序(Cl->Br->I-) 及较低的单位电导值。 CLC基因存在于几乎所有的生物体中,在哺乳动物中发现了9种CLC同源体。根据它们简单的序列将CLC通道分成三组,其中CLC-0、CLC-1、CLC-Ka和CLC-Kb属于细胞跨膜通道,其他两组可能构成细胞膜内的通道〔2〕。氯离子通道在功能和结构上与其他离子通道有很大不同,它独一无二的结构特征是双筒型构造〔3〕,CLC可能是由两种完全相同但是相互独立的protopore构成,它们能在开放一段时间后不约而同的关闭。最近的克隆CLC实验证明,这种双筒构造实际上是同源蛋白的两种形态的分化传导通路〔4〕。相比而言,钠通道是一种蛋白四聚体,四个亚单位沿中央的孔道对称分布,其中每个亚单位在其中行使相同的功能,通道直接垂直于细胞膜表面。而氯离子通道没有这种对称性,既不垂直于膜也不弯曲于膜内。一种更远的关于不对称的推测是一些在空间上相互接近但是在蛋白质一级结构上相隔甚远的区域构成了孔道。这种特殊的构造决定了它在细胞活动中的特殊地位和作用。CLC氯离子通道和其他常规通道的不同点是在通透和门控上的相互影响。阴离子的通透需要通道的开放,这个通透过程又反馈性的调节通道的开放〔5〕。

气道中氯离子转运通路的研究概况

气道中氯离子转运通路的研究概况 晏斌林 (江西医学院2002级硕士研究生,江西南昌330006) 关键词:氯离子;转移通路;气道 中图分类号:R33 文献标识码:A 文章编号:1000-2294(2005)01-0117-02 Cl-是体内最为丰富和常见的阴离子,它参与了细胞的多种活动和功能调节过程,如细胞电活动调节、容积调节、跨上皮物质转运、细胞内PH调节,在细胞免疫应答、细胞迁移、细胞增殖和分化,细胞凋亡中都发挥一定的作用[1]。近年来关于氯离子转运通路的研究表明人类的多种疾病与Cl-转运通道的功能改变或缺失有关,因此氯离子转运通路越来越受到重视。在气道中与氯离子跨膜转运有关的通路主要有氯通道,其他则为细胞膜上的阴离子交换蛋白及转运体如:Cl-/HCO3-离子交换系,Na+-2Cl--K+共同转运体等。本文将着重介绍气道上皮细胞膜上表达的多种通道的特点以及可能的生理和病理作用。 1 呼吸道氯离子通道及其临床意义 1.1 CF T R Cl-通道 囊性纤维变性(CF)是上皮细胞对Cl-不通透引起的疾病。CF是CF T R突变引起的,CF T R还可调节外向整流氯通道,N a+通道,用cA mp刺激CF T R会导致上皮细胞N a+通道的关闭[2]。其基因已克隆,相应的蛋白CF T R(cy stic fi-bro sis transmembra ne co nductance reg ulato r)是一种氯通道[3]。 CF T R是一种磷酸化依赖性上皮细胞Cl-通道。Rior-dan等于1989年最早克隆得到其cDN A基因编码。CF T R 主要位于气道上皮顶侧膜,在跨上皮盐类转运,水分流动和离子浓度调节中发挥重要作用。 CF T R由1480个氨基酸组成,它有两个六次跨膜区(T M D)。两个核苷酸连接区(N BD)和一个调节区。跨膜区参与孔道的形成。CF T R门控特征可能受到A T P的调节[4],在第一个N BD上被水解可打开通道,在第二个N BD 上结合使通道稳定于开放状态,水解则使通道关闭,有趣的是去掉CFT R的C端(第二T M D和第二个N BD)通道的基本性质不变,这说明此突变体以二聚体的形式完成其功能,也说明第一个T M D对孔道的形成有关键性作用。此外PK A可激活CF T R。 Cl-分泌对液体和电解质转运是至关重要的,CF T R介导的Cl-分泌占主要部分,CF患者不能分泌足够的Cl-,以致于粘膜表面不能充分地与水结合,更重要的是影响粘液从腺管分泌出。CF T R功能缺陷的患者分泌的粘液与正常人很不一样,粘液包含有细菌感染产物,包括粘液脂质,肌动蛋白还有蛋白酶等[5]。它具有更多非易失性的固体成分,增加粘液的粘度。这样的改变足以缩减粘液清除率,由此造成哮喘,慢性阻塞肺气肿(COP D)等。 1.2 C LC家族 CLC蛋白构成一大类氯通道家族,分子量约为75~110 K u,均有12个跨膜区和相同的离子选择顺序(Cl->Br-> I-)及低的单位电导值,如C LC-0为10pS,CLC-1则仅为1pS[6]。该通道在哺乳动物细胞中普遍存在,已发现了九个CLC家族基因,依其同源性可分成三组:接近电鱼器官的CLC-0和肾特异性的C LC-ka,C LC-kb,功能缺失导致高钙尿症和低分子量蛋白尿症的肾结石病[7]。CLC-1是哺乳动物骨骼肌的主要氯通道,功能缺失会使肌膜动作电位复极化延缓,导致肌强直。 无处不在的C LC-2Cl-通道能促进上皮Cl-分泌,它可以被强超级化或细胞膨胀激活,可能参与细胞体积调节,防止在高于平衡电位时氯离子积累。CLC-2在细胞容积增大以及随后的Cl-和水外流而引起调节性容积,减少过程中发挥重要的作用。但即使在等渗状态下,由代谢引起的细胞内外物质交换会导致细胞容积的小幅度变化,从而也有可能引起这种通道的激活或失控[8]。CL C对SIT S、D IDS、N PP B敏感。通道激活与胞钙浓度无关,对PK的阻断剂不敏感。人们已经在人和鼠发现CLC-2位于纤毛细胞顶侧,分布位置与CF T R有重叠性,一些实验数据支持当CF T R缺陷时, CLC-2也许代偿性加强Cl-分泌[5]。 1.3 细胞内钙激活的Icl,ca(CLCA或CaCC) CLCA通道由Ca2+激活,是受细胞内钙控制的配体门控通道。在对称性Cl-浓度具有线性电流-电压关系,其离子选择顺序为I->Br->Cl-。尽管该通道的电导较低(约1.0~1.3pS)但密度很高。由于Icl,ca受细胞内Ca2+的控制,因此它的作用始终与电压依从性钙通道的激活和肌质网钙的释放密切相关,由于肾上腺受体和毒覃硷受体可增加和小细胞内瞬间电流的大小。因此这两种受体也对Icl,ca 有调节作用,Icl,ca也受N a+/Ca2+交换的调节。Icl,ca的增加可作为另一种负反馈,通过减小动作电位的初始平台电位而限制钙的内流。 CLCA Cl-通道广泛分布人类分泌器官中,CL CA1主要分布在气道上皮尤其是杯状细胞上,消化道也可见。 收稿日期:2004-09-02

