当前位置:文档之家› 微积分第二章-函数极限与连续答案

微积分第二章-函数极限与连续答案

微积分第二章-函数极限与连续答案
微积分第二章-函数极限与连续答案

函数极限与连续函数的性质习题解答

1. 用函数极限的定义证明: (1)2

221lim

2.3

x x x →∞

+=-

证明: 0,ε?> 欲使

2

2

2

2172,3

3

x x x ε+-=

<--易见当||3x >时,有

2

2

77|3|||.|3|

||

x x x x ->?

<

-

于是,只要

7,||

x ε<即7

||x ε

>

时,有

2

2

21

23x x ε+-<-成立。取7m ax 3,.M ε??

=????

故对0,ε?>7m ax 3,.M ε??

?=????

对||,x M ?>有 2

22123x x ε+-<-,即2

2

21lim 2.3x x x →∞+=- (2)1

1lim arc .12

x tg

x

π-

→=

-

证明:0(0),2

πεε?><<

要使不等式

11arc arc 12

2

1tg tg

x

x

π

π

ε-

=

-<-- (1)x <

成立,解得1

1.()

2

x tg π

ε-<

- 取δ=1

(

)

2

tg π

ε-,于是

10,0,(1,1),(

)

2

x tg εδδπ

ε?>?=

>?∈--有1arc ,12

tg x

π

ε-

<-

即1

1lim arc .12

x tg

x

π-

→=

-

(3

)lim (sin

sin

0x →∞

=。

证明:

(

)

1sin

2sin

lim 11sin

2sin

11011

21

122

1

2sin

21

2cos

21sin

2sin 2

2

2

2

2

2

2

2

2

2

2

2

2

2

=+-+∴<<

+-+>?+???

???=>?<

++

+=

+-

+<+-

+++

+=+-+∞

→x x x x x N x N x

x x x x x x x x x x x ε

εε有,,取

2. 求下列极限: (1) 11lim (sin

cos

).x

x x

x

→∞

+

解:

2

22

2sin 1

22

sin

11112lim (sin

cos

)lim[(sin

cos

)]lim (1sin

)2lim[(1sin

)

]

.

x

x

x

x x x x

x

x

x x

x

x

x

x

e x

→∞

→∞→∞

→∞

+=+=+=+=

或:

.

11cos 1sin 1lim 1cos 1sin lim ]

12111sin [

lim 11

1cos 1sin

11cos 1sin 1

2

e e

x x x x x

x

x

x x

x

x

x x x x

x x ==?

?

?

??

?????????????? ??-++=??? ??+-

-+-+∞→∞→∞

(2) 1

20

lim (1sin ).x

x x →+

解:1

1

sin 2sin 20

lim (1sin )

lim[(1sin )

]

x

x

x

x

x x x x →→+=+=

(3) 2

10

ln(1)lim .ln(1)

x x x x

x →∞

-+++

解:

2

2

2

2

10

10

9

10

9

10

2

9101111ln[(1)]2ln ln(1)ln(1)lim

lim

lim 1111ln(1)

ln[(1)]10ln ln(1)

1

1

ln(1)

21ln lim .

115

ln(1)

10ln x x x x x x x x x x

x

x

x

x x x x

x

x

x

x x

x x x x

→∞

→∞

→∞

→∞-

++-+-+==++++

++

+

-

+

+

==+++

(4) 2

2

2

1lim .1x

x x x →∞

??

-

?+??

解:2

2

2

2211

2

111

lim lim .112lim 11x

t

t

x t t t t x t e x t t -→∞→+∞

--→+∞??

--??

=== ? ?++??

??

?

??

???+ ???-?

??

?

3. 求解下列各题:

(1)

已知极限lim )0x ax b →+∞

-=,确定a 与b .

解:已知

2

2

2

lim )lim

lim

x x x ax b →+∞→+∞

→+∞

--=--++-==

成立,从而2

10,a -= 120.ab +=解得11,.2

a b =±= 当11,2

a b =-=

时,极

1lim )2

x x →+∞

+-

不存在,于是11,.2

a b ==-

(2) 讨论极限1

11lim x x x →??

??- ???????

是否存在?

