当前位置:文档之家› 初中几何中线段和与差最值问题(终审稿)

初中几何中线段和与差最值问题(终审稿)

初中几何中线段和与差最值问题(终审稿)
初中几何中线段和与差最值问题(终审稿)

初中几何中线段和与差

最值问题

公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

初中几何中线段和(差)的最值问题

一、两条线段和的最小值。 基本图形解析: 一)、已知两个定点:

1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧:

(2)点A 、B 在直线同侧:

2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。 (1)两个点都在直线外侧:

(2)一个点在内侧,一个点在外侧:

m

m B

m

A

B

m

n m

n

n

m

n

(3)两个点都在内侧:

(4)、台球两次碰壁模型

变式一:已知点A 、B 位于直线m,n 的内

侧,在直线n 、m 分别上求点D 、E 点,使得围成

的四边形ADEB 周长最短.

变式二:已知点A 位于直线m,n 的内侧,

在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短.

二)、一个动点,一个定点: (一)动点在直线上运动:

n

n

m

B

点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图

中画出点P 和点B ) 1、两点在直线两侧:

2、两点在直线同侧:

(二)动点在圆上运动

点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B )

1、点与圆在直线两侧:

2、点与圆在直线同

侧:

m n

m

n

m

n

m

m

m

m

三)、已知

A

、B是两个定点,P、Q是直线m上的两个动点,P在Q的左侧,且PQ间长度恒定,在直线m上要求P、Q两点,使得PA+PQ+QB的值最小。(原理用平移知识解)

(1)点A、B在直线m两侧:

作法:过A点作AC∥m,且AC长等于PQ长,连接BC,交直线m于Q,Q向左平移PQ长,即为P点,此时P、Q即为所求的点。

(2)点A、B在直线m同侧:

基础题

1.如图1,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB 上的动点,求△PQR周长的最小值为.

m

A

B

E

Q

P

m

A

B

Q

m

A

Q

m

A C

Q

P

2、如图2,在锐角三角形ABC中,AB=4,∠

BAC=45°,∠BAC的平分线交BC于点D,M,N分

别是AD和AB上的动点,则BM+MN的最小值为.

3、如图3,在锐角三角形ABC中,AB=52,∠BAC=45,BAC的平分线交BC于D,M、N分别是AD和AB上的动点,则BM+MN的最小值

是。

4、如图4所示,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为.

5、如图5,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=

5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为

__________.

6、如图6,等腰梯形ABCD中,AB=AD=CD=1,∠ABC=60°,P是上底,下底中点EF直线上的一点,则PA+PB的最小值为.

7、如图7菱形ABCD 中,AB=2,∠BAD=60°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值为.

8、如图8,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM+PN 的最小值是

9、如图9,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底3cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为________cm .

10、如图10所示,已知正方形ABCD 的边长为8,点M 在DC 上,且DM=2,N 是

AC 上的一个动点,则DN+MN 的最小值为 .

11、如图11,MN 是半径为1的⊙O 的直径,点A 在⊙O 上, ∠AMN =30°,B 为AN 弧的中点,P 是直径MN 上一动点, 则PA +PB 的最小值为( ) (A)2

(B)

(C)1 (D)2

压轴题

1、如图,正比例函数x y 21=

的图象与反比例函数x

k

y =(k ≠0)在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知三角形OAM 的面积为1.

(1)求反比例函数的解析式;

(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA+PB 最小.

2、如图,一元二次方程0322=-+x x 的二根1x ,2x (1x <2x )是抛物线c bx ax y ++=2与x 轴的两个交点B ,C 的横坐标,且此抛物线过点A (3,6).

(1)求此二次函数的解析式;

(2)设此抛物线的顶点为P ,对称轴与AC 相交于点Q ,求点P 和点Q 的坐标;

(3)在x 轴上有一动点M ,当MQ+MA 取得最小值时,求M 点的坐标.

3、如图,在平面直角坐标系中,点A的坐标为(1,3),△AOB的面积是3.

(1)求点B的坐标;

(2)求过点A、O、B的抛物线的解析式;

(3)在(2)中抛物线的对称轴上是否存在点C,使△

AOC的周长最小若存在,求出点C的坐标;若不存在,

请说明理由.

4.如图,抛物线y=3

5

x2-

18

5

x+3和y轴的交点为A,M为OA的中点,若

有一动点P,自M点处出发,沿直线运动到x轴上的某点(设为点E),再沿直线运动到该抛物线对称轴上的某点(设为点F),最后又沿直线运动到点A,求使点P运动的总路程最短的点E,点F的坐标,并求出这个最短路程的长.

5.如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作

BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.

(1)求经过A、B、C三点的抛物线的解析式;

(2)当BE经过(1)中抛物线的顶点时,求CF的长;

(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,求出P、Q两点的坐标.

6.如图,已知平面直角坐标系,A,B两点的坐标分

别为A(2,-3),B(4,-1)若C(a,0),D(a+3,0)

是x轴上的两个动点,则当a为何值时,四边形ABDC

的周长最短.

