当前位置:文档之家› 水灰比对混凝土强度及氯离子渗透性的影响

水灰比对混凝土强度及氯离子渗透性的影响

水灰比对混凝土强度及氯离子渗透性的影响
水灰比对混凝土强度及氯离子渗透性的影响

王立峰等:水灰比对混凝土强度及氯离子渗透性的影响

水灰比对混凝土强度及氯离子渗透性的影响

王立峰1

, 李家和2

, 朱广祥3

, 朱卫中

3

(1.中铁建设集团有限公司, 哈尔滨 150001; 2.哈尔滨工业大学土木工程学院, 哈尔滨 150001;

3.黑龙江省寒地建筑科学研究院, 哈尔滨 150080)

摘 要 主要研究了水灰比对混凝土强度和氯离子电通量的影响。试验结果表明:水灰比增大混凝土的强度明显降低,氯离子电通量增大;水灰比从0.33增加到0.37和0.41时,混凝土28d 氯离子电通量的增加幅度接近或超过了50%。

关键词 混凝土;水灰比;氯离子渗透;抗压强度 中图分类号 TU 528 0 文献标识码 B

文章编号 1001-6864(2011)05-0007-02

INFLUENCE OF W ATER CEMENT RATIO ON STRENGTH AND

C HLOR IDE ION PERMEABILI TY OF CONCRETE WANG L i feng 1

, LI Jia he 2

, ZHU Guang x iang 3

, Z HU W e i zhong

3

(1.Ch i n a Ra il w ay C onstr uction G r oup Co .,L t d ,H arb i n 150001,China ;

2.School of C i v ilEng ineeri n g ,H I T ,H arbin 150001,Chi n a ;

3.H eilong jiang Prov i n ce A cade m y of Co ld A rea Bu ilding Research,H arb i n 150080,China) Abst ract :Infl u ence of w ater ce m ent ratio on strength and ch l o ri d e i o n per m eability o f concrete is stud ied in th is paper .The resu lts show that strength decreased si g nificantl y ,electric fl u x i n creased when w ater ce m ent rati o i n creased .W hen w ater ce m en t ratio i n creased fro m 0.33to 0.37and 0.41,28d e lectric fl u x of concrete increased close to 50%.

K ey w ords :concrete ,;w ater ce m en t ratio ;ch lori d e per m eab ility ;co m pressi v e strength

[基金项目] 973 计划项目 水泥低能耗制备与高效应用的基础研究 第六课题 水泥基材料的产物与结构稳定性及服役行为 (2009CB623106);中铁建设集团项目 新建哈尔滨西客站工程严寒气候条件下结构混凝土冬期施工技术研究

随着混凝土技术的进步,影响混凝土的可变因素越来越多,这些因素影响着混凝土的两个最重要的性能参数,即渗透性和强度。混凝土的渗透性是其耐久性的最重要方面,实际工程中的混凝土往往是受环境中的水、气体以及侵蚀性介质的侵入而劣化。产生上述劣化作用需要内、外两个因素[2],内部因素是指混凝土的成分和结构,外部因素是指环境中侵蚀性介质和水等。为此有必要从内部因素入手提高混凝土的耐久性能[3]。由于渗透性是混凝土最根本的性质之一,并且与耐久性直接相关,所以成为混凝土试验和研究中的一项重要内容[4]。本文通过试验测试了不同水灰比的混凝土强度和氯离子电通量,目的在于为配制更加抗渗的混凝土提供基础数据。1 试验

(1) 原材料:水泥:P O 42 5水泥;粗集料:表面粗糙、级配良好的碎石,粒径为5~25mm,压碎指标为3%,含泥量为0 2%;砂:山砂,细度模数为2 8,满足 区级配的要求,含泥量为0 9%;减水剂:菏泽联强建筑材料有限公司生产的聚羧酸高效减水剂;水:哈尔滨自来水。

(2) 混凝土配合比设计。本试验中混凝土的砂率为40%,固定砂石用量,改变拌合用水,通过调整高效减水剂的用量使混凝土坍落度控制在200 20mm,如表1所示。

表1

混凝土配合比设计

kg m -3

编号水灰比水泥砂碎石水G -0 330 335107*********G -0 370 375107*********G -0 41

0 41

510

714

1028

209

(3) 试验方法:试验采用A STM C1202法测试混凝土氯离子电通量。将每组新拌混凝土制成3个尺寸为 100mm 50mm 的试块,标准养护至28d 后进行真空饱水,饱水结束后进行测试。测试时在试件轴向施加60V 的直流电压,试件两端的正负试验槽内分别注满摩尔浓度为0 3mo l/L 的N a OH 溶液和质量浓度为3.0%的N aC l 溶液,记录6h 内通过试件的总电量即为试件的电通量。

抗压强度采用100mm 100mm 100mm 的立方体试7

低 温 建 筑 技 术2011年第5期(总第155期)

件,测试的结果乘以0 95得到混凝土的抗压强度。2 试验结果与分析2 1 拌合物的性能

工作性包括混凝土的流动性、保水性、粘聚性、可泵性及易密性、坍落度损失等综合性能。这些性能与混凝土组成成分中各组分性质、配合比例及施工操作条件等因素有关;同时这些性能又将直接影响混凝土的施工,并进一步影响混凝土的使用性能。本试验通过: 坍落度评价流动性; 拌合物在搅拌时的泌水情况(即分为泌水和不泌水)评价保水性; 搅拌过程中观察拌合物各组分的分层和离析情况来评价粘聚性。为了更清楚地描述粘聚性,我们把粘聚性的目测情况分为五个标准来描述,即:优、良、中、及、差。用以上三个指标综合评价混凝土的工作性。

不同水灰比拌合物的工作性能如表2所示。由表2可知,不同水灰比的混凝土的保水性和粘聚性都良好,坍落度较小时粘聚性相对较好。在流动性基本相同的情况下,随着拌合用水量的增加,外加剂掺量减少。 表2

混凝土拌合物的工作性

编号外加剂用量/%

坍落度/mm

泌水情况粘聚性G-0 331 14210不泌水良G-0 370 77200不泌水优G-0 41

0 36

200

不泌水

2 2 水灰比对混凝土强度的影响

由图1水灰比对混凝土强度影响的试验结果可知:水泥用量为510kg /m 3

时,水灰比从0 33增大到0 41,混凝土的3d 、7d 及28d 强度都降低;水灰比从0 37增加到0 41时,混凝土强度3d 强度从42 1M P a 降低到37 8M P a ,混凝土强度7d 强度从54 7M Pa 降低到52 4M Pa ,混凝土28d 强度从66 5M P a 降低到61 4M P a ,分别降低了4 3、2 3和5 1M Pa ;水灰比从0 33提高到0 37时,混凝土强度3d 、7d 及28d 强度分别降为28 1、40 8、53.5M P a ,降低幅度分别为25 5%、22 3%和12 8%,降低幅度很大,明显超过水灰比从0 37增加到0 41时混凝土强度的降低幅