解:在点01x =的左右两侧附近,当1x >时有

1

1010,x x ??

<

于是有1lim x +

→11x x ????- ???????=11lim 1;x x

+

→=当1x <(限定0x >)时,有11

1,x x ??≤≤????故由夹逼定

理得11l i m 1,x x -

→??

=????从而有111lim 0.x x x -→????-= ???????即111111lim lim ,x x x x x x +-→→????????-≠- ? ?????????????

所以1

11lim x x x →??

??- ???????

不存在。 4.证明下列各题: (1)设1,0.a k >>利用lim

0,k n

n n a

→∞

= 求证:lim

0.k x

x x a

→+∞

=

证明:不妨设 1.x >则有

[]

[]1

([]1)([]1)0,k k

k

x

x x x x x a

a

a a

+++≤

=

注意到lim

0,k n

n n a

→∞

=故由夹逼定理知lim

0.k x

x x a

→+∞

=

(2

)证明sin 在[0,)+∞上一致连续.

证明:对''',[1,),x x ?∈+∞有

'''

1sin sin 2sin

2

x x

=≤=

-

从而sin 在[1,)+∞

上一致连续。又sin 在[0,1]连续,从而在[0,1]

上一致连续。故

sin

[0,)+∞上一致连续。

(3)证明2sin x 在[0,)+∞上不一致连续.

证明:01,0,εδ?=?>

取12x x =

=其中正整数n 充分大使得12||,

x x δ-<则有2

2

120sin sin 1,x x ε-==所以2

sin x 在[0,)+∞上不一致连续.

5. 试举出定义在R 上的函数f 的例子,使f 仅在2,1,0=x 三点处连续,而其余的点都是f 的第二类间断点。

解:令()(1)(2)()f x x x x D x =--,其中()D x 为狄利克雷函数,在点0x =附近,易见(1)(2)()x x D x --有界,故有

lim ()0(0)x f x f →==,

即f 在x=0点连续。类似可证f 在x=1,2点连续。

另一方面,0\{0,1,2}x ?∈ ,取有理点列{},n x 0(),n x x n +

→→∞ 有

000lim ()(1)(2)n n f x x x x →∞

=-- (0);≠

取无理点列'{},n x '0(),n x x n +

→→∞ 有

'

lim ()0.n n f x →∞

=

所以f 在点0x 不存在左右极限,故()f x 以0x 为其第二类间断点. 6. 求证:方程30(0)x px q p ++=>有且仅有一个根.

证明:考虑3()0.f x x p x q =++=因为l i m (),x f x →+∞

=+∞所以0,b ?>使得()0.f b >又

lim (),x f x →-∞

=-∞所以0,a ?<使得()0.f a <由零点存在定理,(,)c a b ?∈使得()0f c =,

即3

0c pc q ++=.由0p >,对21,x x ?>因为22

12

122

x x x x +≥-

,有

22

332221

212121212

211

21()()()()()()(

)0,

2

x x f x f x x x p x x x x x x x x p x x p +-=-+-=-+++≥-+>即函数()f x 是单调递增的,因此只有一个根.

7. 设()f x 在[,]a b 上连续,对[,]x a b ?∈,总存在[,]y a b ∈使得1()().2

f y f x ≤求证:

至少存在一点[,]a b ξ∈使得()0.f ξ=

证明:用反证法. 如果函数()f x 在[,]a b 上没有零点,则函数()f x 在[,]a b 上也没有零点, 所以()0f x >.因为()f x 在[,]a b 上连续,根据闭区间上连续函数的性质,必存在最小值,即存在点[,]a b ξ∈使得{}|()|m i n |()|0.a x b

f f x ξ≤≤=>

由题设条件知,在[,]a b 内存在[,]y a b ∈使得1()()().