水中氯离子含量测定[1]

标准号:D 512-89 测定水中氯离子含量的测试方法1 1.适用范围* 1.1如下三个测试方法包括了水、污水(仅测试方法C )及盐水中氯离子含量的测定: 部分 测试方法A(汞量滴定法)7~10 测试方法B(硝酸银滴定法)15~21 测试方法C(离子选择电极法)22~29 1.2测试方法A、B和C在应用(practice)D2777-77下有效,仅仅测试方法B在应用D2777-86 下也同样有效,详细的信息参照14、21和29部分。 1.3本标准并不意味着罗列了所有的,如果存在,与本标准的使用有关的安全注意事项。本 标准的使用者的责任,是采用适当的安全和健康措施并且在使用前确定规章制度上的那些限制措施的适用性。明确的危害声明见26.1.1。 1.4以前的比色法不再继续使用。参照附录X1查看历史信息。 2.参考文献 2.1 ASTM标准 D 1066 蒸汽的取样方法2 D 1129 与水相关的术语2 D 1193 试剂水的规范2 D 2777 D-19水委员会应用方法的精确性及偏差的测定2 D 3370 管道内取水样的方法2 D 4127离子选择电极用术语2 3.专用术语 3.1 定义——这些测试方法中使用的术语的定义参照D 1129和D4127中的术语。 4.用途及重要性 4.1 氯离子是,因此应该被精确的测定。它对高压锅炉系统和不锈钢具有高度危害,所以为 防止危害产生监测是必要的。氯分析作为一个工具被广泛的用于评估循环浓度,如在冷却塔的应用。在食品加工工业中使用的处理水和酸洗溶液也需要使用可靠的方法分析氯含量。 5.试剂纯度 5.1在所有的试验中将使用试剂级化学物质。除非另有说明,所有试剂应符合美国化学品协 会分析试剂委员会的规范要求。如果能断定其他等级的试剂具有足够高的纯度,使用它不会减少试验的精度,则这种等级的试剂也可以使用。 5.2 水的纯度——除非另有说明,关于水的标准应理解为指的是如Specification D1193中 由第二类所定义的试剂水。

相关主题
文本预览
相关文档 最新文档