度。

由以上分析不难得出:配制混凝土时,必须很好地控制用水量。当工作性不满足要求时,应该用减水剂来调节,而不是加水。当附加水很少时,对混凝土强度的影响不太明显

,但是附加水较多时,混凝土的抗压强度降低幅度很大。

2 3 水灰比对混凝土氯离子电通量的影响

从图2可以看出,对于水泥用量为510kg /m 3的混凝土,水灰比从0 33增加到0 37和0 41时,混凝土的28d 氯离子电通量从1558 3C 变为2243.8C 和2556 2C ,增幅分别为43.99%和64 0%;在上述条件下,60d 时混凝土的电通量分别降低到1071 6C 、1250 4C 和1378 5C ,分别比混凝土28d 氯离子电通量降低了31 2%、44 3%和46 1%;说明水泥用量为510kg /m 3时,增加用水量使水灰比增大,混凝土28d 的抗氯离子渗透性降低的很迅速,水灰比从0 33增加到0 37

和0 41时,混凝土28d 电通量的增加幅度接近或超过了50%;水灰比对混凝土60d 的电通量影响较小,水灰比从0 33增加到0 41,混凝土的电通量增加幅度较小,混凝土的抗氯离子渗透性都处于同一水平,说明养护龄期对混凝土的影响很大,养护龄期从28d 增加到60d ,混凝土电通量的下降幅度都超过了30%,并且对于水灰比较大的混凝土,养护龄期产生的作用更明显。3 结语

(1) 水泥用量为510kg /m 3,水灰比从0 33提高到0 37时,混凝土3d 、7d 及28d 强度降低幅度明显超过水灰比从0 37增加到0 41时混凝土强度的降低幅度。

(2) 水灰比加大,混凝土的氯离子电通量明显提高,水灰比从0 33增加到0 37和0 41时,混凝土28d 电通量的增加幅度接近或超过了50%;在本试验所选定水灰比范围内,水灰比对混凝土60d 的电通量影响较小。

参考文献

[1] 练波 从混凝土的渗透性预测混凝土的耐久性[J] 广东建

材,2002,(1):43-44

[2] 袁广林 高性能混凝土中氯离子的渗透及结构的耐久性估计

[J] 工业建筑,1997,(5):11-13.

[3] 赵铁军,朱金铨 钢筋混凝土的氯离子腐蚀与耐久性设计

[J] 施工技术,1995,(11):37-38

[4] Dh ir P K,et al Predicti ng C oncrete Du rab ili ty from it s Absorp tion

[J] C oncrete Durabili ty ,AC I SP 145,1994:1177-1194

[收稿日期] 2011-03-16

[作者简介] 王立峰(1971-),男,山西大同人,高级工程师,

从事建筑工程管理工作。

8

抗氯离子渗透性

评价高性能混凝土耐久性综合指标-抗氯离子渗透性及其研究现状 摘要:结合国内外高性能混凝土耐久性研究的现状,在近年来基于氯离子渗透的高性能混凝土耐久性预测模型,分析了将抗氯离子渗透性作为评价高性能混凝土耐久性的综合指标的可行性和必要性,对于制定高性能混凝土的耐久性设计规范具有参考意义。 关键词:高性能混凝土;耐久性;氯离子抗渗;综合指标 Aggregative indicator evaluating the durabil ity of HPC:Chloride ion resistance and present status BA Heng jing ,ZHA N G Wu man ,DEN G Hong wei (Civil Engineering Institute ,Harbin University of Technology ,Harbin 150006 ,China) Abstract :Based on the prediction models and the domestic and foreign present status of the durability of HPC, the chloride ion resistance was used as an aggregative indicator to evaluate the durability of HPC. The importance and the feasibility were analyzed, which had significant reference for constituting standard of the durability of HPC. Key words :HPC;durability ;chloride ion resistance ;aggregative indicator 1 引言 近年来,国内外土木工程界对高性能混凝土耐久性问题十分关注,作了大量的试验研究,工程技术人员对混凝土耐久性的认识程度也不断加深。我国新出台的混凝土结构设计规范中很多章节已经提出了具体的耐久性规定。同时,我国第一部《混凝土结构耐久性设计及施工指南》也在2003年底正式颁布实施,该指南为设计和施工人员提供了环境作用下混凝土结构耐久性设计与施工的基本要求。大量科研成果的取得和国家规范的实施将实现混凝土结构全功能设计的目标向前推进了坚实的一步。 然而,目前对于高性能混凝土耐久性的评定没有统一的指标和方法,对其抗冻性、抗化学侵蚀性、抗钢筋锈蚀性、抗碳化性、抗碱—集料反应性、抗磨耗性、抗火性等等的试验和评价,基本上仍沿用对普通混凝土的试验和检测方法。但是,由于低水灰比、以及高效减水剂和矿物掺合料的掺入,高性能混凝土的性能与普通混凝土的性能相比产生了较大的差异,因此,普通混凝土的一些试验和检测方法已不适用于高性能混凝土,更无法将耐久性指标融入到混凝土结构设计理论中。 我国规范一贯按承载力极限状态来设计结构构件,再按正常使用极限状态来校核构件的设计思想,这样就决定了高性能混凝土耐久性设计应在肯定原有结构设计理论的基础上补充耐久性方面的要求,使得所选用的混凝土材料在满足结构承载能力的同时也可以达到足够的耐久性,在工程选材的环节把好“耐久性”关,实现从源头上解决结构的耐久性问题。 因此,目前亟待解决问题是:创建一个高性能混凝土耐久性的综合评价指标,该指标能够将各种环境因素影响效应集于一身。将其作为指导高性能混凝土结构耐久性设计的统一标准,便可以消除混凝土耐久性参数众多,各参数之间相关性难于把握的客观制约,为实现完全规范化的混凝土结构耐久性设计奠定坚实的基础。 国内外学者[1~4 ]经过大量调查和研究表明:绝大多数高性能混凝土结构的破坏是由于氯离子侵入到混凝土钢筋表面,并达到一定临界浓度时引起的钢筋锈蚀所致;钢筋锈蚀使其

混凝土水灰比和坍落度的关系

混凝土水灰比和坍落度的关系 水灰比是混凝土中水与水泥的比例,是计算所得,水灰比的大小只与混凝土试配强度和水泥强度有关,与塌落度的大小没有关系。水灰比是保证混凝土强度的先决条件,这个比例在施工中自始至终不得改变。而塌落度则是混凝土的干稀程度,即适宜混凝土施工的工作度,这就是我开头所讲水灰比与塌落度有本质的区分。塌落度大并非水灰比一定大,例如商品砼,塌落度很大,一般都在120mm 及以上,可它的水灰比不大,只是用水量大而按水灰比增大了水泥的用量,故商品砼的水泥用量比一般自拌砼要大。因此水灰比和塌落度都是在配合比中规定了的,是不能任意改变的。如果任意增大塌落度,则水灰比相应增大,这就是塌落度和水灰比的牵连关系。所以我们平时经常讲到要控制塌落度保证水灰比,道理就在此。因此,在混凝土捣拌时要经常做塌落度试验。有时在混凝土浇灌中,确实会碰到特殊情况,如局部构件特别细小、配筋特别密集、浇灌有困难,这时可适当增大塌落度,但必须按水灰比相应增加水泥用量,例如水灰比为0.5,用水量比原配比每一拌增加了5公斤水,则5÷0.5=10,就是说每拌应增加10公斤水泥,这样就仍然保持原来的水灰比。在施工现场,民工们往往为了工作上省力,而任意增大用水量,则增大了水灰比,用他们自己的话讲,我们只多加了一点水,水泥按配比没有少放,对混凝土强度不会有影响。当真对强度没有影响吗?非也,这就是我们经常讲的要控制塌落度的原因,而且原因很简单,因为混凝土随着硬化过程,水分逐渐蒸发,在混凝土内部形成空隙,水分越多,空隙当然越多,从而降低了混凝土的密实度,则降低了混凝土的强度。若为操作省力,增大塌落度,必须影响混凝土强度,此时只能按水灰比增加水泥用量,才能保证规定的水灰比,从而保证强度,但这无疑造成了水泥的浪费。因此,控制塌落度,不造成水泥的浪费,也有其一定的经济意义。任意增大塌落度的危害性并非只影响混凝土强度

