当前位置:文档之家› 抗氯离子渗透性

抗氯离子渗透性

抗氯离子渗透性
抗氯离子渗透性

评价高性能混凝土耐久性综合指标-抗氯离子渗透性及其研究现状

摘要:结合国内外高性能混凝土耐久性研究的现状,在近年来基于氯离子渗透的高性能混凝土耐久性预测模型,分析了将抗氯离子渗透性作为评价高性能混凝土耐久性的综合指标的可行性和必要性,对于制定高性能混凝土的耐久性设计规范具有参考意义。

关键词:高性能混凝土;耐久性;氯离子抗渗;综合指标

Aggregative indicator evaluating the durabil ity of HPC:Chloride ion resistance and present status BA Heng jing ,ZHA N G Wu man ,DEN G Hong wei

(Civil Engineering Institute ,Harbin University of Technology ,Harbin 150006 ,China) Abstract :Based on the prediction models and the domestic and foreign present status of the durability of HPC, the chloride ion resistance was used as an aggregative indicator to evaluate the durability of HPC. The importance and the feasibility were analyzed, which had significant reference for constituting standard of the durability of HPC.

Key words :HPC;durability ;chloride ion resistance ;aggregative indicator

1 引言

近年来,国内外土木工程界对高性能混凝土耐久性问题十分关注,作了大量的试验研究,工程技术人员对混凝土耐久性的认识程度也不断加深。我国新出台的混凝土结构设计规范中很多章节已经提出了具体的耐久性规定。同时,我国第一部《混凝土结构耐久性设计及施工指南》也在2003年底正式颁布实施,该指南为设计和施工人员提供了环境作用下混凝土结构耐久性设计与施工的基本要求。大量科研成果的取得和国家规范的实施将实现混凝土结构全功能设计的目标向前推进了坚实的一步。

然而,目前对于高性能混凝土耐久性的评定没有统一的指标和方法,对其抗冻性、抗化学侵蚀性、抗钢筋锈蚀性、抗碳化性、抗碱—集料反应性、抗磨耗性、抗火性等等的试验和评价,基本上仍沿用对普通混凝土的试验和检测方法。但是,由于低水灰比、以及高效减水剂和矿物掺合料的掺入,高性能混凝土的性能与普通混凝土的性能相比产生了较大的差异,因此,普通混凝土的一些试验和检测方法已不适用于高性能混凝土,更无法将耐久性指标融入到混凝土结构设计理论中。

我国规范一贯按承载力极限状态来设计结构构件,再按正常使用极限状态来校核构件的设计思想,这样就决定了高性能混凝土耐久性设计应在肯定原有结构设计理论的基础上补充耐久性方面的要求,使得所选用的混凝土材料在满足结构承载能力的同时也可以达到足够的耐久性,在工程选材的环节把好“耐久性”关,实现从源头上解决结构的耐久性问题。

因此,目前亟待解决问题是:创建一个高性能混凝土耐久性的综合评价指标,该指标能够将各种环境因素影响效应集于一身。将其作为指导高性能混凝土结构耐久性设计的统一标准,便可以消除混凝土耐久性参数众多,各参数之间相关性难于把握的客观制约,为实现完全规范化的混凝土结构耐久性设计奠定坚实的基础。

国内外学者[1~4 ]经过大量调查和研究表明:绝大多数高性能混凝土结构的破坏是由于氯离子侵入到混凝土钢筋表面,并达到一定临界浓度时引起的钢筋锈蚀所致;钢筋锈蚀使其

与混凝土的粘结力下降,同时产生的膨胀使保护层开裂破坏,最终导致整个结构的破坏。Misra[5 ]等也强调氯离子的渗透性可以用来评定高性能混凝土的耐久性能,特别是设计和建造容易受氯离子侵蚀而导致钢筋锈蚀的混凝土结构,如沿海结构、海洋混凝土结构、应用除冰盐的船桥甲板、高速公路等。Shah and Wang[6 ] 研究了混凝土微观结构、渗透性、裂纹和耐久性之间的关系,结果表明:配合比设计时应同时考虑强度、渗透性和抗裂性。由此可见:抗氯离子渗透性是评价高性能混凝土耐久性的一种有效的方法和指标。

2 高性能混凝土抗氯离子渗透性研究现状

目前关于高性能混凝土抗氯离子渗透性测定方法主要有两类:自然渗透法和加速渗透法。

2.1 自然渗透法

自然渗透法是先将混凝土长时间浸泡于含氯盐的水中,再通过切片或钻取芯样,用化学分析的方法得到氯离子浓度与渗透距离的关系,然后利用Fick第二定律计算出氯离子渗透系数。这种方法是确定离子在混凝土中渗透系数的最常用的方法,比较接近实际情况,但费时费力。

2.2 加速渗透法

加速渗透法是先通过施加电场来加速氯离子在混凝土中的迁移,缩短氯离子达到稳态传输过程的时间。

2.2.1 电量法[7 ]

电(直流电) 加速氯离子扩散试验方法最初由Whiting于1981 发明,最早是快速氯离子渗透试验方法(RCPT) 。该装置的设计原理是溶液中的离子在电场的加速下能够快速渗透。该装置中所用的电压为60V。由于这种试验方法持续时间短,在试验室内具有重复使用性,该试验方法于1983年被美国公路运输局定为标准试验方法,即AASHTO T277 ,紧接着又被美国试验与材料协会ASTM 选定为标准试验方法。

AASHTO T277 (ASTM C1202) 试验的具体方法:50mm 厚,100mm 直径的水饱和混凝土试件,两端水槽所用溶液分别为3.0 %NaCl和0.3M NaOH ,在60V 的外加电场下持续通电6小时,以该时间内通过混凝土电量的高低来判断混凝土的抗氯离子渗透能力。尽管该试验方法被选定为标准试验方法,但是,这种测试氯离子渗透的技术仍存在以下几点争论[8 ] :①通过试件的电量与孔液中所有的离子相关,而并不只是氯离子;②所作的测试工作完成于离子达到稳定迁移之前,即离子的扩散并没有达到稳定状态;③所加的高电压导致溶液的温度升高,从而影响测试结果;④电极腐蚀严重;⑤所测结果不能精确定量说明混凝土抗氯离子渗透能力。

2.2.2 渗透系数法

(1) Tang Luping[9 ,10 ] ,K1Stanish[11 ,12 ] 等基于Nernst - Planck 方程首先从理论建立了浓度、通量、渗透深度、渗透系数之间的关系,进而进行了试验验证。其中,Tang Luping 的试验方法已经被欧盟广泛接受,并推荐为欧盟规范。但该方法并未从根本上解决氯离子渗透试验中存在的问题。

(2) 电阻技术是近年来发展起来的、用来评价氯离子在混凝土中渗透能力的另外一种方

法。电阻是物质对电的抵抗力,电导率与电阻率相反。St reicher and Alexander[13 ]认为饱和多孔材料的电导率主要由孔液的电导率确定:

F =σ/σ0

中σ———多孔材料的电导率;

σ0 ———孔液的电导率。

多孔材料的电导率和扩散系数的影响因素是相同的,即孔径大小及其连通性。因此,也可以用下式表示:

F = D/ D0

式中 D ———多孔材料的扩散系数;