7、如图,在平面直角坐标系中,矩形的顶点O 在坐标原点,顶点

A 、

B 分别在x 轴、y 轴的正半轴上,OA=3,OB=4,D 为边OB 的中点. (1)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;

(2)若E 、F 为边OA 上的两个动点,且EF=2,当四边形CDEF 的周长最小时,求点E 、F 的坐标.

二、求两线段差的最大值问题 (运用三角形两边之差小于第三边) 基本图形解析:

1、在一条直线m 上,求一点P ,使PA 与PB 的差最大; (1)点A 、

B

在直线m 同侧:

B

A

B A

解析:延长AB 交直线m 于点P ,根据三角形两边之差小于第三边,P ’A —P ’B <AB ,而PA —PB=AB 此时最大,因此点P 为所求的点。 (2)点A 、B 在直线m 异侧:

解析:过B 作关于直线m 的对称点B ’,连接AB ’交点直线m 于P,此时PB=PB ’,PA-PB 最大值为AB ’ 练习题

1. 如图,抛物线y =-14x 2

-x +2的顶点为A ,与y 轴交于点B .

(1)求点A 、点B 的坐标;

(2)若点P 是x 轴上任意一点,求证:PA -

PB ≤AB ;

(3)当PA -PB 最大时,求点P 的坐标.

2. 如图,已知直线y =2

1x +1与y 轴交于点A ,与x 轴交于点D ,抛物线

y =2

1x 2

+bx +c

与直线

y A

E

y

B'

P

P'

交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).

(1)求该抛物线的解析式;

(2)在抛物线的对称轴上找一点M,使|AM-MC|的值最大,求出点M的坐标.

3、在直角坐标系中,点A、B的坐标分别为(-4,-1)和(-2,-5);点P是y轴上的一个动点:

⑴点P在何处时,PA+PB的和为最小并求最小值.

⑵点P在何处时,∣PA—PB∣最大并求最大值.

4. 如图,直线y=-3x+2与x轴交于点C,与y轴交于点B,点A为y轴正半轴上的一点,⊙A经过点B和点O,直线BC交⊙A于点D.

x

C

l

yx B A 1=x

(1)求点D 的坐标;

(2)过O ,C ,D 三点作抛物线,在抛物线的对称轴上是否存在一点P ,使线段PO 与PD 之差的值最大

若存在,请求出这个最大值和点P 的坐标.若不存在,请说明理由.

5、抛物线的解析式为223y x x =-++,交x 轴与A 与B,交y 轴于C. ⑴在其对称轴上是否存在一点P ,使⊿APC 周长最小,若存在,求其坐标;

⑵在其对称轴上是否存在一点Q ,使∣QB—QC∣的值最大,若存在求其坐标.

6、已知:如图,把矩形OCBA 放置于直角坐标系中,OC=3,BC=2,取AB

的中点M ,连接MC ,把△MBC 沿x 轴的负方向平移OC 的长度后得到△DAO.

(1)试直接写出点D的坐标;

(2)已知点B与点D在经过原点的抛物线上,点P在第一象限内的该抛物线上移动,过点P作PQ⊥x轴于点Q,连接OP.

①若以O、P、Q为顶点的三角形与△DAO相似,试求出点P的坐标;

②试问在抛物线的对称轴上是否存在一点T,使得|TO-TB|的值最大

7、如图,已知抛物线C

1

的解析式为y=-x2+2x+8,图象与y轴交于D点,并且顶点A在双曲线上.

(1)求过顶点A的双曲线解析式;

(2)若开口向上的抛物线C

2与C

1

的形状、大小完全相同,并且C

2

的顶点

P始终在C1上,证明:抛物线C

2

一定经过A点;

(3)设(2)中的抛物线C

2

的对称轴PF与x轴交于F点,且与双曲线交于E点,当D、O、E、F四点组成的四边形的面积为时,先求出P点坐标,并在直线y=x上求一点M,使|MD-MP|的值最大.

8、如图,已知抛物线243

y x bx c =++ 经过A(3,0),B(0,4) . (1)求此抛物线解析式;

(2)若抛物线与x 轴的另一交点为C ,求点C 关于直线AB 的对称点C ’的坐标;

(3) 若点D 是第二象限内点,以D 为圆心的圆分别与x 轴、y 轴、直线

AB 相切于点E 、F 、H ,问在抛物线的对称轴上是否存在一点一点P ,使得

|PH -PA |的值最大若存在,求出该最大值;若不存在,请说明理由。

三、其它非基本图形类线段和差最值问题

1、求线段的最大值与最小值需要将该条线段转化到一个三角形中,在该三角形中,其他两边是已知的,则所求线段的最大值为其他两线段之和,最小值为其他两线段之差。

2、在转化较难进行时需要借助于三角形的中位线及直角三角形斜边上的中线。

3、线段之和的问题往往是将各条线段串联起来,再连接首尾端点,根据两点之间线段最短以及点到线的距离垂线段最短的基本依据解决。

1、如图12,在△ABC 中,∠C =90°,AC =4,BC =2,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动过程中,点B 到原点的最大距离是( ) A . 222 B .52

C 。 62

D . 6

2、已知:在△ABC 中,BC=a ,AC=b ,以AB 为边作等边三角形ABD. 探究下列问题:

(1)如图13,当点D 与点C 位于直线AB 的两侧时,a=b=3,且∠ACB=60°,则CD= ;

2)如图14,当点D与点C位于直线AB的同侧时,a=b=6,且∠

ACB=90°,则CD= ;

(3)如图15,当∠ACB变化,且点D与点C位于直线AB的两侧时,求 CD的最大值及相应的∠ACB的度数.