、氯离子对水泥性能的影响

1、氯离子对水泥性能的影响 水泥在没有C l-或C l-含量极低的情况下,由于水泥混凝土碱性很强,p H 值较高,保护着钢筋表面钝化膜使锈蚀难以深入。氯离子在钢筋混凝土中的有害作用在于它能够破坏钢筋钝化膜,加速锈蚀反应。当钢筋表面存在C l-、O2和H2O 的情况下,在钢筋的不同部位会发生如下电化学反应:F e +2C l-→F e C l2+2e-→F e2++2Cl-+2e-;O2+2H2O+4e-→4(O H )-。进入水中的F e2+与O H-作用生成F e (O H )2,在一定的H2O 和O2条件下,可进一步生成F e (O H )3产生膨胀,破坏混凝土。 20世纪50年代,我国北方及国外某些国家(尤其是前苏联),为使冬季施工方便,曾普遍使用氯化钙等氯盐作混凝土早强(或防冻)剂,致使大量建筑因钢筋严重锈蚀而过早破坏,付出了昂贵的代价。现在国内外钢筋混凝土工程施工原则上已不用氯盐早强(或防冻)剂;即使掺用氯盐,我国规定一般钢筋混凝土工程中氯盐掺量不得大于水泥重量的1%(港工钢筋混凝土中不得大于水泥重量的0.1%),并需对钢筋作防锈处理,将混凝土振捣密实。 此外,C a C l2用量较大时,还会降低混凝土抗化学侵蚀性和耐磨性及28天抗折强度。如在生料中加入的氯化物,虽然可促进熟料煅烧,起到矿化剂的作用,对提高立窑产量有利,但有相当部分的氯离子会残留于熟料和水泥中,也会加速钢筋锈蚀。因此,无论是水泥生料中,还是水泥中加入氯化物都应持谨慎态度,不宜掺加。 2、碱对水泥性能的影响 碱溶解速度快,能增加水泥混凝土液相的碱度,可加速水泥水化速度及激发水泥中混合材的活性,通常被用作水泥的早强剂,以提高水泥的早期强度。 碱作为水泥早强剂对水泥的增强效果往往随外加剂的种类及掺量,外加剂中各激发组分的配比,混合材种类及掺量,熟料(或水泥)成分及性能,使用温度等因素的不同而不同。但大多数外加剂对水泥早期(1天、3天、7天)强度的促进作用比对后期(28天)强度的促进效果好,有的还对28天强度没有促进作用甚至降低28天强度;有时会使水泥发生快凝、结块及需水量增加;还容易发生碱骨料反应,产生局部膨胀,引起构筑物开裂变形,甚至崩溃。在水泥储存中,碱易生成钾石膏(K2SO4·C a S O4·H2O ),使水泥库结块和造成水泥快凝。碱还能使混凝土表面起霜(白斑)。因此,在水泥生产中,碱虽然可提高水泥的早期强度,增加混合材的掺量,但还是不宜使用含碱的早强剂

混凝土强度等级对照表

混凝土强度等级对照表 混凝土的抗压强度是通过试验得出的,我国最新标准C60强度以下的采用边长为150mm的立方体试件作为混凝土抗压强度的标准尺寸试件。按照《普通混凝土力学性能试验方法标准》GB/T50081-2002,制作边长为150mm的立方体在标准养护(温度20±2℃、相对湿度在95%以上)条件下,养护至28d龄期,用标准试验方法测得的极限抗压强度,称为混凝土标准立方体抗压强度,以fcu表示。按照GB50010-2010《混凝土结构设计规范》规定,在立方体极限抗压强度总体分布中,具有95%强度保证率的立方体试件抗压强度,称为混凝土立方体抗压强度标准值(以MPa计),用fcu 表示。 依照标准实验方法测得的具有95%保证率的抗压强度作为混凝土强度等级。 按照GB50010-2010《混凝土结构设计规范》规定,普通混凝土划分为十四个等级,即:C15,C20,C25,C30,C35,C40,C45,C50,C55,C60,C65,C70,C75,C80。例如,强度等级为C30的混凝土是指30M Pa≤fcu<35MPa 影响混凝土强度等级的因素主要与水泥等级和水灰比、骨料、龄期、

养护温度和湿度等有关。 混凝土质量的主要指标之一是抗压强度,从混凝土强度表达式不难看出,混凝土抗压强度与混凝土用水泥的强度成正比,按公式计算,当水灰比相等时,高标号水泥比低标号水泥配制出的混凝土抗压强度高许多。一般来说,水灰比与混凝土强度成反比,水灰比不变时,用增加水泥用量来提高混凝土强度是错误的,此时只能增大混凝土和易性,增大混凝土的收缩和变形。 所以说,影响混凝土抗压强度的主要因素是水泥强度和水灰比,要控制好混凝土质量,最重要的是控制好水泥质量和混凝土的水灰比两个主要环节。此外,影响混凝土强度还有其它不可忽视的因素。 粗骨料对混凝土强度也有一定影响,所以,工程开工时,首先由技术负责人现场确定粗骨料,当石质强度相等时,碎石表面比卵石表面粗糙,它与水泥砂浆的粘结性比卵石强,当水灰比相等或配合比相同时,两种材料配制的混凝土,碎石的混凝土强度比卵石高。 因此我们一般对混凝土的粗骨料粒径控制与不同的工程部位相适应;细骨料品种对混凝土强度影响程度比粗骨料小,但砂的质量对混凝土质量也有一定的影响,施工中,严格控制砂的含泥量在3%以内,因此,砂石质量必须符合混凝土各标号用砂石质量标准的要求。

混凝土中氯离子的危害及预防措施

混凝土中氯离子的危害及预防措施 我国新水泥标准中增加氯离子检验人手,分析了混凝土中氯离子的来源和带来途径。指出了氯离子对混凝土的影响和危害,提出了怎样才能避免混凝土中氯离子超标的几个措施,最后说明了有关各行业应研究怎样才能使混凝土中氯离子的含量最少。这应是有关的技术T 作者的一种责任。 引言 《通用硅酸盐水泥》报批稿,在2006年9月就已完成,随后经过若干次的建材生产与建一E使用的协商讨论,终于2007年底发布,国家标准 175—2007《通用硅酸盐水泥》于2008年6月1日实施,这个标准的正式实施,是我国水泥行业的大事,也是建筑施工行业的大事,它涉及到水泥产品的生产、流通、应用、科研与设计的各个方面。尤其是水泥生产企业,无论是产品品种的确定、配料方案的设计、化学分析及物理检验仪器设备的购置、校验、使用,还是生产工艺过程中的技术参数调整与控制,都必须进行必要的变更与适应,只有这样才可能满足新标准的要求,保证新标准的正常平稳过渡。 早在2002年4月1日,国家建没部和同家质检总局就联合发布实施了 500102002((混凝土结构设计规范》,其3.4耐久性规定的章节中,就对混凝土中最大氯离子的含量作了具体的规定;2004年l2月1日,两部局又联合发布实施了/T 503442004《建筑结构检测技术标准》,这个标准的附录C,对混凝土中氯离子的含量测定方法作了规范;2006年6月1日国家建设部发布实施了 522006((普通混凝土用砂、石质量