D0 ———孔液中氯离子的扩散系数(即自由氯离子的扩散系数) 。

电阻值的测试方法有两种,包括用直流电和交流电测试。测试混凝土电阻所用的电压通常为10V 或更低,且测试时间很短,这样可以避免混凝土被加热,这种测试方法的主要困难是确定孔液的电导率。提取孔液的方法有两种:一种是孔溶液榨取法;另外一种是用已知电导率的溶液将待测混凝土预饱和,后者是常用的方法。国内路新瀛[14 ]等人在这方面作了相关研究。

电阻技术的不足之处在于[8 ] :①预饱和技术在干燥过程中由于微裂纹的形成损害混凝土原有的孔结构,从而增加其渗透性。同时也很难使溶液在混凝土内达到均匀分布,即使用真空饱和技术也很难保证高品质的混凝土和较厚的混凝土内部达到完全饱和。②溶液进入混凝土前后是相同的假设并不正确,主要因为混凝土孔液中包含的离子是多样的(主要是碱性氢氧化物) ,当混凝土干燥后,这些离子过饱和结晶,当溶液进入混凝土时,这些结晶又会溶于溶液中,从而影响溶液的电导率。③离子的迁移很难达到稳定状态。④不适用于导电材料。

以上渗透模型的缺陷是均假定渗透系数为常数;忽略了水分传输对化合物传输的影响;特别是测量周期较长时渗透系数作为时间的函数出现,测量浓度过程中不能得到渗透系数随时间变化的对应值。因此,用该渗透系数不能准确地评价高性能混凝土的耐久性。然而,这些模型对于实际应用还是很有用的,因为可以计算得到渗透系数的相对值,可以用来比较不同混凝土和不同环境中混凝土的渗透性。

目前首要解决的问题是:根据某一地区、某种实际应用情况,结合多种因素的耦合作用,分别开展自然环境下混凝土的长期氯离子渗透试验和试验室内加速氯离子渗透试验[15 ] 。研究各种环境参数作用和加强因素的综合效应,将获得的试验数据进行科学分析,建立氯离子自然渗透与加速渗透的分析模型,从而实现准确预测混凝土结构的使用寿命。

3 结束语

渗透性决定混凝土材料的耐久性,抗氯离子渗透是评价高性能混凝土耐久性的一种有效的方法和指标。但必须在多种影响因素耦合作用情况下,对混凝土抵抗氯离子渗透作用的机理及影响程度作大量、长期和系统的科学研究。最终为“抗氯离子渗透性作为评价高性能混凝土耐久性的综合指标”这一耐久性设计理念奠定基础。

[参考文献]

[ 1 ]罗福午. 建筑结构缺陷事故的分析及防止[M] . 北京:清华大学出版社,1996. 1 - 5. [ 2 ]洪定海. 混凝土中钢筋的腐蚀与保护[M] . 北京:中国铁道出版社,1998. 1 - 3.

[ 3 ]周履. 桥梁耐久性发展的历史与现状[J ] . 桥梁建设,2000 ,4 :58 -61.

[ 4 ] Nobuaki Otsuki ,Shin2ichi Miyazato ,Nathaniel B. Diola and hirotaka Suzuki. Influences of Bending Crack and Water2Cement Ratio on Chloride Induced Corrosion of Main Reinforcing Bars and Stirrups[J ] .ACI Materials Journal. v. 97 ,No. 6 ,J uly2Aug. 200 ,454 - 464.

[ 5 ] Corina2Maria Aldea ,Surendra P. Shah ,Member ,ASCE ,and Alan Karr ,EFFECT OF CRACKING ON WA TER AND CHLORIDE

PERMEABIL ITY OF CONCRETE. Journal of Materials in Civil Engineering ,1999 ,11 (3) :181 - 187.

[ 6 ] Kejin Wang ,Daniel C. Jansen ,Surendra P. Shal. Permeability study of cracked concrete. Cement and Concrete Research ,1996 ,27 :381 –393.

[ 7 ] ASTM C1202 - 94 Standard Test Method for Electrical Indication of Concrete Ability to Resist Chloride Ion Penetration ,1994.

[ 8 ]刘斯凤. 氯离子扩散测试方法演变和理论研究背景[J ] . 混凝土,2002 ,(10) :21 - 24. [ 9 ] Luping Tang. Concentration dependence of diffusion and migration of chloride ions :Part 1. Theoretical considerations. Cement and Concrete Research ,1999 ,29 :1463 - 1468.

[10 ]Luping Tang. Concentration dependence of diffusion and migration of chloride ions :Part 2. Experimental evaluations. Cement and Concrete Research ,1999 ,29 :1469 - 1474.

[11 ] K. Stanisha ,R. D. Hooton ,M. D. A. Thomas. A novel method for describing chloride ion transport due to an electrical gradient in concrete :Part 1. Theoretical description ,Cement and Concrete Research ,2004 ,34 :43 - 59.

[12 ] K. Stanisha ,R. D. Hooton ,M. D. A. Thomas. A novel method for describing chloride ion transport due to an electrical gradient in concrete :Part 2. Experimental study ,Cement and Concrete Research ,2004 ,34 :51 - 57.

[13 ] P. E. Streicher ,M. G. Alexander. A chloride conduction test for concrete. Cement and Concrete Research ,1995 ,25 :1284 - 1294.

[14 ]李翠玲,路新瀛,张海霞. 确定氯离子在水泥基材料中扩散系数的快速试验方法[J ] . 工业建筑,1998 ,(6) :41 - 43.

[ 15 ]李云峰,吴胜兴. 混凝土加速耐久性研究主要内容与试验设计[J ] .新型建筑材料,2005 ,(3) :10 - 12.

[作者简介] 巴恒静,1938 年生,男,教授、博导。从事混凝土耐久性研究工作。

[单位地址] 哈尔滨工业大学土木楼1430 信箱(150006)

[联系电话] 0451 - 86281118 ;E-mail:zwm515@163. com

水中氯离子含量的测试方法

测定水中氯离子含量的测试方法 1.适用范围* 1.1如下三个测试方法包括了水、污水(仅测试方法C)及盐水中氯离子含量的测定: 部分 测试方法A(汞量滴定法)7~10 测试方法B(硝酸银滴定法)15~21 测试方法C(离子选择电极法)22~29 1.2测试方法A、B和C在应用(practice)D2777-77下有效,仅仅测试方法B在应用D2777-86下也同样有效,详细的信息参照14、21和29部分。 1.3本标准并不意味着罗列了所有的,如果存在,与本标准的使用有关的安全注意事项。本标准的使用者的责任,是采用适当的安全和健康措施并且在使用前确定规章制度上的那些限制措施的适用性。明确的危害声明见26.1.1。 1.4以前的比色法不再继续使用。参照附录X1查看历史信息。 2.参考文献 2.1ASTM标准 D1066蒸汽的取样方法2 D1129与水相关的术语2 D1193试剂水的规范2 D2777D-19水委员会应用方法的精确性及偏差的测定2 D3370管道内取水样的方法2 D4127离子选择电极用术语2 3.专用术语 3.1定义——这些测试方法中使用的术语的定义参照D1129和D4127中的术语。 4.用途及重要性 4.1氯离子是,因此应该被精确的测定。它对高压锅炉系统和不锈钢具有高度危害,所以为防止危害产生监测是必要的。氯分析作为一个工具被广泛的用于评估循环浓度,如在冷却塔的应用。在食品加工工业中使用的处理水和酸洗溶液也需要使用可靠的方法分析氯含量。 5.试剂纯度 5.1在所有的试验中将使用试剂级化学物质。除非另有说明,所有试剂应符合美国化学品协会分析试剂委员会的规范要求。如果能断定其他等级的试剂具有足够高的纯度,使用它不会减少试验的精度,则这种等级的试剂也可以使用。 5.2水的纯度——除非另有说明,关于水的标准应理解为指的是如Specification D1193中由第二类所定义的试剂水。 6.取样 6.1根据标准D1066和标准D3370取样。