3、在Rt△ABC中,∠ACB=90°,tan∠BAC=1

2

. 点D在边AC上(不与A,C重合),连结BD,F为BD中点.

(1)若过点D作DE⊥AB于E,连结CF、EF、CE,如图1.设CF kEF

,则k = ;

(2)若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2所示.

求证:BE-DE=2CF;

(1)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F 始终为BD中点,

求线段CF长度的最大值.

A

E D

E

A A

4、如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM. ⑴ 求证:△AMB≌△ENB;

⑵ ①当M 点在何处时,AM +CM 的值最小;

②当M 点在何处时,AM +BM +CM 的值最小,并说明理由; ⑶ 当AM +BM +CM 的最小值为13 时,求正方形的边长.

5、如图,二次函数y=-x 2+bx+c 与x 轴交于点B 和点A (-1,0),与y 轴交于点C ,与一次函数y=x+a 交于点A 和点D . (1)求出a 、b 、c 的值;

(2)若直线AD 上方的抛物线存在点E ,可使得△EAD 面积最大,求点E 的坐标;

B

(3)点F 为线段AD 上的一个动点,点F 到(2)中的点E 的距离与到y 轴的距离之和记为d ,求d 的最小值及此时点F 的坐标.

6、如图,抛物线)4)(2(8

-+=x x k y (k 为常数,且k >0)与x 轴从左到右依次交于A 、B 两点,与y 轴交于点C ,经过点B 的直线b x y +-=3

3

与抛物线的另一交点为D.

(1)若点D 的横坐标为-5,求抛物线的函数表达式; (2)若在第一象限的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与△ABC 相似,求k 的值; (3)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF ,一动点M 从点A 出发,沿线段AF 以

每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止,点F 的坐标是多少时,点M 在整个运动过程中用时最少

中考几何最值问题(含答案)

几何最值问题 一.选择题(共6小题) 1.(2015?孝感一模)如图,已知等边△ABC的边长为6,点D为AC的中点,点E为BC的中点,点P为BD上一点,则PE+PC的最小值为() 3 AE==3, . 2.(2014?鄂城区校级模拟)如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为() 5050+50

LN=AS==40 MN==50 MN=MQ+QP+PN=BQ+QP+AP=50 =50 3.(2014秋?贵港期末)如图,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN的度数为()

4.(2014?无锡模拟)如图,∠MON=90°,矩形ABCD的顶点A,B分别在OM、ON上,当B 在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=.运动过程中,当点D到点O的距离最大时,OA长度为() C OE=AE=AB=× AD=BC= DE= ADE==, =

DF=, OA=AD= 5.(2015?鞍山一模)如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是() C D ,连结,此时四 ,连结MN= =, =, ,

PC= PDC==. 6.(2015?江干区一模)如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE 为半径⊙C.G是⊙C上一动点,P是AG中点,则DP的最大值为() C BG AD=BD=AB=3 CE=

(word完整版)初中几何中线段和差最大值最小值典型分析最全

初中几何中线段和(差)的最值问题 一、两条线段和的最小值。 基本图形解析:( 对称轴为:动点所在的直线上) 一)、已知两个定点: 1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧: (2)点A 、B 在直线同侧: A 、A ’ 是关于直线m 的对称点。 2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。 m m A B m B m A B m

(1)两个点都在直线外侧: (2)一个点在内侧,一个点在外侧: (3)两个点都在内侧: n m n n m n n n m

(4)、台球两次碰壁模型 变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、 m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短. 填空:最短周长=________________ 变式二:已知点A 位于直线m,n 的内侧, 在直线m 、 n 分别上求点P 、Q 点PA+PQ+QA 周长最短.

二)、一个动点,一个定点: (一)动点在直线上运动: 点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、两点在直线两侧: 2、两点在直线同侧: m n m n m n m

(二)动点在圆上运动 点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、点与圆在直线两侧: 2、点与圆在直线同侧: 三)、已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度 m m m m

初中数学几何最值问题典型例题精修订

初中数学几何最值问题 典型例题 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

初中数学《最值问题》典型例题一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 几何最值问题中的基本模型举例

二、典型题型

1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若 ∠AOB=45°,OP=PMN的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解. 【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD. ∴△COD是等腰直角三角形. 则CD OC=6. 【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键. 2.如图,当四边形PABN的周长最小时,a= .