及检验方法标准》,这个标准在3.1.10条中对混凝土用砂的氯离子含量也作了规定。这些标准和规范的配套实施,必将对水泥的生产、使用和建设工程的质量提高起到积极的推动和保证作用。 1 混凝土中氯离子的来源 1.1 水泥中的氯离子 氯盐是廉价而易得的丁业原料,它在水泥生产中具有明显的经济值。它可以作为熟料煅烧的矿化剂,能够降低烧成温度,有利于节能高产;它也是有效的水泥早强剂,不仅使水泥3 d强度提高50%以上,而且可以降低混凝土中水的冰点温度,防止混凝土早期受冻。氯离子的来源主要是原料、燃料、混合材料和外加剂,但由于熟料煅烧过程中,氯离子大部分在高温下挥发而排出窑外,残留在熟料中的氯离子含培极少。如果水泥中的氯离子含量过高,其主要原冈是掺加了混合材料和外加剂(如:工业废渣、助磨剂等)。因此,在我国水泥新标准中增加了“水泥生产中允许加入≤0.5%的助磨剂和水泥中的氯离子含量必须≤O.06%”的要求,这主要是为了保证水泥不对混凝土质量产生过多负面影响。 1.2砂子中的氯离子 在天然砂中,特别是天然海砂中,因为海水中氯离子较高,使得海砂的表面吸附的氯离子也比较多,导致海砂中氯离子的含量较大,如果不加处理用在混凝土中,将会使混凝土中的氯离子含垣增多。 1.3水中的氯离子 在混凝土拌制中,水是不可缺少的原材料之一。如果用饮用的自

水灰比对混凝土强度及氯离子渗透性的影响

王立峰等:水灰比对混凝土强度及氯离子渗透性的影响 水灰比对混凝土强度及氯离子渗透性的影响 王立峰1 , 李家和2 , 朱广祥3 , 朱卫中 3 (1.中铁建设集团有限公司, 哈尔滨 150001; 2.哈尔滨工业大学土木工程学院, 哈尔滨 150001; 3.黑龙江省寒地建筑科学研究院, 哈尔滨 150080) 摘 要 主要研究了水灰比对混凝土强度和氯离子电通量的影响。试验结果表明:水灰比增大混凝土的强度明显降低,氯离子电通量增大;水灰比从0.33增加到0.37和0.41时,混凝土28d 氯离子电通量的增加幅度接近或超过了50%。 关键词 混凝土;水灰比;氯离子渗透;抗压强度 中图分类号 TU 528 0 文献标识码 B 文章编号 1001-6864(2011)05-0007-02 INFLUENCE OF W ATER CEMENT RATIO ON STRENGTH AND C HLOR IDE ION PERMEABILI TY OF CONCRETE WANG L i feng 1 , LI Jia he 2 , ZHU Guang x iang 3 , Z HU W e i zhong 3 (1.Ch i n a Ra il w ay C onstr uction G r oup Co .,L t d ,H arb i n 150001,China ; 2.School of C i v ilEng ineeri n g ,H I T ,H arbin 150001,Chi n a ; 3.H eilong jiang Prov i n ce A cade m y of Co ld A rea Bu ilding Research,H arb i n 150080,China) Abst ract :Infl u ence of w ater ce m ent ratio on strength and ch l o ri d e i o n per m eability o f concrete is stud ied in th is paper .The resu lts show that strength decreased si g nificantl y ,electric fl u x i n creased when w ater ce m ent rati o i n creased .W hen w ater ce m en t ratio i n creased fro m 0.33to 0.37and 0.41,28d e lectric fl u x of concrete increased close to 50%. K ey w ords :concrete ,;w ater ce m en t ratio ;ch lori d e per m eab ility ;co m pressi v e strength [基金项目] 973 计划项目 水泥低能耗制备与高效应用的基础研究 第六课题 水泥基材料的产物与结构稳定性及服役行为 (2009CB623106);中铁建设集团项目 新建哈尔滨西客站工程严寒气候条件下结构混凝土冬期施工技术研究 随着混凝土技术的进步,影响混凝土的可变因素越来越多,这些因素影响着混凝土的两个最重要的性能参数,即渗透性和强度。混凝土的渗透性是其耐久性的最重要方面,实际工程中的混凝土往往是受环境中的水、气体以及侵蚀性介质的侵入而劣化。产生上述劣化作用需要内、外两个因素[2],内部因素是指混凝土的成分和结构,外部因素是指环境中侵蚀性介质和水等。为此有必要从内部因素入手提高混凝土的耐久性能[3]。由于渗透性是混凝土最根本的性质之一,并且与耐久性直接相关,所以成为混凝土试验和研究中的一项重要内容[4]。本文通过试验测试了不同水灰比的混凝土强度和氯离子电通量,目的在于为配制更加抗渗的混凝土提供基础数据。1 试验 (1) 原材料:水泥:P O 42 5水泥;粗集料:表面粗糙、级配良好的碎石,粒径为5~25mm,压碎指标为3%,含泥量为0 2%;砂:山砂,细度模数为2 8,满足 区级配的要求,含泥量为0 9%;减水剂:菏泽联强建筑材料有限公司生产的聚羧酸高效减水剂;水:哈尔滨自来水。 (2) 混凝土配合比设计。本试验中混凝土的砂率为40%,固定砂石用量,改变拌合用水,通过调整高效减水剂的用量使混凝土坍落度控制在200 20mm,如表1所示。 表1 混凝土配合比设计 kg m -3 编号水灰比水泥砂碎石水G -0 330 335107*********G -0 370 375107*********G -0 41 0 41 510 714 1028 209 (3) 试验方法:试验采用A STM C1202法测试混凝土氯离子电通量。将每组新拌混凝土制成3个尺寸为 100mm 50mm 的试块,标准养护至28d 后进行真空饱水,饱水结束后进行测试。测试时在试件轴向施加60V 的直流电压,试件两端的正负试验槽内分别注满摩尔浓度为0 3mo l/L 的N a OH 溶液和质量浓度为3.0%的N aC l 溶液,记录6h 内通过试件的总电量即为试件的电通量。 抗压强度采用100mm 100mm 100mm 的立方体试7