2f y f f ξξ≤

<

这与()f ξ是最小值矛盾,所以函数()f x 在

[,]a b 上至少有一个零点。

直接法:取0)(],,[00≠∈x f b a x ,根据题中条件,存在],[1b a x ∈,使得)

(2

1)(01x f x f ≤(假设0)(1≠x f );类似地,存在],[2b a x ∈,使得)(2

1)(12x f x f ≤(假设0)(2≠x f )

。依次下去,存在],[}{b a x n ?,满足存)(2

1)(2

1)(01x f x f x f n

n n ≤≤≤- (假设

0)(≠n x f )

,易知 0)(lim =∞

→n n x f 。 因为数列}{n x 有界,所以存在收敛子列}{k

n x ,记k

n k x ∞

→=lim ξ,则],[b a ∈ξ,因为函数)

(x f 在ξ处连续,所以0)(lim )(lim )lim ()(====∞

→∞

→∞

→n n n k n k x f x f x f f k

k

ξ。

8.设f x C a ()[,)

∈+∞且有界,若f a ()<∈+∞x a f x [,)

sup

{()}

,则

?α,)}({sup

)()

,[x f a f a x +∞∈<<α,),(+∞∈?a ξ,使得αξ=f ().

证明:α?使得()(){}x f a f a x sup ),[+∞∈<<α,

取(){}??

????????-=+∞∈αεx f a x sup ),[21,则()+∞∈?,a b ,使得

()(){}(){})(sup 21sup )

,[),[a f x f x f b f a x a x >>???

?

??

+=->+∞∈+∞∈αα

ε. 由于()],[b a C x f ∈,根据介值定理可知 ()()+∞?∈?,,a b a ξ,使得()αξ=f . 9.设(),()[0,),f x g x C ∈+∞ lim (()())0.x f x g x →+∞

-=证明:函数()f x 在[0,)+∞上一致连

续当且仅当函数()g x 在[0,)+∞上一致连续。 证明:先设()g x 在[0,)+∞一致连续。

0,ε?> 因为lim (()())0,x f x g x →+∞

-= 所以

0|()()|.3

N x N f x g x ε?>?>-<

因为()g x 在[0,)+∞一致连续,所以 110,[0,)|||()()|.3

x t x t g x g t εδδ?>?∈+∞-

因为()f x 在[0,1]N +一致连续,所以

220,[0,1]|||()()|.3

x t N x t f x f t εδδ?>?∈+-

令12min(,1),δδδ=x t ?<,若,t x δ-< 则只有两种可能: 1)1,t N ≤+ 从而1,x N <+ 因为2,t x δ-<|()()|.3

f x f t εε-<<

2)1,t N >+从而,x N >|()()|,|()()|.3

3

f x

g x f t g t εε-<-<

因为1,t x δ-< 所以 |()()|.3

g x g t ε-<

|()()|

(()()|()()||()()|.

3

3

3

f x f t f x

g x f t g t g x g t ε

ε

ε

ε-≤-+-+-<

+

+

<

综上所述,可知函数()f x 在[0,)+∞上一致连续。

再设()f x 在[0,)+∞一致连续。因为lim (()())0,x f x g x →+∞

-=所以

l i m (()(x g

x f x

→+

-=由上面的论述可知,函数()g x 在[0,)+∞上一致连续。

10.证明:函数()f x 在区间I 上一致连续的充要条件是对区间I 上的任何两个数列{}n x 与{}n y ,当lim()0n n n x y →∞

-=时,有lim[()()]0n n n f x f y →∞

-=.并证明函数()x

f x e =在R 上非

一致连续.

证明:“?”. 设函数()f x 在区间I 上一致连续,

即0,0,,:||,x y I x y εδδ?>?>?∈-<有()().f x f y ε-<又知lim ()0n n n x y →∞

-=,对上

述0,,,N n N δ>?∈?> 有

||,

n n x y δ-<从而有

()(),

n n f x f y ε-<即

lim[()()]0n n n f x f y →∞

-=.

“?”. 用反证法.

假设()f x 在I 上非一致连续,即00,0,,:||,x y I x y εδδ?>?>?∈-<有

0()().f x f y ε-≥

取1,δ=1111,,||1,x y I x y ?∈-<有110()().f x f y ε-≥ 取1,2

δ=

22221,,||,2

x y I x y ?∈-<

有220()().f x f y ε-≥

取1,n

δ=

1,,||,n n n n x y I x y n

?∈-<

有0()().n n f x f y ε-≥

从而在区间I 上构造出两个数列{}n x 与{}n y .显然l i m ()n n n x y →∞

-=,但l i m [()()]

n n n f x f y →∞

-≠

,与已知条件矛盾.故函数()f x 在区间I 上一致连续.