专题25平面几何的最值问题

专题25 平面几何的最值问题 阅读与思考 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值. 求几何最值问题的基本方法有: 1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证. 2.几何定理(公理)法:应用几何中的不等量性质、定理. 3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等. 例题与求解 【例1】在Rt △ABC 中,CB =3,CA =4,M 为斜边AB 上一动点.过点M 作MD ⊥AC 于点D ,过M 作ME ⊥CB 于点E ,则线段DE 的最小值为 .(四川省竞赛试题) 解题思路:四边形CDME 为矩形,连结CM ,则DE = CM ,将问题转化为求CM 的最小值. 【例2】如图,在矩形ABCD 中,AB =20cm ,BC =10cm .若在AC ,AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值.(北京市竞赛试题) A D N 解题思路:作点B 关于AC 的对称点B ′,连结B ′M ,B ′A ,则BM = B ′M ,从而BM +MN = B ′M +MN .要使BM +MN 的值最小,只需使B ′M 十MN 的值最小,当B ′,M ,N 三点共线且B ′N ⊥AB 时,B ′M +MN 的值最小. 【例3】如图,已知□ABCD ,AB =a ,BC =b (b a ),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q .求AP +BQ 的最小值. (永州市竞赛试题) D

初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

初中数学最值问题集锦 几何地定值与最值

几何的定值与最值 几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或 几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本 方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法, 先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量 (如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基 本方法有: 1.特殊位置与极端位置法; 2.几何定理(公理)法; 3.数形结合法等. 注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这 是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数 形结合、特殊与一般相结合、 逻辑推理与合情想象相结合等思想方法. 【例题就解】 【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以 AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 . 思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′, DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=2 1AB 一常数,当CQ 越小,CD 越小, 本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值. 注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特 殊位置与极端位置是指: (1)中点处、垂直位置关系等; (2)端点处、临界位置等. 【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度 数( ) ⌒

经典几何中线段和差最值(含答案) (2)

几何中线段和,差最值问题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.

一般处理方法: 常用定理: 两点之间,线段最短(已知两个定点时) 垂线段最短(已知一个定点、一条定直线时) 三角形三边关系(已知两边长固定或其和、差固定时) 二、典型题型 1.如图:点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动,若∠AOB =45°,OP =△PMN 的周长的最小值为 6 . 2.如图,当四边形P ABN 的周长最小时,a = 4 7 . P A +P B 最小, 需转化, 使点在线异侧 B l

3.如图,A、B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=1,且MN=4,P为直线上的动点,|P A﹣PB|的最大值为5. 4.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点 P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC 边 上可移动的最大距离为 2 . 5.如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、AD上,将△AEF沿EF翻折,点A的落点记为P.当P落在直角梯形ABCD内部时,PD 6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B 在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O

初中数学最值问题解题技巧,初中几何最值问题方法归纳总结

几何最值问题大一统 追本溯源化繁为简 目有千万而纲为一,枝叶繁多而本为一。纲举则目张,执本而末从。如果只在细枝末节上下功夫,费了力气却讨不了好。学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。 关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 AD一定,所以D是定点,C是直线 的最短路径,求得当CD⊥AC时最短为 是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

2018年专题10(几何)最值问题(含详细答案)

专题10 几何最值问题【十二个基本问题】

1.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为() A.61cm B.11cm C.13cm D.17cm 第1题第2题第3题第4题2.已知圆锥的底面半径为r=20cm,高h=20 15cm,现在有一只蚂蚁从底边上一点A出发.在侧面上爬行一周又回到A点,蚂蚁爬行的最短距离为________.3.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为() A.2 B.C.D. 4.如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为() A.10 B.8 C.5 3 D.6 5.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处. (1)请你画出蚂蚁能够最快到达目的地的可能路径; (2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长. (3)在(2)的条件下,求点B1到最短路径的距离. 6.如图,已知P为∠AOB内任意一点,且∠AOB=30°,点P1、P2分别在OA、OB上,求作点P1、P2,使△PP1P2的周长最小,连接OP,若OP=10cm,求△PP1P2的周长.

7.如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是________. 第7题 第8题 第9题 8.如图,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =4 2,点D 是AC 边上一动点,连接BD ,以AD 为直径的圆交BD 于点E ,则线段CE 长度的最小值为 . 9.如图,⊙O 的半径为1,弦AB =1,点P 为优弧⌒ AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( ) A .12 B . 22 C . 32 D . 34 10.如图,已知抛物线y =-x 2 +bx +c 与一直线相交于A (-1,0),C (2,3)两点,与y 轴交于点N .其顶点为D . (1)抛物线及直线AC 的函数关系式; (2)设点M (3,m ),求使MN +MD 的值最小时m 的值; (3)若抛物线的对称轴与直线AC 相交于点B ,E 为直线AC 上的任意一点,过点E 作EF ∥BD 交抛物线于点F ,以B ,D ,E ,F 为顶点的四边形能否为平行四边形若能,求点E 的坐标;若不能,请说明理由; (4)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值.