混凝土中氯离子的危害及预防措施

混凝土中氯离子的危害及预防措施我国新水泥标准中增加氯离子检验人手,分析了混凝土中氯离子的来源和带来途径。指出了氯离子对混凝土的影响和危害,提出了怎样才能避免混凝土中氯离子超标的几个措施,最后说明了有关各行业应研究怎样才能使混凝土中氯离子的含量最少。这应是有关的技术T 作者的一种责任。 引言 《通用硅酸盐水泥》报批稿,在2006年9月就已完成,随后经过若干次的建材生产与建一E使用的协商讨论,终于2007年底发布,国家标准GB 175—2007《通用硅酸盐水泥》于2008年6月1日实施,这个标准的正式实施,是我国水泥行业的大事,也是建筑施工行业的大事,它涉及到水泥产品的生产、流通、应用、科研与设计的各个方面。尤其是水泥生产企业,无论是产品品种的确定、配料方案的设计、化学分析及物理检验仪器设备的购置、校验、使用,还是生产工艺过程中的技术参数调整与控制,都必须进行必要的变更与适应,只有这样才可能满足新标准的要求,保证新标准的正常平稳过渡。 早在2002年4月1日,国家建没部和同家质检总局就联合发布实施了GB 50010--2002((混凝土结构设计规范》,其3.4耐久性规定的章节中,就对混凝土中最大氯离子的含量作了具体的规定;2004年l2月1日,两部局又联合发布实施了GB/T 50344---2004《建筑结构检测技术标准》,这个标准的附录C,对混凝土中氯离子的含量测定方法作了规范;2006年6月1日国家建设部发布实施了JGJ 52--2006((普

通混凝土用砂、石质量及检验方法标准》,这个标准在3.1.10条中对混凝土用砂的氯离子含量也作了规定。这些标准和规范的配套实施,必将对水泥的生产、使用和建设工程的质量提高起到积极的推动和保证作用。 1 混凝土中氯离子的来源 1.1 水泥中的氯离子 氯盐是廉价而易得的丁业原料,它在水泥生产中具有明显的经济值。它可以作为熟料煅烧的矿化剂,能够降低烧成温度,有利于节能高产;它也是有效的水泥早强剂,不仅使水泥3 d强度提高50%以上,而且可以降低混凝土中水的冰点温度,防止混凝土早期受冻。氯离子的来源主要是原料、燃料、混合材料和外加剂,但由于熟料煅烧过程中,氯离子大部分在高温下挥发而排出窑外,残留在熟料中的氯离子含培极少。如果水泥中的氯离子含量过高,其主要原冈是掺加了混合材料和外加剂(如:工业废渣、助磨剂等)。因此,在我国水泥新标准中增加了“水泥生产中允许加入≤0.5%的助磨剂和水泥中的氯离子含量必须≤O.06%”的要求,这主要是为了保证水泥不对混凝土质量产生过多负面影响。 1.2砂子中的氯离子 在天然砂中,特别是天然海砂中,因为海水中氯离子较高,使得海砂的表面吸附的氯离子也比较多,导致海砂中氯离子的含量较大,如果不加处理用在混凝土中,将会使混凝土中的氯离子含垣增多。 1.3水中的氯离子

继续教育——抗氯离子渗透试验电通量法

第1题 测试混凝土氯离子电通量的仪器设备直流稳压电源的电压范围应为()V。 A.0~60V B.0~30V C.0~80V D.0~70V 答案:C 您的答案:c 题目分数:5 此题得分:5 批注: 第2题 温度计的量程应在()℃精度为±0.1℃ A.0~50 B.0~100 C.0~120 D.0~300 答案:C 您的答案:B 题目分数:5 此题得分:5 批注: 第3题 电通量耐热塑料或耐热有机玻璃试验槽的边长应为()mm,总厚度不应小于()mm。 A.155mm,50mm B.150mm,50mm C.150mm,51mm D.150mm,55mm 答案:C 您的答案:C 题目分数:5 此题得分:5 批注: 第4题 电通量试验用溶液NaCl应为()%的质量浓度。 A.2

B.3 C.4 D.5 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第5题 电通量试验用溶液NaOH应为()mol/L的摩尔浓度。 A.0.3 B.0.4 C.0.5 D.0.6 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第6题 电通量抽真空设备的烧杯体积应为()mL以上。 A.500 B.800 C.1000 D.1100 答案:C 您的答案:C 题目分数:5 此题得分:5.0 批注: 第7题 电通量试件应为直径()mm,高度()mm。 A.100±5mm,50±5mm B.100±1mm,50±2mm C.90±5mm,51±5mm D.90±1mm,50±1mm 答案:B 您的答案:B

题目分数:5 此题得分:5.0 批注: 第8题 电通量试验宜在试件养护到()期进行。 A.56d B.60d C.28d D.30d 答案:C 您的答案:C 题目分数:5 此题得分:5.0 批注: 第9题 对于掺有大掺量矿物掺合料的混凝土可在()龄期进行。 A.56d B.60d C.28d D.30d 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第10题 试件浸泡1h后恢复常压应继续浸泡()h。 A.20?2 B.22?2 C.18?2 D.19?2 答案:C 您的答案:C 题目分数:5 此题得分:5.0 批注: 第11题

混凝土强度和用水量的关系_3458

下载之前请注意: 1:版权归原作者所有。如果有问题,请尽快和我联系 2:如果遇到文件中有些地方图片显示不出来的,可能是文档转换过程中出现的问题,请和我联系,我将图片发送给你,给你带来的不便表示抱歉!请邮箱联系:lcs012@https://www.doczj.com/doc/8111395088.html, 混凝土强度和用水量的关系 论文关键词:混凝土;质量;水灰比;用水量 论文摘要:在实际施工中很多因素都会影响混凝土的强度,其中用水量对混凝土强度的影响也较为明显,以及用水量对砼其他方面所产生的质量影响。 1 水在混凝土中存在方式和硬化机理 水在混凝土中有3 种存在方式:①化学结合水。以严格的定量参加水泥水化的水,它使水泥浆形成结晶固体。化学结合水是强结合的,不参与混凝土与外界湿度交换作用,不引起收缩与膨胀变形,成微小自生变形;②物理化学结合水。在混凝土中以并不严格的定量存在,表现为吸附薄膜结构,它在混凝土中起扩散及溶解水泥颗粒的作用,一部分水在材料周围构成碱性结合水膜,吸附水结合属中等结合,容易受到水分蒸发的破坏,所以它积极地参与混凝土与环境的湿度交换作用;③物理结合水。混凝土中各晶格间及粗、细毛孔中的自由水,亦称游离水,含量不稳定,结合强度低,极容易受水分蒸发影响而破坏结合,它是积极参与和外界进行湿度交换的水。适量的水是混凝土完成水化反应,实现预期强度的必需条件。化学结合水是保证水泥颗粒水化的必需条件;物理化学结合水是保证水泥颗粒充分扩散,逐步完成水化反应的必需条件;而物理结合水则为化学结合水、物理结合水充分发挥作用提供外部条件。 2 用水量的增加对混凝土强度的影响 (1)水灰比与水泥强度的关系。 在配合比相同的情况下,所用的水泥强度等级越高,制成的混凝土强度也越高。当用同一品种及相同强度等级水泥时,混凝土强度主要取决于水灰比。在水泥强度等级相同,水泥水化所需结合水充足的情况下,水灰比越小,水泥石强度越高,与骨料粘结力也越大,混凝土强度也就越高。确定水灰比应综合考虑各种因素,在满足设计要求的情况下,同样要满足施工的要求。 (2)用水量增加对混凝土强度的影响。 以混凝土配合比计算公式为基础,在配合比已确定的情况下,计算