根据上述一致连续的必要充分条件,有

函数()f x 在区间I 非一致连续的充要条件是在区间I 上存在某两个数列{}n x 与{}n y ,当lim ()0n n n x y →∞

-=时,有lim[()()]0n n n f x f y →∞

-≠.

下面证明函数()x f x e =在R 上非一致连续.

证明:,n ?∈ 设ln(1),ln .n n x n y n =+=这样在 上构造出两个数列{}n x 与{}n y ,有1

lim ()lim [ln (1)ln ]

lim ln (1)0,n n n n n x y n n n

→∞

→∞

→∞-=+-

=+=但是l i m [()()]1n

n n f x f y →∞

-=≠.故函数()x f x e =在R 上非一致连续.

11.设函数()f x 在区间(,)a +∞连续并有界。证明:对于任意的数T ,可以找到序列{}n x 满 足lim n n x →∞

=∞,且lim (()())0n n n f x T f x →∞

+-=。

证明:令)()()(x f T x f x g -+=。

(1)若存在0>M ,使得对任给的M x ≥,都有0)(≥x g (或0)(≤x g )。

如果T ≥0,取x n =M+nT ,此时x n ≥M ,x n+1= x n +T ,f(x n+1)-f(x n ) =f(x n +T)-f(x n ) = g(x n ) ≥0 则数列f(x n )单调递增;

如果T<0,取x n =M-nT ,此时x n ≥M ,x n+1= x n -T , f(x n-1)-f(x n ) =f(x n +T)-f(x n ) = g(x n ) ≥0 则数列f(x n )单调递减。

两种情况下都有数列f(x n )单调,且lim n n x →∞

=∞

由条件f(x)连续有界,所以数列f(x n ) 单调有界必收敛,则

0)()(lim ))()(lim(1

=-=-++n n n n x f x f x f T x f

1) 若任给M>0,都存在y 1,y 2≥M ,不妨设y 1>y 2,满足g(y 1)g(y 2)<0

则由零点存在定理,存在M x x g y y x M M M ≥=?∈则0)(),(12 令M=1,2,…我们找到了数列{x M }满足g(x M )=f(x M +T)-f(x M )=0,且x M ≥M 即lim n n x →∞

=∞,且lim (()())0n n n f x T f x →∞

+-=。

高等数学函数极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

第二章-极限与连续--基础练习题(含解答)

第二章 极限与连续 基础练习题(作业) §2.1 数列的极限 一、观察并写出下列数列的极限: 1.4682, ,,357 极限为1 2.11111,,,,,2345--极限为0 3.212212?-??=?+???n n n n n n a n 为奇数为偶数极限为1 §2.2 函数的极限 一、画出函数图形,并根据函数图形写出下列函数极限: 1.lim →-∞x x e 极限为零 2.2 lim tan x x π → 无极限 3.lim arctan →-∞ x x 极限为2 π- 4.0 lim ln x x +→ 无极限,趋于-∞ 二、设2221,1()3,121,2x x f x x x x x x +??=-+? ,问当1x →,2x →时,()f x 的极限是否存在? 211lim ()lim(3)3x x f x x x ++→→=-+=;11 lim ()lim(21)3x x f x x --→→=+= 1 lim () 3.x f x →∴=