抗氯离子渗透性

评价高性能混凝土耐久性综合指标-抗氯离子渗透性及其研究现状 摘要:结合国内外高性能混凝土耐久性研究的现状,在近年来基于氯离子渗透的高性能混凝土耐久性预测模型,分析了将抗氯离子渗透性作为评价高性能混凝土耐久性的综合指标的可行性和必要性,对于制定高性能混凝土的耐久性设计规范具有参考意义。 关键词:高性能混凝土;耐久性;氯离子抗渗;综合指标 Aggregative indicator evaluating the durabil ity of HPC:Chloride ion resistance and present status BA Heng jing ,ZHA N G Wu man ,DEN G Hong wei (Civil Engineering Institute ,Harbin University of Technology ,Harbin 150006 ,China) Abstract :Based on the prediction models and the domestic and foreign present status of the durability of HPC, the chloride ion resistance was used as an aggregative indicator to evaluate the durability of HPC. The importance and the feasibility were analyzed, which had significant reference for constituting standard of the durability of HPC. Key words :HPC;durability ;chloride ion resistance ;aggregative indicator 1 引言 近年来,国内外土木工程界对高性能混凝土耐久性问题十分关注,作了大量的试验研究,工程技术人员对混凝土耐久性的认识程度也不断加深。我国新出台的混凝土结构设计规范中很多章节已经提出了具体的耐久性规定。同时,我国第一部《混凝土结构耐久性设计及施工指南》也在2003年底正式颁布实施,该指南为设计和施工人员提供了环境作用下混凝土结构耐久性设计与施工的基本要求。大量科研成果的取得和国家规范的实施将实现混凝土结构全功能设计的目标向前推进了坚实的一步。 然而,目前对于高性能混凝土耐久性的评定没有统一的指标和方法,对其抗冻性、抗化学侵蚀性、抗钢筋锈蚀性、抗碳化性、抗碱—集料反应性、抗磨耗性、抗火性等等的试验和评价,基本上仍沿用对普通混凝土的试验和检测方法。但是,由于低水灰比、以及高效减水剂和矿物掺合料的掺入,高性能混凝土的性能与普通混凝土的性能相比产生了较大的差异,因此,普通混凝土的一些试验和检测方法已不适用于高性能混凝土,更无法将耐久性指标融入到混凝土结构设计理论中。 我国规范一贯按承载力极限状态来设计结构构件,再按正常使用极限状态来校核构件的设计思想,这样就决定了高性能混凝土耐久性设计应在肯定原有结构设计理论的基础上补充耐久性方面的要求,使得所选用的混凝土材料在满足结构承载能力的同时也可以达到足够的耐久性,在工程选材的环节把好“耐久性”关,实现从源头上解决结构的耐久性问题。 因此,目前亟待解决问题是:创建一个高性能混凝土耐久性的综合评价指标,该指标能够将各种环境因素影响效应集于一身。将其作为指导高性能混凝土结构耐久性设计的统一标准,便可以消除混凝土耐久性参数众多,各参数之间相关性难于把握的客观制约,为实现完全规范化的混凝土结构耐久性设计奠定坚实的基础。 国内外学者[1~4 ]经过大量调查和研究表明:绝大多数高性能混凝土结构的破坏是由于氯离子侵入到混凝土钢筋表面,并达到一定临界浓度时引起的钢筋锈蚀所致;钢筋锈蚀使其

电位滴定法测定水中氯离子的含量

电位滴定法测定水中氯离子的含量 1 / 1 电位滴定法测定水中氯离子的含量 一 实验目的:学习电位滴定法的基本原理和操作技术 掌握了解氯离子的测定过程和现象 二 实验原理 利用滴定分析中化学计量点附近的突跃,以一对适当的电极对监测滴定过程中的电位变化,从而确定滴定终点,并由此求得待测组分的含量的方法称为电位滴定法。本实验根据Nerst 方程E = E θ- RT/nF lgC Cl- ,滴定过程中, Cl - + Ag + = AgCl ↓,使得氯离子浓度降低,电位发生改变,接近化学计量点时,氯离子浓度发生突变,电位相应发生突变,而后继续加入滴定剂,溶液电位变化幅度减缓。以突变时滴定剂的消耗体积(mL )来确定滴定终点(AgNO 3标准溶液的体积)。 三 仪器和试剂 酸度计(mv 计),磁力搅拌器,转子。KNO 3甘汞参比电极,银电极,滴定管,烧杯(电解池),0.05mol·L -1NaCl ,0.05mol·L -1AgNO 3,KNO 3固体 四 实验内容和步骤 1 0.05mol·L -1AgNO 3标准溶液的标定 准确移取0.05mol.L -1NaCl 标准溶液10.00mL 于烧杯中,加蒸馏水20mL ,KNO 3固体2g ,搅拌均匀。 开启酸度计,开关调在mv 位置,加入滴定剂,记录溶液电位随滴定剂的体积变化情况。随着AgNO 3标准溶液的滴入,电位读数将不断变化,读数间隔可先大些(1-2mL ),至一定量后,电位读数变化较大,则预示临近终点,此时应逐滴加入AgNO 3标准溶液(0.5-0.2mL ),并记录电位变化,直至继续加入AgNO 3标准溶液后电位变化不再明显为止。做E(mv)-V(mL)曲线,求得终点时所消耗AgNO 3标准溶液的确切体积。 2水中氯离子含量的测定 准确移取水样10.00mL 于烧杯中,加蒸馏水20mL ,KNO 3固体2g ,搅拌均匀。加入滴定剂,记录溶液电位随滴定剂的体积变化情况。同标定的步骤,做E(mv)-V(mL)曲线,求出与水样中氯离子反应至终点所消耗的AgNO 3标准溶液的确切体积。 五数据处理 根据实验数据做E(mv)-V(mL)曲线,从两个图中获得终点所消耗的AgNO 3标准溶液体积,从而根据物质反应平衡公式C Cl-V Cl-=V Ag+C Ag+计算求出水中氯离子的含量(mol·L -1)。 实验过程中的注意事项:1参比电极所装电解液应为饱和KNO 3溶液。 2甘汞电极比银电极略低些,有利于提高灵敏度。 3读数应在相对稳定后再读数,若数据一直变化,可考虑读数时降低转子的转数。 问题:实验中KNO 3的作用? 终点滴定剂体积的确定方法有哪几种?