几何中线段的最值问题

D C B A A B C D A B C D 几何中线段的最值问题 一、 一条线段的最值问题一 (1)借助旋转求最值 2013通州一模 24.已知:2AD =,4BD =,以AB 为一边作等边三角形ABC .使C 、D 两点落在直线AB 的两侧. (1)如图,当∠ADB=60°时,求AB 及CD 的长; (2)当∠ADB 变化,且其它条件不变时,求CD 的 最大值,及相应∠ADB 的大小. 2011丰台一模 25.已知:在△ABC 中,BC=a ,AC=b ,以AB 为边作等边三角形ABD. 探究下列问题: (1)如图1,当点D 与点C 位于直线AB 的两侧时,a=b=3,且∠ACB=60°,则CD= ; (2)如图2,当点D 与点C 位于直线AB 的同侧时,a=b=6,且∠ACB=90°,则CD= ; (3)如图3,当∠ACB 变化,且点D 与点C 位于直线AB 的两侧时,求 CD 的最大值及相应的∠ACB 的度数. A D B C

图1 图2 图3 (2)借助直角三角形性质求最值 (1)勾股定理 (2)直角三角形斜边中线等于斜边一半 (3)直角三角形斜边的两条重要的线段,一是斜边上的高,另一个是斜边上的中线,直角三角形斜边上的高是直角顶点到斜边上所有点之中距离最短的,其长度可以用两直角边乘积除 以斜边求得. 【例1】如图,在ΔABC中,∠C=90°,AC=2,BC=1,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C 随之在y轴上运动,在运动过程中,点B到原点的最大距离是 【例2】如图,△ABC 是边长为定值m的正三角形,C点与原点重合,点B在第一象限点,点A 在x轴上。 ②求出AC边上的高线BD的长度; ③当点C在y轴的正半轴滑动时,试求出点O到CA距离的最大值; ④已知点P是△ABC内切圆的圆心,请求出OP的最大值。

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

几何综合及几何最值问题(含答案)

学生做题前请先回答以下问题 问题1:几何综合的思考流程是什么? 问题2:几何综合中常见结构、常用模型有哪些? 问题3:直角的思考角度有哪些? 边:____________________; 角:____________________; 面积:多个直角,把直角当作高,常考虑____________________; 固定模型和用法: ①直角+中点______________________; ②直角+特殊角____________________; ③直角+角平分线__________________; ④直角三角形斜边上的高___________; ⑤弦图结构; ⑥三等角模型; ⑦斜直角放正. 函数背景下考虑:______________________________; 圆背景下考虑:________________________________. 问题4:轴对称思考层次有哪些? 问题5:旋转思考层次有哪些? 问题6:圆的思考角度有哪些? 几何综合及几何最值问题 一、单选题(共10道,每道10分) 1.如图,在Rt△ABC中,∠ACB=90°,,沿△ABC的中线OC将△AOC折叠,使点A落在点D处.若CD⊥AB于点M,则tanA的值为( ) A. B.

C. D. 答案:A 解题思路: 试题难度:三颗星知识点:直角三角形两锐角互余 2.如图,BE,CF分别是△ABC两边上的高,M为BC的中点.若EF=6,BC=10,则△MEF的边ME上的高为( )

A. B. C.4 D. 答案:B 解题思路:

试题难度:三颗星知识点:等面积法 3.如图,在矩形ABCD中,E是AD的中点,F是CE的中点,若△BDF的面积为6,则矩形ABCD的面积为( ) A.24 B.36

初中数学几何最值问题

关于线段最短问题在几何中的运用之课前预习指导探索 三界中学 杨良举 在初中平面几何的动态问题中,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为几何最值问题.近年来,成都中考题常通过几何最值问题考查学生的实践操作能力、空间想象能力、分析问题和解决问题的能力.本文针对不同类型的几何最值问题作一总结与分析.最值问题也学生在解决时比较困难,失分比较严重的题型,因此结合我们校实际,把《几何最值问题》作为我校的微课题研究,下面就最值问题的解决方法研究如下: 案例分析 一、应用几何性质 1.三角形的三边关系 例1 如图1,90MON ∠=?,矩形ABCD 的顶点A 、B 分别在边,OM ON 上.当分在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中2,1AB BC ==,运动过程中,点D 到点O 的最大距离为( ) (A) 1 (B) (c) 5 (D)52 分析 如图1,取AB 的中点E ,连结,,OE DE OD . OD OE DE ≤+Q , ∴当,,O D E 三点共线时,点D 到点O 的距离最大,此时,2,1AB BC ==, 1 12 OE AE AB ∴===.DE == OD ∴1. 故选A. 2.两点间线段最短 例2 如图2,圆柱底面半径为2cm,高为9πcm ,点,A B 分别是回柱两底面圆周