222lim ()lim(1)3x x f x x ++→→=-=;222 lim ()lim(3)53x x f x x x --→→=-+=≠ 2 lim ()x f x →∴不存在。 三、设()1 1 1x f x e =+,求 0x →时的左、右极限,并说明0x →时极限是否存在. ()1001lim lim 01x x x f x e ++→→==+ ()1 001 lim lim 11x x x f x e --→→==+ 0 lim ()x f x →∴不存在。 四、试讨论下列函数在0x →时极限是否存在. 1.绝对值函数()||=f x x ,存在极限为零 2.取整函数()[]=f x x 不存在 3.符号函数()sgn =f x x 不存在 §2.3 无穷小量与无穷大量 一、判断对错并说明理由: 1.1sin x x 是无穷小量. 错,无穷小量需相对极限过程而言,在某个极限过程中的无穷小量在其它极限过程中可能不再是无穷小量。当0x →时,1sin 0x x →;当1x →时,1sin sin1x x →不是无穷小量。 2.同一极限过程中两个无穷小量的商,未必是该极限过程中的无穷小量. 对,两个无穷小量的商是“0/0”型未定式,即可能是无穷小量,也可能是无穷大量或其它有极限但极限不为零的变量。 3.无穷大量一定是无界变量,而无界变量未必是无穷大量. 对,无穷大量绝对值无限增大因此一定是无界变量,但无界变量可能是个别点无限增大,变量并不能一致地大于任意给定的正数。 二、下列变量在哪些极限过程中是无穷大量,在哪些极限过程中是无穷小量: 1. 221 x x +-, 2x →-时,或x →∞时,为无穷小量; 1x →时,或1x →-时,为无穷大量。 2.1ln tan x ,k Z ∈

数学中的极限思想及其应用

摘要:本文对数学极限思想在解题中的应用进行了诠释,详细介绍了数学极限思想在几类数学问题中的应用,如在数列中的应用、在立体几何中的应用、在函数中的应用、在三角函数中的应用、在不等式中的应用和在平面几何中的应用,并在例题中比较了数学极限思想与一般解法在解题中的不同。灵活地运用极限思想解题,可以避开抽象、复杂的运算,优化解题过程、降低解题难度。极限思想有利于培养学生从运动、变化的观点看待并解决问题。 :极限思想,应用关键词Abstract: In this paper, the application of in solving problems is the limit idea explained. What's more, the applications in several mathematic problems, such as the application in series of numbers, the application in solid geometry, the application in function, the application in trigonometric function, the application in inequalities, the application in plane geometry are introduced in detail. The mathematic limit idea is compared with a common solution in a example, showing their differences in solving a problem. Solving problem by applying the limit idea can avoid abstract and complex operation, optimize the process of solving problem and reduce difficulty of solving problem. Students will benefit from the limit idea, treating and resolving problems from views of the movement and the change.

【精品】高等数学习题详解第2章 极限与连续

习题2-1 1.观察下列数列的变化趋势,写出其极限: (1)1n n x n =+; (2)2(1)n n x =--; (3)13(1)n n x n =+-; (4)2 11n x n =-。 解:(1)此数列为12341234,,,,,,23451n n x x x x x n =====+所以lim 1n n x →∞ =。 (2)12343,1,3,1,,2(1),n n x x x x x =====--所以原数列极限不存在。 (3)1234111131,3,3,3,,3(1),234n n x x x x x n =-=+=-=+=+- 所以lim 3n n x →∞ =。 (4)12342111111,1,1,1,,1,4916n x x x x x n =-=-=-=-=-所以lim 1n n x →∞ =- 2.下列说法是否正确: (1)收敛数列一定有界; (2)有界数列一定收敛; (3)无界数列一定发散;

(4)极限大于0的数列的通项也一定大于0. 解:(1)正确. (2)错误例如数列{}(-1)n 有界,但它不收敛。 (3)正确。 (4)错误例如数列21(1)n n x n ??=+-???? 极限为1,极限大于零,但是11x =-小于零。 *3。用数列极限的精确定义证明下列极限: (1)1 (1)lim 1n n n n -→∞+-=; (2)222lim 11 n n n n →∞-=++; (3)3 23125lim -=-+∞→n n n 证:(1)对于任给的正数ε,要使1(1)111n n n x n n ε-+--=-=<,只要1n ε >即可,所以可取正整数1 N ε≥. 因此,0ε?>,1N ε???=???? ,当n N >时,总有1(1)1n n n ε-+--<,所以