水灰比对混凝土强度及氯离子渗透性的影响

王立峰等:水灰比对混凝土强度及氯离子渗透性的影响 水灰比对混凝土强度及氯离子渗透性的影响 王立峰1 , 李家和2 , 朱广祥3 , 朱卫中 3 (1.中铁建设集团有限公司, 哈尔滨 150001; 2.哈尔滨工业大学土木工程学院, 哈尔滨 150001; 3.黑龙江省寒地建筑科学研究院, 哈尔滨 150080) 摘 要 主要研究了水灰比对混凝土强度和氯离子电通量的影响。试验结果表明:水灰比增大混凝土的强度明显降低,氯离子电通量增大;水灰比从0.33增加到0.37和0.41时,混凝土28d 氯离子电通量的增加幅度接近或超过了50%。 关键词 混凝土;水灰比;氯离子渗透;抗压强度 中图分类号 TU 528 0 文献标识码 B 文章编号 1001-6864(2011)05-0007-02 INFLUENCE OF W ATER CEMENT RATIO ON STRENGTH AND C HLOR IDE ION PERMEABILI TY OF CONCRETE WANG L i feng 1 , LI Jia he 2 , ZHU Guang x iang 3 , Z HU W e i zhong 3 (1.Ch i n a Ra il w ay C onstr uction G r oup Co .,L t d ,H arb i n 150001,China ; 2.School of C i v ilEng ineeri n g ,H I T ,H arbin 150001,Chi n a ; 3.H eilong jiang Prov i n ce A cade m y of Co ld A rea Bu ilding Research,H arb i n 150080,China) Abst ract :Infl u ence of w ater ce m ent ratio on strength and ch l o ri d e i o n per m eability o f concrete is stud ied in th is paper .The resu lts show that strength decreased si g nificantl y ,electric fl u x i n creased when w ater ce m ent rati o i n creased .W hen w ater ce m en t ratio i n creased fro m 0.33to 0.37and 0.41,28d e lectric fl u x of concrete increased close to 50%. K ey w ords :concrete ,;w ater ce m en t ratio ;ch lori d e per m eab ility ;co m pressi v e strength [基金项目] 973 计划项目 水泥低能耗制备与高效应用的基础研究 第六课题 水泥基材料的产物与结构稳定性及服役行为 (2009CB623106);中铁建设集团项目 新建哈尔滨西客站工程严寒气候条件下结构混凝土冬期施工技术研究 随着混凝土技术的进步,影响混凝土的可变因素越来越多,这些因素影响着混凝土的两个最重要的性能参数,即渗透性和强度。混凝土的渗透性是其耐久性的最重要方面,实际工程中的混凝土往往是受环境中的水、气体以及侵蚀性介质的侵入而劣化。产生上述劣化作用需要内、外两个因素[2],内部因素是指混凝土的成分和结构,外部因素是指环境中侵蚀性介质和水等。为此有必要从内部因素入手提高混凝土的耐久性能[3]。由于渗透性是混凝土最根本的性质之一,并且与耐久性直接相关,所以成为混凝土试验和研究中的一项重要内容[4]。本文通过试验测试了不同水灰比的混凝土强度和氯离子电通量,目的在于为配制更加抗渗的混凝土提供基础数据。1 试验 (1) 原材料:水泥:P O 42 5水泥;粗集料:表面粗糙、级配良好的碎石,粒径为5~25mm,压碎指标为3%,含泥量为0 2%;砂:山砂,细度模数为2 8,满足 区级配的要求,含泥量为0 9%;减水剂:菏泽联强建筑材料有限公司生产的聚羧酸高效减水剂;水:哈尔滨自来水。 (2) 混凝土配合比设计。本试验中混凝土的砂率为40%,固定砂石用量,改变拌合用水,通过调整高效减水剂的用量使混凝土坍落度控制在200 20mm,如表1所示。 表1 混凝土配合比设计 kg m -3 编号水灰比水泥砂碎石水G -0 330 335107*********G -0 370 375107*********G -0 41 0 41 510 714 1028 209 (3) 试验方法:试验采用A STM C1202法测试混凝土氯离子电通量。将每组新拌混凝土制成3个尺寸为 100mm 50mm 的试块,标准养护至28d 后进行真空饱水,饱水结束后进行测试。测试时在试件轴向施加60V 的直流电压,试件两端的正负试验槽内分别注满摩尔浓度为0 3mo l/L 的N a OH 溶液和质量浓度为3.0%的N aC l 溶液,记录6h 内通过试件的总电量即为试件的电通量。 抗压强度采用100mm 100mm 100mm 的立方体试7

继续教育——抗氯离子渗透试验电通量法

第1题 测试混凝土氯离子电通量的仪器设备直流稳压电源的电压范围应为()V。 A.0~60V B.0~30V C.0~80V D.0~70V 答案:C 您的答案:c 题目分数:5 此题得分:5 批注: 第2题 温度计的量程应在()℃精度为±0.1℃ A.0~50 B.0~100 C.0~120 D.0~300 答案:C 您的答案:B 题目分数:5 此题得分:5 批注: 第3题 电通量耐热塑料或耐热有机玻璃试验槽的边长应为()mm,总厚度不应小于()mm。 A.155mm,50mm B.150mm,50mm C.150mm,51mm D.150mm,55mm 答案:C 您的答案:C 题目分数:5 此题得分:5 批注: 第4题 电通量试验用溶液NaCl应为()%的质量浓度。 A.2

B.3 C.4 D.5 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第5题 电通量试验用溶液NaOH应为()mol/L的摩尔浓度。 A.0.3 B.0.4 C.0.5 D.0.6 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第6题 电通量抽真空设备的烧杯体积应为()mL以上。 A.500 B.800 C.1000 D.1100 答案:C 您的答案:C 题目分数:5 此题得分:5.0 批注: 第7题 电通量试件应为直径()mm,高度()mm。 A.100±5mm,50±5mm B.100±1mm,50±2mm C.90±5mm,51±5mm D.90±1mm,50±1mm 答案:B 您的答案:B

题目分数:5 此题得分:5.0 批注: 第8题 电通量试验宜在试件养护到()期进行。 A.56d B.60d C.28d D.30d 答案:C 您的答案:C 题目分数:5 此题得分:5.0 批注: 第9题 对于掺有大掺量矿物掺合料的混凝土可在()龄期进行。 A.56d B.60d C.28d D.30d 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第10题 试件浸泡1h后恢复常压应继续浸泡()h。 A.20?2 B.22?2 C.18?2 D.19?2 答案:C 您的答案:C 题目分数:5 此题得分:5.0 批注: 第11题