上的点,且,A B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线长度最短为 . 分析 如图3,将圆柱展开后可见,棉线最短是三条斜线的长度,第一条斜线与 底面圆周长、圆柱的三分之一高组成直角三角形. 由周长公式知底面圆一周长为4πcm ,圆柱的三分之一高为3πcm ,根据勾股定理,得一条斜线长为5πcm ,根据平行四边形的性质,棉线长度最短为15πcm. 3.垂线段最短 例3 如图4,点A 的坐标为(1,0)-,点B 在直线y x =运动,当线段AB 最短时,点B 的坐标为( ) (A)(0,0) (B)11(,)22-- (C) (D)( 分析 如图4,过点A 作'AB OB ⊥,垂足为点'B ,过'B 作'B C x ⊥轴,垂足为C .由垂线段最短可知,当'B 与点B 重合时,AB 最短. ∵点B 在直线y x =上运动, ∴'AOB V 是等腰直角三角形 ∴'B CO V 为等腰直角三角形 ∵点A 的坐标为(1,0)-,

几何图形中的最值问题

几何图形中的最值问题 引言:最值问题可以分为最大值和最小值。在初中包含三个方面的问题: 1. 函数:①二次函数有最大值和最小值;②一次函数中有取值范围时有最大值和最小值。 2. 不等式:①如x w 7最大值是7;②如x> 5,最小值是5. 3.几何图形:①两点之间线段线段最短。②直线外一点向直线上任一点连线中垂线段 最短,③在三角形中,两边之和大于第三边,两边之差小于第三边。 一、最小值问题 B镇 * A镇 ? ' -------------------------- '燃气管 例1.如图4,已知正方形的边长是8, M在DC上,且DM=2 N为线段AC 上的一动点,求DN+MN勺最小值。 解:作点D关于AC的对称点D,则点D与点B重合,连BM交AC于N,连DN 贝U DN+MN t短,且DN+MN=BM ?/ CD=BC=8,DM=2, /? MC=6, 在Rt △ BCM中,BM= 82 62=10, ??? DN+MN勺最小值是10。 例2,已知,MN是O O直径上,MN=2点A在O O上,/ AMN=3&B 是弧AN的中点,P是MN上的一动点,贝U PA+PB的最小值是__________ 解:作A点关于MN的对称点A,连AB,交MN于P,贝U PA+PB最短。 连OB oA, ???/ AMN=30B是弧AN的中点, ???/ BOA=30°,根据对称性可知 :丄 NOA=60°,:丄 MOA=900, D D M B N A M O A

在 Rt △ A ’BO 中,OA=OB=1, ??? A B =、2 即 PA+PB= 2 作点A 关于杯上沿 MN 的对称点B ,连接BC 交MN 于点P , 连接BM 过点C 作AB 的垂线交剖开线 MA 于点Do 由轴对称的性质和三角形三边关系知 例3.如图6,已知两点 D(1,-3),E(-1,-4), 试在直线y=x 上确定一点 P,使点P 到D E 两点的距离之和最小,并求出最小值。 解:作点E 关于直线y=x 的对称点M 连MD 交直线y=x 于P,连PE, 贝U PE+PD 最短;即 PE+PD=MD ??? E(-1,-4), ? M(-4,-1), 过M 作MN/ x 轴的直线交过 D 作DN/ y 轴的直线于 N, 则 MN_ ND,又 T D(1,-3),则 N(1,-1), 在 Rt △ MND 中 ,MN=5,ND=2, ? MD= 5? 2 = .. 29。 ???最小值是.29 。 练习 1. (2012山东青岛3分)如图,圆柱形玻璃杯高为 12cm 底面周长为18cm,在杯内离 杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁, 离杯上沿4cm 与蜂蜜相对的点 A 处,则蚂蚁到达蜂蜜的最短距离为 cm I I \ 41 订一干 4 / > is 【解】如图,圆柱形玻璃杯展开(沿点 A 竖直剖开)后侧面是一个长 18宽12的矩形,

精彩初中几何最值问题全总结

一、基本图形 余不赘述,下面仅举一例证明: [定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO, AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。 类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定。 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB 边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

几何中线段的最值问题

几何中线段的最值问题 Document number:PBGCG-0857-BTDO-0089-PTT1998

D C B A A B C D A B C D 几何中线段的最值问题 一、 一条线段的最值问题一 (1)借助旋转求最值 2013通州一模 24.已知:2AD =,4BD =,以AB 为一边作等边三角形ABC .使C 、D 两点落在直线AB 的两侧. (1)如图,当∠ADB=60°时,求AB 及CD 的长; (2)当∠ADB 变化,且其它条件不变时,求CD 的 最大值,及相应∠ADB 的大小. 2011丰台一模 25.已知:在△ABC 中,BC=a ,AC=b ,以AB 为边作等边三角形ABD. 探究下列问题: (1)如图1,当点D 与点C 位于直线AB 的两侧时,a=b=3,且∠ACB=60°,则CD= ; (2)如图2,当点D 与点C 位于直线AB 的同侧时,a=b=6,且∠ACB=90°,则CD= ; (3)如图3,当∠ACB 变化,且点D 与点C 位于直线AB 的两侧时,求 CD 的最大值及相应的∠ACB 的度数. A D B C