《混凝土结构耐久性设计规程》中抗氯离子渗透性检测方法的试验研究

《混凝土结构耐久性设计规程》中抗氯离子渗透性检 测方法的试验研究 来源:《混凝土》2007年第2期( 总第208期)中国混凝土与水泥制品网[2007-4-12] 摘要: 针对山东省《混凝土结构耐久性设计规程》中混凝土抗氯离子渗透性检测方法进行了试验研究。试验结果表明《, 规程》中的交流电法和RCM法可以便捷准确的评定混凝土中氯离子的渗透性, 有广阔的应用前景。但不同的试块制备方法对氯离子渗透性电测法的试验结果影响很大, 考虑到工程上混凝土的实际情况, 建议《规程》中的混凝土抗氯离子渗透性试验评定方法应对试块的制备方法应提出更明确的要求。 关键词: 混凝土; 氯离子; 渗透性; 交流电法; RCM法 中图分类号: TU528.01 文献标志码: A 文章编号: 1002- 3550-( 2007) 02- 0005- 03 0 前言 根据山东省地理、环境特点并结合山东地区混凝土结构耐久性现状及实践经验编写的DBJ14-S6-2005《混凝土结构耐久性设计规程》( 以下简称《规程》) , 已于2005 年12 月1 日在山东省内颁布实施, 填补了之前国内尚无结构耐久性设计规范的一项空白。《规程》规定了混凝土结构耐久性设计的原则、内容、结构构造和材料选用基本要求, 提出了施工、检测与维护的基本要求及防腐蚀附加措施及试验方法。 由于山东省大规模工程建设比较集中, 并且地处沿海, 有长达3 000 多公里的海岸线, 有盐土地区分布, 而且作为北方地区, 山东省每年冬季仍大量使用氯盐类“ 融雪剂”( 如氯化钠、氯化钙、氯化镁等) , 因此存在着广泛的氯盐侵蚀环境《, 规程》就此提出了三种混凝土抗氯离子渗透性试验评定方法, 包括美国ASTM C1202 混凝土抗氯离子渗透性标准试验方法直流电量法) , 用交流电测量混凝土氯离子渗透性方法和氯离子扩散系数快速测定的RCM 法。ASTM C1202 在国际上应用普遍, 但试验时间较长, 施加电压较高易对试块产生影响[1]; 交流电法最早由Monfore[2]提出并曾被Hansen[3]和Feldman[4]采用, 赵铁军[5]对其进行了完善并形成了一套比较成熟的试验方法; 而RCM 法则是目前被欧洲国家广泛采用的一种方法。 上述三种方法都可以快速评价氯离子在混凝土内的传输性质, 但其机理和具体试验过程有较大差异。由于之前围绕ASTM C1202 法的试验研究已有很多[6~8], 本文就交流电法和RCM 法重点进行了试验研究, 并结合试验结果对《规程》中的氯离子试验方法提出了一些意见和建议。 1 原材料及配合比

水泥中氯离子危害分析及防治措施

水泥中氯离子危害分析及防治措施1.Cl-造成水泥混凝土危害的原因 普遍研究认为因Cl-的存在,水泥混凝土结构内部所发生的“电化反应”是导致钢筋锈蚀、造成水泥混凝土结构危害的一个重要原因。通过深入分析我们发现,除了“电化反应”外,水泥混凝土结 构内发生的“氧化反应”和“碱骨料反应”及“酸碱腐蚀反应”也 是造成水泥混凝土结构危害不可忽视的原因。 在水泥混凝土结构内所发生的“电化反应”、“氧化反应”、“碱骨料反应”及“酸碱腐蚀反应”过程中,Cl-始终对这些危害反应的发生起着“诱导”作用。这种“诱导”作用,主要是由Cl-的特性及与它相结合的碱金属、碱土金属离子Mx+所构成的离子化合物MClx的性质所决定的。 2.影响危害反应的因素 根据氯离子“诱导”水泥混凝土造成的危害反应机理,我们认 为影响危害反应的因素主要有以下几方面: (1)Cl-浓度越高,也就意味着MClx的含量越大,危害反应越激烈;随着时间的延长,危害的程度也越严重。(2)空气湿度越大或混凝土构件周围环境潮湿,危害反应越易发生,危害性越大。(3)环境温度越高,危害反应加剧,危害的程度加重。(4)时间越长,危害反应持续越久,危害的程度也就逐步扩大。(5)混凝土结构越

薄或结构内部的孔隙率越大,危害反应越迅速,危害的程度也越大。(6)处于酸、碱的环境中或存在其他介质侵蚀的情况下,危害反应 加快。 3.危害反应的预防和治理 为了有效控制Cl-对水泥混凝土造成的危害,首先我们必须要了解Cl-的主要来源,做到从源头上进行严格控制;其次,我们要根据Cl-危害反应机理,采取各种科学的预防和治理措施。 (1)水泥中Cl-的主要来源水泥中的Cl-主要来源于水泥自身(水泥熟料、混合材)和水泥中掺入的外加剂。有人认为水泥自身的Cl-主要来源于混合材,其理论根据是因为熟料已经过水泥窑内的高温 煅烧,其中Cl-已被挥发。针对这一观点,我们将NaCl在高温炉中 进行了灼烧试验:在810℃NaCl固体开始变成熔融状,840℃全部变 为熔融体,在1400℃恒温灼烧30分钟,其损失量只有12.72%。虽然旋窑内最高温可以达到1700℃~1800℃(立窑内最高温度一般为1350℃~1450℃),但它的尾气离开最上端旋风预热筒的温度只有320℃~350℃,而在低端两级旋风预热筒内温度一般为750℃~870℃,并在这两级旋风预热筒内物料易发生粘堵现象,我们认为这 与MClx在该温度范围内变成熔融体,增加了物料的黏度有关。上述 情况表明,Cl-在熟料煅烧过程中不可能大部分地挥发掉,即使有挥 发也只是相对很少的一部分。此外,我们对全国不同地区的多家水 泥企业生产的熟料及使用的混合材进行了Cl-检测分析,结果显示熟

混凝土强度等级

混凝土强度等级 编辑 混凝土的强度等级是指混凝土的抗压强度。混凝土的强度等级应以混凝土立方体抗压强度标准值划分。采用符号C与立方体抗压强度标准值(以N/mm^2; 或MPa计)表示。 目录 1简介 2影响因素 1简介 混凝土的抗压强度是通过试验得出的,我国最新标准C60强度以下的采用边长为100mm的立方体试件作为混凝土抗压强度的标准尺寸试件。按照《普通混凝土力学性能试验方法标注》GB/T50081-2002,制作边长为150mm的立方体在标准养护(温度20±2℃、相对湿度在95%以上)条 件下,养护至28d龄期,用标准试验方法测得的极限抗压强度,称为混凝土标准立方体抗压强度,以fcu表示。按照GB50010-2010《混凝土结构设计规范》规定,在立方体极限抗压强度总体分布中,具有95%强度保证率的立方体试件抗压强度,称为混凝土立方体抗压强度标准值(以MPa计),fcuk表示。 依照标准实验方法测得的具有95%保证率的抗压强度作为混凝土强度等级. 按照GB50010-2010《混凝土结构设计规范》规定,普通混凝土划分为十四个等级,即:C15,C20,C25,C30,C35,C40,C45,C50,C55,C60,C65,C70,C75,C80。例如,强度等级为C30的混凝土是指30MPa≤fcuk<35MPa