《混凝土结构耐久性设计规程》中抗氯离子渗透性检测方法的试验研究

《混凝土结构耐久性设计规程》中抗氯离子渗透性检 测方法的试验研究 来源:《混凝土》2007年第2期( 总第208期)中国混凝土与水泥制品网[2007-4-12] 摘要: 针对山东省《混凝土结构耐久性设计规程》中混凝土抗氯离子渗透性检测方法进行了试验研究。试验结果表明《, 规程》中的交流电法和RCM法可以便捷准确的评定混凝土中氯离子的渗透性, 有广阔的应用前景。但不同的试块制备方法对氯离子渗透性电测法的试验结果影响很大, 考虑到工程上混凝土的实际情况, 建议《规程》中的混凝土抗氯离子渗透性试验评定方法应对试块的制备方法应提出更明确的要求。 关键词: 混凝土; 氯离子; 渗透性; 交流电法; RCM法 中图分类号: TU528.01 文献标志码: A 文章编号: 1002- 3550-( 2007) 02- 0005- 03 0 前言 根据山东省地理、环境特点并结合山东地区混凝土结构耐久性现状及实践经验编写的DBJ14-S6-2005《混凝土结构耐久性设计规程》( 以下简称《规程》) , 已于2005 年12 月1 日在山东省内颁布实施, 填补了之前国内尚无结构耐久性设计规范的一项空白。《规程》规定了混凝土结构耐久性设计的原则、内容、结构构造和材料选用基本要求, 提出了施工、检测与维护的基本要求及防腐蚀附加措施及试验方法。 由于山东省大规模工程建设比较集中, 并且地处沿海, 有长达3 000 多公里的海岸线, 有盐土地区分布, 而且作为北方地区, 山东省每年冬季仍大量使用氯盐类“ 融雪剂”( 如氯化钠、氯化钙、氯化镁等) , 因此存在着广泛的氯盐侵蚀环境《, 规程》就此提出了三种混凝土抗氯离子渗透性试验评定方法, 包括美国ASTM C1202 混凝土抗氯离子渗透性标准试验方法直流电量法) , 用交流电测量混凝土氯离子渗透性方法和氯离子扩散系数快速测定的RCM 法。ASTM C1202 在国际上应用普遍, 但试验时间较长, 施加电压较高易对试块产生影响[1]; 交流电法最早由Monfore[2]提出并曾被Hansen[3]和Feldman[4]采用, 赵铁军[5]对其进行了完善并形成了一套比较成熟的试验方法; 而RCM 法则是目前被欧洲国家广泛采用的一种方法。 上述三种方法都可以快速评价氯离子在混凝土内的传输性质, 但其机理和具体试验过程有较大差异。由于之前围绕ASTM C1202 法的试验研究已有很多[6~8], 本文就交流电法和RCM 法重点进行了试验研究, 并结合试验结果对《规程》中的氯离子试验方法提出了一些意见和建议。 1 原材料及配合比

混凝土抗氯离子渗透性标准试验方法

混凝土抗氯离子渗透性标准试验方法 B.1适用范围 B.1.1本试验方法以电量指标来快速测定混凝土的抗氯离子渗透性。适用于检验混凝土原材料和配合比对混凝土抗氯离子渗透性的影响。 B.1.2本试验方法适用于直径为95±2mm,厚度为51±3mm的素混凝土试件或芯样。B.1.3本试验方法不适用于掺亚硝酸钙的混凝土。掺其它外加剂或表面处理过的混凝土,当有疑问时,应进行氯化物溶液的长期浸渍试验。 B.2试验基本原理 B.2.1在直流电压作用下。氯离子能通过混凝土试件向正极方向移动,以测量流过的混凝土的电荷量反映渗透混凝土的氯离子量。 B.3试验设备及材料 B.3.1试验装置如图B.3.1 B.3.2仪器设备应满足下列要求: (1)直流稳压电源,可输出60V直流电压,精度±0.1V; (2)塑料或有机玻璃试验槽,其结构尺寸如图B.3.2所示; (3)铜网为20目; (4)数字式电流表,量程20A,精度±1.0%; (5)真空泵,真空度可达133Pa以下; (6)真空干燥器,内径≥250mm; B.3.3试验应采用下列材料: (1)分析纯试剂配制的3.0%氯化钠溶液; (2)用纯试剂配制的0.3mol氢氧化钠溶液; (3)硅橡胶或树脂密封材料。 B.4试验步骤 B.4.1制作直径为95mm,厚度为51mm的混凝土试件,在标准条件下养护28d或90d,试验时以三块试件为一组。 B.4.2将试件暴露于空气中至表面干燥,以硅橡胶或树脂密封材料施涂于试件侧面,必要时填补涂层中的孔洞以保证试件侧面完全密封。 B.4.3测试前应进行真空饱水。将试件放入1000ml烧杯中,然后一起放入真空干燥器中,启动真空泵,数分钟内真空度达13Pa以下,保持真空3h后,维持这一真空度注入足够的蒸馏水,直至淹没试件,试件浸泡1h后恢复常压,再继续浸泡18±2h。 B.4.4从水中取出试件,抹掉多余水份,将试件安装于试验槽内,用橡胶密封环或其它密封胶密封,并用螺杆将两试验槽和试件夹紧,以确保不会渗漏,然后将试验装置放在20~23℃流动冷水槽中,其水面宜低于装置顶面5mm,试验应在20~25℃恒温室内进行。B.4.5将浓度为3.0%的NaCl溶液和0.3mol的NaOH溶液分别注入试件两侧的试验槽中,注入NaCl溶液的试验槽内的铜网连接电源负极,注入NaOH溶液的试验槽的铜网连接电源正极。 B.4.6接通电源,对上述两铜网施加60V直流恒电压,并记录电流初始读数I0,通电并保持试验槽中充满溶液。开始时每隔5min记录一次电流值,当电流值变化不大时,每隔10min 记录一次电流值,当电流变化很小时,每隔30min记录一次电流值,直至通电6h。 B.5试验结果计算 B.5.1绘制电流于时间的关系图。将各点数据以光滑曲线连接起来,对曲线作面积积分,或按梯形法进行面积积分,即可得试验6h通过得电量。当试件直径不等于95mm时,则所得

水中氯离子含量测定[1]

标准号:D 512-89 测定水中氯离子含量的测试方法1 1.适用范围* 1.1如下三个测试方法包括了水、污水(仅测试方法C )及盐水中氯离子含量的测定: 部分 测试方法A(汞量滴定法)7~10 测试方法B(硝酸银滴定法)15~21 测试方法C(离子选择电极法)22~29 1.2测试方法A、B和C在应用(practice)D2777-77下有效,仅仅测试方法B在应用D2777-86 下也同样有效,详细的信息参照14、21和29部分。 1.3本标准并不意味着罗列了所有的,如果存在,与本标准的使用有关的安全注意事项。本 标准的使用者的责任,是采用适当的安全和健康措施并且在使用前确定规章制度上的那些限制措施的适用性。明确的危害声明见26.1.1。 1.4以前的比色法不再继续使用。参照附录X1查看历史信息。 2.参考文献 2.1 ASTM标准 D 1066 蒸汽的取样方法2 D 1129 与水相关的术语2 D 1193 试剂水的规范2 D 2777 D-19水委员会应用方法的精确性及偏差的测定2 D 3370 管道内取水样的方法2 D 4127离子选择电极用术语2 3.专用术语 3.1 定义——这些测试方法中使用的术语的定义参照D 1129和D4127中的术语。 4.用途及重要性 4.1 氯离子是,因此应该被精确的测定。它对高压锅炉系统和不锈钢具有高度危害,所以为 防止危害产生监测是必要的。氯分析作为一个工具被广泛的用于评估循环浓度,如在冷却塔的应用。在食品加工工业中使用的处理水和酸洗溶液也需要使用可靠的方法分析氯含量。 5.试剂纯度 5.1在所有的试验中将使用试剂级化学物质。除非另有说明,所有试剂应符合美国化学品协 会分析试剂委员会的规范要求。如果能断定其他等级的试剂具有足够高的纯度,使用它不会减少试验的精度,则这种等级的试剂也可以使用。 5.2 水的纯度——除非另有说明,关于水的标准应理解为指的是如Specification D1193中 由第二类所定义的试剂水。