图1 图2 图3 (2)借助直角三角形性质求最值 (1)勾股定理 (2)直角三角形斜边中线等于斜边一半 (3)直角三角形斜边的两条重要的线段,一是斜边上的高,另一个是斜边上的中线,直角三角形斜边上的高是直角顶点到斜边上所有点之中距离最短的,其长 度可以用两直角边乘积除以斜边求得. 【例1】如图,在ΔABC中,∠C=90°,AC=2,BC=1,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是 【例2】如图,△ABC 是边长为定值m的正三角形,C点与原点重合,点B在第一象限点,点A 在x轴上。 ②求出AC边上的高线BD的长度; ③当点C在y轴的正半轴滑动时,试求出点O到CA距离的最大值; ④已知点P是△ABC内切圆的圆心,请求出OP的最大值。 2011海淀一模

2018中考---几何最值问题规律总结

你会“几何中的最值问题”吗? 一、几何中最值问题包括: ①“面积最值” ②“线段(和、差)最值”. (1)求面积的最值 方法:需要将面积表达成函数,借助函数性质结合取值范围求解; (2)求线段及线段和、差的最值 方法:需要借助“垂线段最短”、“两点之间线段最短”及“三角形三边关系”等相关 定理转化处理. 一般处理方法: 常用定理: 两点之间,线段最短(已知两个定点时) 垂线段最短(已知一个定点、一条定直线时) 三角形三边关系 二、精讲精练 1. PA +PB 最小, 需转化,使点在线异侧 B l

2. 如图,点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动, 3. 如图,正方形ABCD 的边长是4,∠DAC 的平分线交DC 于点E , 若点P ,Q 分别是AD 和AE 上的动点,则DQ +PQ 的最小值为 . 4. 如图,在菱形ABCD 中,AB =2,∠A =120°,点P 、Q 、K 分别为 线段BC 、CD 、BD 上的任意一点,则PK +QK 的最小值为 . 5. 如图,当四边形P ABN 的周长最小时,a = . 6. 在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的 正半轴上,OA =3,OB =4,D 为边OB 的中点. 若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,则点F 的坐标为 . 7. 如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC =8,B 到MN 的距离BD =5, CD =4,P 在直线MN 上运动,则PA PB 的最大值等于 . 第5题图 第6题图 第7题图 8. 如图,在△ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为_________. N O Q P E D C B A Q P K C B A A B C D P M N A B C E F M

中考数学之_线段和(差)的最值问题

求线段和(差)的最值问题 【知识依据】:1.线段公理——两点之间,线段最短;2.对称的性质——①关于一条直线对称的两个图形全等;②对称轴是两个对称图形对应点连线的垂直平分线;3.三角形两边之和大于第三边;4.三角形两边之差小于第三边。5、垂直线段最短 一、已知两个定点: 1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧: (2)点A 、B 在直线同侧: A 、A ’ 是关于直线m 的对称点。 2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。 (1)两个点都在直线外侧: m m A B m A B m n m n

(2)一个点在内侧,一个点在外侧: (3)两个点都在内侧: (4)、台球两次碰壁模型 变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短. 变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短. n m A n n n m

二、一个动点,一个定点: (一)动点在直线上运动: 点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、两点在直线两侧: 2、两点在直线同侧: (二)动点在圆上运动 点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、点与圆在直线两侧: 2、点与圆在直线同侧: m n m n m n m m m m m

几何中线段的最值问题

D C B A A B C D A B C D 几何中线段的最值问题 一、 一条线段的最值问题一 (1)借助旋转求最值 2013通州一模 24.已知:2AD =,4BD =,以AB 为一边作等边三角形ABC .使C 、D 两点落在直线AB 的两侧. (1)如图,当∠ADB=60°时,求AB 及CD 的长; (2)当∠ADB 变化,且其它条件不变时,求CD 的 最大值,及相应∠ADB 的大小. 2011丰台一模 25.已知:在△ABC 中,BC=a ,AC=b ,以AB 为边作等边三角形ABD. 探究下列问题: (1)如图1,当点D 与点C 位于直线AB 的两侧时,a=b=3,且∠ACB=60°,则CD= ; (2)如图2,当点D 与点C 位于直线AB 的同侧时,a=b=6,且∠ACB=90°,则CD= ; (3)如图3,当∠ACB 变化,且点D 与点C 位于直线AB 的两侧时,求 CD 的最大值及相应的∠ACB 的度数. 图1 图2 图3 (2)借助直角三角形性质求最值 (1) 勾股定理 (2) 直角三角形斜边中线等于斜边一半 (3) 直角三角形斜边的两条重要的线段,一是斜边上的高,另一个是斜边上的中线,直角三角 形斜边上的高是直角顶点到斜边上所有点之中距离最短的,其长度可以用两直角边乘积除以斜边求得. A D B C