影响混凝土强度等级的因素主要有水泥等级和水灰比、集料、龄期、养护温度和湿度等有关。 2影响因素 混凝土质量的主要指标之一是抗压强度,从混凝土强度表达式不难看出,混凝土抗压强度与混凝土用水泥的强度成正比,按公式计算,当水灰比相等时,高标号水泥比低标号水泥配制出的混凝土抗压强度高许多。一般来说,水灰比与混凝土强度成反比,水灰比不变时,用增加水泥用量来提高混凝土强度是错误的,此时只能增大混凝土和易性,增大混凝土的收缩和变形。 所以说,影响混凝土抗压强度的主要因素是水泥强度和水灰比,要控制好混凝土质量,最重要的是控制好水泥和混凝土的水灰比两个主要环节。此外,影响混凝土强度还有其它不可忽视的因素。 粗骨料对混凝土强度也有一定影响,所以,工程开工时,首先由技术负责人现场确定粗骨料,当石质强度相等时,碎石表面比卵石表面粗糙,它与水泥砂浆的粘结性比卵石强,当水灰比相等或配合比相同时,两种材料配制的混凝土,碎石的混凝土强度比卵石强。 因此我们一般对混凝土的粗骨料粒径控制与不同的工程部位相适应;细骨料品种对混凝土强度影响程度比粗骨料小,但砂的质量对混凝土质量也有一定的影响,施工中,严格控制砂的含泥量在3%以内,因此,砂石质量必须符合混凝土各标号用砂石质量标准的要求。 由于施工现场砂石质量变化相对较大,因此现场施工人员必须保证砂石的质量要求,并根据现场砂石含水率及时调整水灰比,以保证混凝土配合比,不能把实验配比与施工配比混为一谈。 同时,混凝土质量又与外加剂的种类、掺入量、掺入方式有密切的关系,它也是影响混凝土强度的重要因素之一。混凝土强度只有在温度、湿度适合条件下才能保证正常发展,应按施工规范的规定予以养护。气温高低对混凝土强度发展有一定的影响。夏季要防暴晒,充分利用早、晚气温高低的时间浇筑混凝土;尽量缩短运输和浇筑时间,防止暴晒,并增大拌合物出罐时的塌落度;养护时不宜间断浇水,因为混凝土表面在干燥时温度升高,在浇水时冷却,这种冷热交替作用会使混凝土强度和抗裂性降低。冬季要保温防冻害,现冬季施工一般采取综合蓄热法及蒸养法。 一般土建工程如何划分类别 1、一般土建工程如何划分类别(一类、二类、三类、四类、五类)。就是怎么划分类别的。 2、12345类建筑综合费率是多少? (一) 一类建筑工程应符合下列条件:

混凝土抗氯离子渗透性标准试验方法

混凝土抗氯离子渗透性标准试验方法 B.1适用范围 B.1.1本试验方法以电量指标来快速测定混凝土的抗氯离子渗透性。适用于检验混凝土原材料和配合比对混凝土抗氯离子渗透性的影响。 B.1.2本试验方法适用于直径为95±2mm,厚度为51±3mm的素混凝土试件或芯样。B.1.3本试验方法不适用于掺亚硝酸钙的混凝土。掺其它外加剂或表面处理过的混凝土,当有疑问时,应进行氯化物溶液的长期浸渍试验。 B.2试验基本原理 B.2.1在直流电压作用下。氯离子能通过混凝土试件向正极方向移动,以测量流过的混凝土的电荷量反映渗透混凝土的氯离子量。 B.3试验设备及材料 B.3.1试验装置如图B.3.1 B.3.2仪器设备应满足下列要求: (1)直流稳压电源,可输出60V直流电压,精度±0.1V; (2)塑料或有机玻璃试验槽,其结构尺寸如图B.3.2所示; (3)铜网为20目; (4)数字式电流表,量程20A,精度±1.0%; (5)真空泵,真空度可达133Pa以下; (6)真空干燥器,内径≥250mm; B.3.3试验应采用下列材料: (1)分析纯试剂配制的3.0%氯化钠溶液; (2)用纯试剂配制的0.3mol氢氧化钠溶液; (3)硅橡胶或树脂密封材料。 B.4试验步骤 B.4.1制作直径为95mm,厚度为51mm的混凝土试件,在标准条件下养护28d或90d,试验时以三块试件为一组。 B.4.2将试件暴露于空气中至表面干燥,以硅橡胶或树脂密封材料施涂于试件侧面,必要时填补涂层中的孔洞以保证试件侧面完全密封。 B.4.3测试前应进行真空饱水。将试件放入1000ml烧杯中,然后一起放入真空干燥器中,启动真空泵,数分钟内真空度达13Pa以下,保持真空3h后,维持这一真空度注入足够的蒸馏水,直至淹没试件,试件浸泡1h后恢复常压,再继续浸泡18±2h。 B.4.4从水中取出试件,抹掉多余水份,将试件安装于试验槽内,用橡胶密封环或其它密封胶密封,并用螺杆将两试验槽和试件夹紧,以确保不会渗漏,然后将试验装置放在20~23℃流动冷水槽中,其水面宜低于装置顶面5mm,试验应在20~25℃恒温室内进行。B.4.5将浓度为3.0%的NaCl溶液和0.3mol的NaOH溶液分别注入试件两侧的试验槽中,注入NaCl溶液的试验槽内的铜网连接电源负极,注入NaOH溶液的试验槽的铜网连接电源正极。 B.4.6接通电源,对上述两铜网施加60V直流恒电压,并记录电流初始读数I0,通电并保持试验槽中充满溶液。开始时每隔5min记录一次电流值,当电流值变化不大时,每隔10min 记录一次电流值,当电流变化很小时,每隔30min记录一次电流值,直至通电6h。 B.5试验结果计算 B.5.1绘制电流于时间的关系图。将各点数据以光滑曲线连接起来,对曲线作面积积分,或按梯形法进行面积积分,即可得试验6h通过得电量。当试件直径不等于95mm时,则所得