混凝土抗氯离子渗透性试验方法研究

混凝土抗氯离子渗透性试验方法研究 摘要:引气剂是常用的混凝土外加剂之一,许多文献表明掺加引气剂不仅能够改善混凝土的工作性,而且还能够提高混凝土的耐久性,增加混凝土的使用寿命,特别是在易侵蚀、冻融的环境中。本文对掺加引气剂混凝土的氯离子抗渗性指标和混凝土抗冻性指标进行了试验研究,研究结果表明:掺加引气剂可有效提高混凝土的耐久性。 关键词:引气剂;耐久性;渗透性;抗冻性 前言 混凝土引气剂是最古老的外加剂之一,早在二十世纪四十年代就已应用于混凝土抗冻工程中。引气剂在国外已较为普遍的应用于混凝土中,尤其是日本,大部分的混凝土应用引气剂。目前,在我国的混凝土工程中,引气剂的使用并不普遍,只有水工和港工混凝土明确要求在混凝土中掺加引气剂,还有是对抗冻性有要求的北方,在混凝土中也要求使用引气剂来提高抗冻性。在混凝土中加入引气剂不仅有利于增加混凝土的抗冻性,对提高混凝土的抗渗性也是非常有好处的。 本文利用ASTM C1202标准试验方法对掺引气剂的混凝土的抗氯离子渗透性进行了研究,同时利用快冻法试验方法对引气剂改善混凝土抗冻性进行了研究。并对引气剂改善混凝土抗氯离子渗透性能和抗冻性的机理进行了探讨。 1 试验原材料 水泥:浙江三狮水泥股份有限公司生产的三狮牌P.O42.5普通硅酸盐水泥。 粉煤灰:宁波某发电厂生产的Ⅰ级粉煤灰。 细骨料:河砂,细度模数MX = 2.83,属中砂,级配Ⅱ区。 粗骨料: 5~25mm的碎石。 减水剂:浙江五龙化工股份有限公司生产的高效减水剂。

引气剂:上海枫杨实业有限公司生产的SJ - 2水溶性混凝土引气剂。 2 试验方法 2. 1 混凝土的抗氯离子渗透性能 氯离子渗透性能试验按ASTM C1202 - 97 进行,试验龄期为28d。 ASTM C1202 - 97 是美国试验与材料协会ASTM选定的标准试验方法,试验的具体方法:50mm厚, 100mm直径的水饱和混凝土试件,两端水槽所用溶液分别为3. 0%NaCl和0. 3N NaOH,在60V的外加电场下,持续通电6小时后测定通过混凝土试件的总电量,用通过混凝土的电量高低来判断混凝土的抗氯离子渗透能力。 按照混凝土6小时通过的总导电量,根据导电量大小,把混凝土对氯离子渗透性分成不同等级。根据混凝土的导电量,可以判断氯离子渗透性的高低。如表1: 2. 2 混凝土的抗冻性能 抗冻性试验采用北京燕科新技术总公司生产的DTR 一1 型混凝土快速冻融实验设备,按照GBJ82一85《普通混凝土长期性能和耐久性能试验》的“快冻法”进行。混凝土抗冻性试验冻融循环若超过200次,则停止试验,以动弹模量的损失来衡量混凝土抗冻性能的好坏。 3 混凝土配合比 混凝土选用了0.3、0.4和0.5三个不同的水胶比,以不掺引气剂的混凝土为基准配合比,掺入引气剂的混凝土为对比混凝土,研究混凝土的抗氯离子渗透性能和抗冻性能,各混凝土的配合比如表2。

ASTM水中氯离子含量测定标准方法D

Designation: D 512-04 Standard Test Methods for Chloride Ion In Water 水中氯离子含量测定标准方法 1.范围 该测试方法适用普通水、废水(仅测试方法C)和盐水中氯离子的确定。包括以下三种测试方法: 测试方法A, B,和C在操作方法D 2777-77下有效,仅测试方法B还需满足操作规程D 2777-86。更多信息参考14,21和29节。 该标准试验方法没有包含所有的安全问题,即便要,也应联系实际需要。在试验前确定合适的安全、健康守则和决定其规章制度适用的局限性是试验者的责任。对于特需危险说明,见。 先前的比色试验方法已经终止。参考附录X1获取历史信息。 2. 参考文件

3. 术语 定义-用于这些试验方法的术语定义,参考术语D 1129和D 4127。 4. 意义和作用 水中氯离子处在管理中,因此必须精确地测量。氯离子对于高压锅炉系统和不锈钢是非常有害的,因此为防止破坏,监测是很重要的。氯离子分析作为一种工具广泛用于估计集中循环,例如应用在冷却塔中。处理水和食品加工工业中的分选液同样需要可靠的氯离子分析方法。 5. 试剂的纯度 试剂的化学等级在所有试验中适用。除非有其它说明,所有试剂应遵从美国化学界分析性试剂的规范委员会要求,有关规范都可从委员会取得。可能使用其它等级,倘若首先确定试剂纯度高得足以允许使用而不用降低确定的精度。 水的纯度-除非另有说明,参照水应理解为符合规范D 1193的Ⅰ型试剂水。其它类型的试剂水可能使用,倘若首先能确定水纯度高得足以允许使用而不影响试验方法的精度和偏差。Ⅱ型水在该试验方法中的循环测试时使用。 6. 取样 按照操作规程D 1066和D 3370的要求采集试样。 TEST METHOD A-MERCURIMETRIC TITRATION 测试方法A-汞液滴定法 7. 范围 该测试方法能用于确定水中离子,假设干扰可忽略(见小节9)。 尽管在研究报告中没有明确说明,精度表述是假设使用Ⅱ试剂水。在未经试验的地方确定该测试方法的有效性是分析者的责任。 该测试方法对于氯离子浓度在L的范围有效。