【例1】 如图,在ΔABC 中,∠C=90°,AC=2,BC=1,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动过程中,点B 到原点的最大距离是 【例2】 如图,△ABC 是边长为定值m 的正三角形,C 点与原点重合,点B 在第一象限点,点A 在x 轴上。 ② 求出AC 边上的高线BD 的长度; ③ 当点C 在y 轴的正半轴滑动时,试求出点O 到CA 距离的最大值; ④ 已知点P 是△ABC 切圆的圆心,请求出OP 的最大值。 2011海淀一模 25.在Rt △ABC 中,∠ACB =90°,tan ∠BAC =12 . 点D 在边AC 上(不与A ,C 重合),连结BD ,F 为BD 中点. (1)若过点D 作DE ⊥AB 于E ,连结CF 、EF 、CE ,如图1. 设CF kEF =,则k = ; (2)若将图1中的△ADE 绕点A 旋转,使得D 、E 、B 三点共线,点F 仍为BD 中点,如图2所示. 求证:BE -DE =2CF ; (3)若BC =6,点D 在边AC 的三等分点处,将线段AD 绕点A 旋转,点F 始终为BD 中点, 求线段CF 长度的最大值. 2010海淀一模 25.已知:AOB △中,2AB OB ==,COD △中,3CD OC ==,ABO DCO =∠∠. 连接AD 、BC ,点M 、N 、P 分别为OA 、OD 、BC 的中点. B C A D E F B D E A F C B A C 1图2图备图

轴对称中几何动点最值问题总结

轴对称中几何动点最值问题 总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

轴对称中几何动点最值问题总结 轴对称的作用是“搬点移线”,可以把图形中比较分散、缺乏联系的元素集中到“新的图形”中,为应用某些基本定理提供方便。比如我们可以利用轴对称性质求几何图形中一些线段和的最大值或最小值问题。 利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个: (1)两点之间线段最短; (2)三角形两边之和大于第三边; (3)垂线段最短。 初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线,一点两线三类线段和的最值问题。下面对三类线段和的最值问题进行分析、讨论。 (1)两点一线的最值问题:(两个定点+ 一个动点) 问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线段和最短。 核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。 方法:1.定点过动点所在直线做对称。 2.连结对称点与另一个定点,则直线段长度就是我们所求。 变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。 1.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小。

(2) 一点两线的最值问题: (两个动点+一个定点) 问题特征:已知一个定点位于平面内两相交直线之间,分别在两直线上确定两个动点使线段和最短。 核心思路:这类问题实际上是两点两线段最值问题的变式,通过做这一定点关于两条线的对称点,实现“搬点移线”,把线段“移”到同一直线上来解决。 变异类型: 1.如图,点P 是∠MON 内的一点,分别在OM ,ON 上作点A ,B 。使△PAB 的周长最小。 2.如图,点A 是∠MON 外的一点,在射线OM 上作点P ,使PA 与点P 到射线ON 的距离之和最小。 (3) 两点两线的最值问题: (两个动点+两个定点) 问题特征:两动点,其中一个随另一个动(一个主动,一个从动),并且两动点间的距离保持不变。 核心思路:用平移方法,可把两动点变成一个动点,转化为“两个定点和一个动点”类型来解。

初中几何中线段和与差最值问题

初中几何中线段和(差)的最值问题 一、两条线段和的最小值。 基本图形解析: 一)、已知两个定点: 1、在一条直线m 上,求一点P,使P A+PB 最小; (1)点A 、B 在直线m 两侧: (2)点A 、B 在直线同侧: 2、在直线m 、n 上分别找两点P、Q,使PA+P Q+QB 最小。 (1)两个点都在直线外侧: (2)一个点在内侧,一个点在外侧: (3)两个点都在内侧: m m B m A B m n m n n m n n n m

(4)、台球两次碰壁模型 变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短. 变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA +PQ+Q A周长最短. 二)、一个动点,一个定点: (一)动点在直线上运动: 点B在直线n上运动,在直线m 上找一点P,使PA +PB 最小(在图中画出点P和点B ) 1、两点在直线两侧: 2、两点在直线同侧: (二)动点在圆上运动 点B 在⊙O 上运动,在直线m 上找一点P,使PA+P B最小(在图中画出点P 和点B ) 1、点与圆在直线两侧: m n m n m n m m

2、点与圆在直线同侧: 三)、已知A 、B 是两个定点,P 、Q 是直线m上的两个动点,P 在Q 的左侧,且PQ间长度恒定,在直线m上要求P 、Q 两点,使得PA+P Q+QB 的值最小。(原理用平移知识解) (1)点A 、B 在直线m两侧: 作法:过A 点作AC ∥m,且AC长等于PQ长,连接BC ,交直线m 于Q,Q 向左平移PQ 长,即为P点,此时P 、Q 即为所求的点。 (2)点A 、B 在直线m同侧: 基础题 1.如图1,∠AO B=45°,P 是∠AO B内一点,PO =10,Q、R 分别是OA 、OB 上的动点,求△PQR 周长的最小值为 . 2、如图2,在锐角三角形ABC 中,AB=4 ,∠BAC=45°,∠B AC的平分线交B C于点D, M,N分别是AD 和AB上的动点,则BM+MN的最小值为 . m O A P m O A B m A B E Q P m A B Q m A Q m A C Q P

相关主题
文本预览
相关文档 最新文档