第二章极限习题及答案:函数的连续性

函数的连续性 分段函数的极限和连续性 例 设???????<<=<<=) 21( 1)1( 21 )10( )(x x x x x f (1)求)x f (在点1=x 处的左、右极限,函数)x f (在点1=x 处是否有极限? (2)函数)x f (在点1=x 处是否连续? (3)确定函数)x f (的连续区间. 分析:对于函数)x f (在给定点0x 处的连续性,关键是判断函数当0x x →时的极限是否等于)(0x f ;函数在某一区间上任一点处都连续,则在该区间上连续. 解:(1)1lim )(lim 1 1 ==- - →→x x f x x 11lim )(lim 1 1 ==++→→x x x f ∴1)(lim 1 =→x f x 函数)x f (在点1=x 处有极限. (2))(lim 2 1)1(1 x f f x →≠= 函数)x f (在点1=x 处不连续. (3)函数)x f (的连续区间是(0,1),(1,2). 说明:不能错误地认为)1(f 存在,则)x f (在1=x 处就连续.求分段函数在分界点0x 的左右极限,一定要注意在分界点左、右的解析式的不同.只有)(lim ),(lim )(lim 0 x f x f x f x x x x x x →→→+ - =才存在. 函数的图象及连续性 例 已知函数2 4)(2 +-= x x x f , (1)求)x f (的定义域,并作出函数的图象;

(2)求)x f (的不连续点0x ; (3)对)x f (补充定义,使其是R 上的连续函数. 分析:函数)x f (是一个分式函数,它的定义域是使分母不为零的自变量x 的取值范围,给函数)x f (补充定义,使其在R 上是连续函数,一般是先求)(lim 0 x f x x →,再让)(lim )(0 0x f x f x x →=即可. 解:(1)当02≠+x 时,有2-≠x . 因此,函数的定义域是()()+∞--∞-,22, 当2≠x 时,.22 4)(2 -=+-=x x x x f 其图象如下图. (2)由定义域知,函数)x f (的不连续点是20-=x . (3)因为当2≠x 时,2)(-=x x f 所以4)2(lim )(lim 2 2 -=-=-→-→x x f x x 因此,将)x f (的表达式改写为 ?? ? ??-=--≠+-=)2(4)2(2 4 )(2x x x x x f 则函数)x f (在R 上是连续函数. 说明:要作分式函数的图象,首先应对函数式进行化简,再作函数的图象,特别要注意化简后的函数与原来的函数定义域是否一致. 利用函数图象判定方程是否存在实数根 例 利用连续函数的图象特征,判定方程01523 =+-x x 是否存在实数根.

高等数学求极限的常用方法附例题和详解完整版

高等数学求极限的常用 方法附例题和详解 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→? =→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了 无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 )(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=,这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; cos=221242)! 22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ

高等数学竞赛极限与连续真题

高等数学竞赛极限与连续真题 1. 计算:22 2 sin )(cos 112lim 2x e x x x x x -+-+→ 析: ),(08 21144 22 x x x x +-+=+ )(08 1 1124422x x x x +=+-+ 又)(02 3 )](01[)](0211[cos 2222224 x x x x x x e x x +-=++-+- =- 故22 2 sin )(cos 112lim 2x e x x x x x -+-+→ 121sin )(023)(081lim sin 1)(023)(081lim 222244022 22 24 40-=?+-+=??+-+=→→x x x x x x x x x x x x x x x 2.计算求n n n n n n n ln )ln ln ( lim -+∞→的值。 (选自广东省大学生高等数学竞赛试题) 析:n n n n n n n ln )ln ln (lim -+∞→=n n n n n n n n n n ln 2ln 2ln ])ln ln 21[(lim --∞→-+ 令,ln t n n =则原式.)11(lim 21 0e t t t t =-++ → 3.计算:)1)1(31211(lim 1n n n -∞→-+++- 析: )21 4121(12131121312112n n n S n +++--+++=- -+-= =n n n n n n ++++++=+++-++++1 2111)214121(22131211 =)11 211111(1n n n n n ++++++

极限思想的产生及发展

毕业论文 题目极限思想的产生与发展 专业数学教育 院系数学系 学号 131002145 姓名 指导教师 二○一三年五月

定西师范高等专科学校 2010 级数学系系毕业论文开题报告专业班级:数学教育姓名:指导教师:

目录 内容摘要: ............................................................................................................... (4) 关键词: (4) 引言: (5) 一、极限思想的产生 (6) 二、极限思想发展的分期 (6) (一)极限思想的萌芽时期 (6) (二)极限思想的发展时期 (8) (三)极限思想的完善时期 (8) 三、极限思想与微积分 (9) (一)微积分的孕育 (10) (二)牛顿与微积分 (11) (三)莱布尼茨与微积分 (12) (四)微积分的进一步发展 (13) 结束语 (14) 参考文献 (15) 致谢 (15)