海边暴露环境下混凝土抗氯离子渗透性试验研究

文章编号:1007-046X(2013)06-0036-04 生态建材 海边暴露环境下混凝土抗氯离子渗透性试验研究Experimental Study of Resistance of Concrete to Chloride Ion Permeability under Sea Environment 马志鸣1,赵铁军2,王鹏刚2 (1. 青岛市市政工程设计研究院有限责任公司,山东 青岛 266100; 2. 青岛理工大学,山东 青岛 266033) 摘 要: 对不同配合比的混凝土试件,在海边大气区、潮汐区、水下区进行暴露试验,同时测定氯离子含量随深度 变化曲线。试验结果表明,实际海边暴露环境下混凝土的损伤程度大小为潮汐区>水下区>大气区,试件内 氯离子含量随着暴露龄期的增加而增加,随时间水胶比的增加而减小。对于水胶比相同的混凝土试件,掺 入粉煤灰等矿物掺合料可以有效提高混凝土抵抗氯离子侵入的性能。 关键词: 暴露试验;氯离子;渗透性;耐久性 中图分类号:TU528.2 文献标志码:A 0 前 言 氯离子是造成钢筋混凝土中钢筋锈蚀的主要原因,导致混凝土结构耐久性不足,提前发生破坏,使结构达不到设计使用年限。以往对于氯离子的研究仅仅是在试验室环境下,通过氯离子毛细吸收试验和氯离子自由扩散试验,综合评定混凝土结构的抗氯离子侵入性能[1-2]。然而实际环境中氯离子的作用机理相当复杂,同时与其他因素耦合作用,加速了混凝土结构的耐久性劣化速率,导致混凝土结构的提前破坏,但对于实际海洋环境中有关氯离子的侵蚀作用机理研究较少[3-4]。 本文从实际环境出发,使混凝土试件直接暴露在海洋环境中,研究混凝土结构在海边暴露环境下的氯离子侵入情况。同时,由于海洋不同区域氯离子侵入混凝土内部的作用机理不同,故本试验测定试件在大气区、潮汐区、水下区等不同位置氯离子侵入试验,从不同角度分析环境对试件混凝土结构氯离子侵入的影响。本试验用配合比为青岛海底隧道所用高性能配合比,模拟实际混凝土结构构件 36COAL ASH 6/2013在实际暴露环境中氯离子侵入的作用机理,为今后实际工程中配合比的研发和结构的防护提供充足的理论依据。 1 原材料与配合比 本试验所采用混凝土原材料均来自青岛本地,试验用配合比为“973 项目”子课题,海洋腐蚀环境下氯离子侵蚀试验研究了项目中的青岛海底隧道所用 4 个混凝土配合比,研究不同水胶比及不同矿物掺合料对混凝土试件抵抗氯离子侵入的影响,具体配合比见表 1。 Abstract:Concrete Elements with different proportion were tested under exposure to sea air zone, tidal zone and underwater environment. Meanwhile, the curves of chloride Ion content with deep change were measured. The result showed that the degree of injury of the concrete sample was tidal zone> underwater> air zone under sea exposure environment. The content of chloride increased with prolongation of sea exposure period, and depressed in pace with increase of water/cement ratio. The concrete mixed with mineral admixtures such as fly ash could effectively heighten concrete performance on anti-chloride for the sample under the condition of same water cement ratio. Key words:sea exposure test; chloride; permeability; durability 基金项目:基金项目:973项目(2009CB623203);国家自然科学基金发展项目(50739001)表 1 混凝土配合比 kg/m3 组别水泥矿粉粉煤灰硅灰砂石子水减水剂 A C30 360 720 1 080 190 2.16 B C30F20SL30 180 108 72 721 1 082 187 2.52 C C50F20SL30 230 138 92 690 1 150 161 4.6 D C80F20SF10 290 116 58 696 1 044 139 14.50

超高性能混凝土UHPC抗氯离子渗透性能试验方法

附录 A(规范性附录) 抗氯离子渗透性能试验方法 B.1 范围 本方法适用于以快速氯离子扩散系数法(或称RCM法)测定氯离子在超高性能混凝土中非稳态迁移的扩散系数来确定超高性能混凝土的抗渗性能。 B.2 试件尺寸和数量 B.2.1试件尺寸:直径为(100±1)mm,高度为(50±2)mm的圆柱体试件。 B.2.2 试件数量:每组试件数量为3块。 B.2.3试件成型时应使用不含钢纤维、碳纤维等导电物质的超高性能混凝土拌合物。 B.3 试验所用仪器设备、溶液和指示剂 试验所用仪器设备、溶液和指示剂应符合GB/T 50082的有关规定,其中RCM装置的电源应能稳定提供(0~90)V的可调直流电。 B.4 试件制作 B.4.1试件制作应符合本标准7.1节的规定,在试验室制作试件时,宜采用Φ100mm×200mm 试模。 B.4.2应在抗氯离子渗透性能试验前7d加工成标准尺寸的试件。应先将试件从正中间切成相同尺寸的两部分(Φ100mm×100mm),然后从两部分中各切取一个高度为(50±2)mm的试件,并应将第一次的切口面作为暴露于氯离子溶液中的测试面。 B.4.3试件加工后应采用水砂纸和细锉刀打磨光滑,加工好的试件应继续浸没于水中养护至试验龄期。 B.5 试验步骤 B.5.1RCM法试验应按下述步骤进行: a)首先应将试件从养护池中取出来,并将试件表面的碎屑刷洗干净,擦干时间表面多余的水分。然后应采用游标卡尺测量试件的直径和高度,测量应精确到0.1mm。应将试件在饱和面干状态下置于真空容器中进行真空处理。应到5min内将真空容器中的气压减少至(1~5)kPa,并应保持该真空度3h,然后在真空泵仍然运转的情况下,将用蒸馏水皮遏制的饱和氢氧化钙溶液注入容器,溶液高度应保证将试件浸没。在试件浸没1h后恢复常压,并应继续浸泡(18±2)h。b)试件安装在RCM试验装置前应采用电吹风冷风档吹干,表面应干净,无油污、灰砂和水珠。c)RCM试验装置的试验槽在试验前应用室温凉开水冲洗干净。 d)试件和RCM试验装置准备好以后,应将试件装入橡胶套内的底部,应在与试件齐高的橡胶套外侧安装两个不锈钢环箍(图B.1),每个箍高度应为20mm,并应拧紧环箍上的,使试件的圆柱侧面处于密封状态。m?N)2±30螺栓至扭矩 (. )mm图B.1 不锈钢环箍(然后应在橡胶套中注人并安装好阳极板。)应将装有试件的橡胶套

混凝土——氯离子扩散系数

混凝土氯离子扩散系数 (1)基本原理 氯离子扩散系数是一个描述混凝土内部氯离子迁移状况的物理量,它与介质两边的浓度梯度、穿透物质总量、穿透距离、穿透面积以及时间等因素有关。氯离子扩散系数的计算公式是:D=(穿透物质总量×穿透距离)/(时间×穿透面积×两边浓度梯度)。 (2)目的与适用范围 本方法适用于以测定氯离子在混凝土试件中非稳态迁移的迁移系数来确定混凝土抗氯离子渗透性能。 (3)仪器与材料 氯离子扩散系数测定仪真空保水机 试剂:阴极溶液采用10%的NaCl溶液,阳极溶液采用0.3mol/L的NaOH 溶液,Ca(OH)2浸泡溶液,显色指示剂硝酸银溶液。 (4)环境设施 RCM试验所处的试验室温度控制在(20-25)℃。 (5)试验准备 1、RCM试验用试件直径Φ=100±1 mm,高度h=50±2 mm 的圆柱体试件。 2、先将养护到规定龄期的试件暴露于空气中至表面干燥,以硅胶或树脂密封材料涂刷试件圆柱表面或侧面,必要时填补涂层中的孔洞以保证试件圆柱面或侧面完全密封。 3、测试前应进行真空饱水。将试件放入真空干燥器中,启动真空泵,使真空干燥器中的负压保持在1~5kPa 之间,并维持这一真空3h 后注入足够的蒸馏水或者去离子水,直至淹没试件,试件浸没1h 后恢复常压,再继续浸泡18±2h。 (6)试验步骤 1. 将混凝土切割成直径为100mm、厚度为50±2 mm的圆柱试样;2.将试样在超声浴中清洗或进行饱水(视所遵循规范而定);