水泥中氯离子对钢筋的腐蚀

氯离子对钢筋腐蚀机理的影响 [摘要] 氯化物的侵入是引起混凝土中钢筋腐蚀的最主要原因之一,氯离子能破坏钢筋表面钝化膜而引起钢筋局部腐蚀,对腐蚀过程具有催化作用。但只有混凝土中氯离子的浓度达到一定的临界值后,钢筋才会发生腐蚀。由于影响因素多,至今难以确定统一的氯离子浓度临界值。着重阐述了钢筋腐蚀行为和氯离子的去钝化机理、混凝土中氯离子的来源和保护钢筋的措施及其研究进 展。 [关键词] 钢筋混凝土;钢筋;腐蚀;氯离子 0 前言 钢筋在混凝土高碱性环境中的钝态条件被破坏,便被腐蚀。钢筋钝化膜破坏机理主要是混凝土的碳化和氯化物侵入,这两种因素既影响混凝土孔隙液的pH值,又影响钢筋的电位值,因而直接影响钢筋的稳定性。因氯化物的侵蚀引起钢筋混凝土构筑物破坏而造成重大损失的现象非常严重。北京西直门立交桥于1979年建成投入使用,不到20a钢筋混凝土的腐蚀已十分严重,不得不进行改建。引起西直门立交桥过早破坏的原因是多方面的,但长期在冬季向立交桥撒含氯化物除冰盐引起钢筋腐蚀使立交桥结构受到破坏是突出的因素。台湾四面环海,许多钢筋混凝土构筑物受破坏以及不断发生的“海砂屋”事件,也是氯化物侵蚀所引起的。目前,中国大陆也存在“海砂屋”现象。氯离子的侵蚀引起钢筋局部腐蚀是最有害的,对此,各国都给予了高度的重视。由于钢筋混凝土结构的复杂性和研究条件的差异,研究结果和结论并不完全一致,许多问题还有待深入研究。本工作主要对国内外氯离子与钢筋腐蚀系的研究进展和防止氯化物侵蚀的措施进行评述。 1 钢筋腐蚀与氯离子去钝化机理 钢筋混凝土是多相、不均质的特殊复杂体系,钢筋表面具有电化学不均匀性,存在着电位较负的阳极区和电位较正的阴极区;一般钢筋表面总处于混凝土孔隙液膜中,即钢筋表面阳极区和阴极区之间存在电解质溶液;由于混凝土的多孔性,

混凝土抗氯离子渗透性试验方法研究

混凝土抗氯离子渗透性试验方法研究 摘要:引气剂是常用的混凝土外加剂之一,许多文献表明掺加引气剂不仅能够改善混凝土的工作性,而且还能够提高混凝土的耐久性,增加混凝土的使用寿命,特别是在易侵蚀、冻融的环境中。本文对掺加引气剂混凝土的氯离子抗渗性指标和混凝土抗冻性指标进行了试验研究,研究结果表明:掺加引气剂可有效提高混凝土的耐久性。 关键词:引气剂;耐久性;渗透性;抗冻性 前言 混凝土引气剂是最古老的外加剂之一,早在二十世纪四十年代就已应用于混凝土抗冻工程中。引气剂在国外已较为普遍的应用于混凝土中,尤其是日本,大部分的混凝土应用引气剂。目前,在我国的混凝土工程中,引气剂的使用并不普遍,只有水工和港工混凝土明确要求在混凝土中掺加引气剂,还有是对抗冻性有要求的北方,在混凝土中也要求使用引气剂来提高抗冻性。在混凝土中加入引气剂不仅有利于增加混凝土的抗冻性,对提高混凝土的抗渗性也是非常有好处的。 本文利用ASTM C1202标准试验方法对掺引气剂的混凝土的抗氯离子渗透性进行了研究,同时利用快冻法试验方法对引气剂改善混凝土抗冻性进行了研究。并对引气剂改善混凝土抗氯离子渗透性能和抗冻性的机理进行了探讨。 1 试验原材料 水泥:浙江三狮水泥股份有限公司生产的三狮牌P.O42.5普通硅酸盐水泥。 粉煤灰:宁波某发电厂生产的Ⅰ级粉煤灰。 细骨料:河砂,细度模数MX = 2.83,属中砂,级配Ⅱ区。 粗骨料: 5~25mm的碎石。 减水剂:浙江五龙化工股份有限公司生产的高效减水剂。

引气剂:上海枫杨实业有限公司生产的SJ - 2水溶性混凝土引气剂。 2 试验方法 2. 1 混凝土的抗氯离子渗透性能 氯离子渗透性能试验按ASTM C1202 - 97 进行,试验龄期为28d。 ASTM C1202 - 97 是美国试验与材料协会ASTM选定的标准试验方法,试验的具体方法:50mm厚, 100mm直径的水饱和混凝土试件,两端水槽所用溶液分别为3. 0%NaCl和0. 3N NaOH,在60V的外加电场下,持续通电6小时后测定通过混凝土试件的总电量,用通过混凝土的电量高低来判断混凝土的抗氯离子渗透能力。 按照混凝土6小时通过的总导电量,根据导电量大小,把混凝土对氯离子渗透性分成不同等级。根据混凝土的导电量,可以判断氯离子渗透性的高低。如表1: 2. 2 混凝土的抗冻性能 抗冻性试验采用北京燕科新技术总公司生产的DTR 一1 型混凝土快速冻融实验设备,按照GBJ82一85《普通混凝土长期性能和耐久性能试验》的“快冻法”进行。混凝土抗冻性试验冻融循环若超过200次,则停止试验,以动弹模量的损失来衡量混凝土抗冻性能的好坏。 3 混凝土配合比 混凝土选用了0.3、0.4和0.5三个不同的水胶比,以不掺引气剂的混凝土为基准配合比,掺入引气剂的混凝土为对比混凝土,研究混凝土的抗氯离子渗透性能和抗冻性能,各混凝土的配合比如表2。

氯离子对混凝土的侵蚀

氯离子对混凝土结构的侵蚀 文:张洪滨 第一节:氯离子对混凝土结构的侵蚀 混凝土受到破坏的原因,按重要性递减顺序排列,依次是钢筋锈蚀、冻害、物理化学作用。而氯离子是造成钢筋锈蚀的主要原因。 在自然环境中,氯离子是广泛存在的。包括: 1,氯离子存在于混凝土原材料中,如含氯化物的减水剂,掺入的矿渣可能是用海水淬冷的,粉煤灰可能是用海水排湿的等等。 2,海洋是氯离子的主要来源,不仅海水中含有大约3%的氯化物,海风、海雾、海沙中也含有氯离子。海水、海风和海雾中的氯离子和不合理地使用海沙,是影响混凝土结构耐久性的主要原因之一。 3,道路化冰盐因为性能好,价格便宜,因此在道路上广泛使用,这就使得氯离子能渗透到混凝土之中,引起钢筋锈蚀。 4,盐湖和盐碱地也是氯离子的一个重要来源。 5,工业环境十分复杂,就腐蚀介质而言有酸、碱、盐等,其中以氯离子、氯气和氯化氢等为主的腐蚀环境不在少数,处在此类环境中的混凝土结构的腐蚀破坏往往是非常迅速而又严重的。 6、火不仅可以直接降低钢筋混凝土结构的强度与可用性,而且由于热分解有机化合物,还有促进钢筋锈蚀的间接作用。含氯很高的聚氯乙烯在80—90度下会分解放出气态的氯化氢,到300度时,几乎完全分解释放出大量氯离子,遇水溶解,形成PH值低到1的盐酸。这种酸最后在构件表面冷却凝结,渗入混凝土中,就会引起钢筋锈蚀。因此,火灾后混凝土构件常为氯化物所危害。 第二节:氯离子侵入混凝土的途径 氯离子进入混凝土中通常有两种途径: 第一是“混入”,如使用含氯离子的外加剂、使用海砂、施工用水含氯离子、在含盐环境中拌制浇筑混凝土等。氯化物分水溶性和酸溶性两种,作为外加剂加入混凝土的氯化物一般都是水溶性的,而骨料中含有的氯化物大多都是酸溶性的。水溶性氯化物的危害大于酸溶性氯化物,因为它们可以直接腐蚀钢筋。“混入”现象大都是施工管理问题。

相关主题
文本预览
相关文档 最新文档