内容摘要本文综述了极限思想的产生和发展历史。极限思想的产生与完善是社会实践的需要,它的产生为数学的发展增加了新的动力,成为了近代数学思想和方法的基础和出发点。 关键词极限;无穷;微积分

引言 极限思想作为一种哲学和数学思想,由远古的思想萌芽,到现在完整的极限理论,其漫长曲折的演变历程布满了众多哲学家、数学家们的勤奋、智慧、严谨认真、孜孜以求的奋斗足迹。极限思想的演变历程,是数千年来人类认识世界和改造世界的整个过程的一个侧面反应,是人类追求真理、追求理想,始终不渝地求实、创新的生动写照。 在数学的发展中,数学问题的来源和发展表现为多种多样的途径和极其复杂的情况。纵观极限思想的发展,首先哲学为其提供了直觉上的发展方向,数学家们依据这种直觉或直观进行应用和探索;其后悖论一次次地出现,又促使数学家们一次一次地进行探究求证,使这一思想不断得以发展和完善。而数学的求证又给予了哲学以实在的支持,为哲学更好地描述和论证世界提供了强有力的工具。从最初时期朴素、直观的极限观,经过了2000多年的发展,演变成为近代严格的极限理论,这其中的思想演变是渐进的、螺旋式发展的、相互推动的。 极限理论是微积分学的基础,极限方法为人类认识无限提供了强有力的工具,它从方法论上突出地表现了微积分学不同于初等数学的特点,是近现代数学的一种重要思想。极限思想蕴含着丰富的辩证法思想,是唯物辩证法的对立统一规律在数学领域中的极好应用。理清极限思想的发展脉络,揭示极限思想的核心内容及其与哲学思想的内在联系,对于理解数学史和数学哲学史上的一些问题将具有一定的理论意义。对于培养人的思维方法、思维品质,提高其分析问题和解决问题的能力都有极好的促进作用。

《高等数学一》第二章极限与连续历年试题模拟试题课后习题(汇总)(含答案解析)

第二章极限与连续 [单选题] 1、 若x0时,函数f(x)为x2的高阶无穷小量,则=() A、0 B、 C、1 D、∞ 【从题库收藏夹删除】 【正确答案】 A 【您的答案】您未答题 【答案解析】 本题考察高阶无穷小. 根据高阶无穷小的定义,有. [单选题] 2、 与都存在是函数在点处有极限的(). A、必要条件 B、充分条件 C、充要条件 D、无关条件 【从题库收藏夹删除】 【正确答案】 A 【您的答案】您未答题 【答案解析】 时,极限存在的充分必要条件为左、右极限都存在并且相等,所以若函数在点处有极限,则必有与都存在.但二者都存在,不一定相等,所以不一定有极限. [单选题]

3、 (). A、 B、1 C、 D、0 【从题库收藏夹删除】 【正确答案】 A 【您的答案】您未答题 【答案解析】 [单选题] 4、 如果则(). A、0 B、1 C、2 D、5 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】

根据重要极限, [单选题] 5、 (). A、0 B、∞ C、2 D、-2 【从题库收藏夹删除】 【正确答案】 C 【您的答案】您未答题 【答案解析】 分子分母同除以,即 [单选题] 6、 (). A、0 B、∞ C、2 D、-2 【从题库收藏夹删除】

【您的答案】您未答题 【答案解析】 [单选题] 7、 设,则(). A、 B、2 C、 D、0 【从题库收藏夹删除】 【正确答案】 B 【您的答案】您未答题 【答案解析】 [单选题] 8、 当时,与等价的无穷小量是(). A、 B、 C、 D、 【从题库收藏夹删除】 【正确答案】 B 【您的答案】您未答题

高等数学求极限的常用方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii )A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (iii) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 ) (lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候)