3.将清洗或饱水后的试样安装在试样夹具上,注入测试溶液,连接测试主机; 4.打开NJ-RCM 氯离子扩散系数测定仪主机进行电迁移实验; 5.将电迁移后的试样沿轴向劈开,在劈开的表面上喷涂硝酸银溶液,确定扩散深度; 6.将所需数据输入主机,主机自动计算该通道的扩散系数 (7)计算 混凝土非稳定态氯离子迁移系数计算公式如下: )2 )2730238.0-d t )2()273(0239.0d -+-+?=U LX T X U L T D RCM (( 式中: D RCM ——混凝土氯离子迁移系数,精确至0.1×10-2m 2/s ; U ——所用电压绝对值(V ); T ——阳极溶液的初始温度和结束温度的平均值(℃); Xd ——氯离子渗透深度的平均值(mm ),精确至0.1mm ; t ——试验持续时间(h ) (8)精度与允许差 取同组三个试件通过氯离子迁移系数的平均值作为该组试件的电通量值。如果某一个测值与中值的差值超过中值的 15%,则取其余两个测值的平均值作为该组的试验结果。如有两个测值与中值的差值都超过中值的 15%,则取中值作为该组的试验结果。 (9)铁路和公路标准的不同之处 公路未涉及混凝土氯离子迁移系数试验。

自来水中氯离子含量的测定

自来水中氯离子含量的测定 【摘要】:莫尔法测定氯离子的范围为5~100mg/ml.水中的氯离子的含量也是微量的,因此,用莫尔法准确测定自来水中的氯离子含量必须严格控制溶液的酸碱度和指示剂的用量。 【关键词】:自来水氯离子莫尔法指示剂酸碱度 【引言】:自来水处理过程中,一般采用氯气杀灭水中的微生物和细菌,以提高饮用水的安全性。但是氯对细菌细胞杀灭效果好,同样,对其他生物体细胞、人体细胞也有严重影响。添加氯,作为一种有效的杀菌消毒手段,目前仍被世界上超过80%的水厂使用着。所以,市政自来水中必须保持一定量的余氯,以确保饮用水的微生物指标安全。但是,当氯和有机酸反应,就会产生许多致癌的副产物,比如三氯甲烷等。超过一定量的氯,就会对人体产生许多危害,且带有难闻的气味,俗称“漂白粉味”。所以自来水氯离子的测定对人体健康有重要意义,必须检测自来水中氯离子的含量以及余氯的含量 【试剂与仪器】:硝酸银标准溶液mol/L);铬酸钾溶液(50g/L);自来水样;蒸馏水。 移液管:100mL;250mL锥形瓶(3个);酸式滴定管; 【实验原理】: 莫尔法是在中性或弱碱性(pH=~10)溶液中,以K2CrO4作指示剂,用AgNO3标准溶液直接滴定Clˉ。由于AgCl的溶解度比AgCrO4小,根据分步沉淀原理,溶液中首先析出AgCl白色沉淀。 当AgC1定量析出后,微过量的Ag+,即与CrO42-生成砖红色的

Ag2CrO4沉淀,它与AgCl沉淀一起,使溶液略带橙红色即为终点。反应如下: Ag+ + Cl- == AgCl↓(白色) Ksp = ×10-10,s= (Ksp)1/2=×10-5 2Ag++CrO42-==Ag2CrO4↓(砖红色) Ksp = ×10-12 , s= (1/4Ksp)1/3=×1 【实验过程】: 标准溶液的配制 (1)配制100 mL浓度约为mol·mL -1AgNO3溶液 用台秤粗略称取0.085g硝酸银溶解于100 mL蒸馏水中,摇匀后储存于带玻璃塞的棕色试剂瓶中,待标定。 (2)标定 准确称取~0.08g NaCl基准试剂于小烧杯中,用蒸馏水溶解后定量转移至250mL容量瓶中,稀释至刻度,摇匀。移取该溶液置于锥形瓶中,加入1滴K2CrO4(%)指示剂,在充分摇动下。用AgNO3溶液滴定至呈现砖红色即为终点。平行测定三份。计算AgNO3溶液的平均浓度。 2、自来水中氯离子的测定 (1)用移液管准确移取mL自来水水样置于干净的锥形瓶中,另取一锥形瓶用蒸馏水做空白试验。 (2)如果水样的pH在~时,可直接滴定。 (3)用移液管精确加入50g/L的K2CrO4溶液mL,在不断摇动下,用AgNO3标准溶液滴定至溶液呈橙红色即为终点,记录消耗AgNO3,标准溶液的体积,计算氯离子含量。平行测定3次。 计算公式: pa=C (V2-V1)××l 000/V 式中:V2——自来水水样消耗AgNO3标准溶液的体积,mL; V1——蒸馏水水样消耗AgNO3。标准溶液的体积,mL;V——自来水水样的体积,mL;

超高性能混凝土(UHPC)抗氯离子渗透性能试验方法

附录A(规范性附录) 抗氯离子渗透性能试验方法 B.1 范围 本方法适用于以快速氯离子扩散系数法(或称RCM法)测定氯离子在超高性能混凝土中非稳态迁移的扩散系数来确定超高性能混凝土的抗渗性能。 B.2 试件尺寸和数量 B.2.1试件尺寸:直径为(100±1)mm,高度为(50±2)mm的圆柱体试件。 B.2.2 试件数量:每组试件数量为3块。 B.2.3试件成型时应使用不含钢纤维、碳纤维等导电物质的超高性能混凝土拌合物。 B.3 试验所用仪器设备、溶液和指示剂 试验所用仪器设备、溶液和指示剂应符合GB/T 50082的有关规定,其中RCM装置的电源应能稳定提供(0~90)V的可调直流电。 B.4 试件制作 B.4.1试件制作应符合本标准7.1节的规定,在试验室制作试件时,宜采用Φ100mm×200mm试模。 B.4.2应在抗氯离子渗透性能试验前7d加工成标准尺寸的试件。应先将试件从正中间切成相同尺寸的两部分(Φ100mm×100mm),然后从两部分中各切取一个高度为(50±2)mm 的试件,并应将第一次的切口面作为暴露于氯离子溶液中的测试面。 B.4.3试件加工后应采用水砂纸和细锉刀打磨光滑,加工好的试件应继续浸没于水中养护至试验龄期。 B.5 试验步骤 B.5.1RCM法试验应按下述步骤进行: a)首先应将试件从养护池中取出来,并将试件表面的碎屑刷洗干净,擦干时间表面多余的水分。然后应采用游标卡尺测量试件的直径和高度,测量应精确到0.1mm。应将试件在饱和面干状态下置于真空容器中进行真空处理。应到5min内将真空容器中的气压减少至(1~5)kPa,并应保持该真空度3h,然后在真空泵仍然运转的情况下,将用蒸馏水皮遏制的饱和氢氧化钙溶液注入容器,溶液高度应保证将试件浸没。在试件浸没1h后恢复常压,并应继续浸泡(18±2)h。 b)试件安装在RCM试验装置前应采用电吹风冷风档吹干,表面应干净,无油污、灰砂和水珠。 c)RCM试验装置的试验槽在试验前应用室温凉开水冲洗干净。 d)试件和RCM试验装置准备好以后,应将试件装入橡胶套内的底部,应在与试件齐高的橡胶套外侧安装两个不锈钢环箍(图B.1),每个箍高度应为20mm,并应拧紧环箍上的螺栓至扭矩(30±2)N?m,使试件的圆柱侧面处于密封状态。

相关主题
文本预览
相关文档 最新文档