微积分、极限思想推导圆周长、面积公式

圆周长公式推导 1.积分法 在平面直角坐标下圆的方程是x^2 + y^2 = r^2 这可以写成参数方程 x = r * Cos t y = r * Sin t t∈[0, 2π] 于是圆周长就是 C = ∫(0到2π)√( (x'(t))^2 + (y'(t))^2 ) dt (Q:此处x,y对t为什么都要导? A: 将一个圆的周长分成n份,x'(t)=△x=xn-x(n-1), y'(t)=△y=yn-y(n-1).当n→∞,△x,△y→0时,可将每一份以直代曲,即每一份的长度C/n=√(△x^2+△y^2)= √( (x'(t))^2 + (y'(t))^2 ).所以C就是√( (x'(t))^2 + (y'(t))^2 )从0到2π的积分.虽然不导得出的结果是一样的,但原理方面就解释不通了.) =∫(0到2π)√( (-rSint)^2 + (rCost)^2 ) dt =∫(0到2π) r dt = 2πr 2.极限法 在圆内做内接等n边形, 求等n边形周长:可以分割成n个以圆心为顶点的三角形, 其底边长为 2*r*sin(π/n) ,所以等n边形周长为 n*2*r*sin(π/n) 这个周长对n→∞求极限 lim[n*2*r*sin(π/n)] 运用等价无穷小规则,当x→0时,有sinx→x 所以lim[n*2*r*sin(π/n)] =lim[n*2*r*π/n]=2πr. 圆面积公式推导 应用圆周长C = 2π r

1.可以将圆分成两个半圆两个半圆,再将两个半圆分成无数个面积相等的扇形 并展开,在拼接起来,底边可以以直代曲,那么就是一个底边长为πr,高为r的矩形。这是小学的推导法,但有微积分的思想在其中。 2.积分法 可将圆看成由无数个同心圆环组成. 设圆半径为R,里面的同心圆环半径为r,为自变量.设每个圆环厚度为dr→0,则圆环周长可看为2πr,圆面积为所有这些圆环的面积之和.所以S = ∫ 2πr dr,从0积到R. 所以S=2π[1/2(R^2-0^2)]= πR^2.(球体积公式推导方法中的“球壳法 Shell Method”与此法是类似的.) 不应用圆周长C = 2π r 1. 积分法 (1)圆方程为x^2+y^2=r^2.只需算出第一象限(0积到r),然后乘以4.方法和求曲边梯形面积类似,具体不再叙述. (2)我们回过头来看到上面周长推导中的Q和A. C/n=√(△x^2+△y^2)= √( (x'(t))^2 + (y'(t))^2 ),每份C/n与两条半径组成的扇形的底面曲边是可以以直代曲的,那每个小扇形可以看成以C/n为底、r为高的等边三角形,每个面积就是r* C/n*1/2=1/2*r*√(△x^2+△y^2)= 1/2*r*√( (x'(t))^2 + (y'(t))^2 ). 于是圆的面积就是 S=∫(0到2π) 1/2*r*√( (x'(t))^2 + (y'(t))^2 ) dt =1/2*r*∫(0到2π) √( (x'(t))^2 + (y'(t))^2 ) dt =1/2*r*C =1/2*r*2πr =πr^2. 2.极限法 类似于上面周长公式的极限法推导,在圆内做内接等n边形, 求等n边形面积:可以分割成n个以圆心为顶点的三角形,

高等数学习题详解-第2章-极限与连续

习题2-1 1. 观察下列数列的变化趋势,写出其极限: (1) 1 n n x n = + ; (2) 2(1)n n x =--; (3) 13(1)n n x n =+-; (4) 211n x n =-. 解:(1) 此数列为12341234,,,,,,23451 n n x x x x x n =====+L L 所以lim 1n n x →∞=。 (2) 12343,1,3,1,,2(1),n n x x x x x =====--L L 所以原数列极限不存在。 (3) 1234111131,3,3,3,,3(1),234n n x x x x x n =-=+=-=+=+-L L 所以lim 3n n x →∞ =。 (4) 123421111 11,1,1,1,,1,4916n x x x x x n =-= -=-=-=-L L 所以lim 1n n x →∞=- 2.下列说法是否正确: (1)收敛数列一定有界 ; (2)有界数列一定收敛; (3)无界数列一定发散; (4)极限大于0的数列的通项也一定大于0. 解:(1) 正确。 (2) 错误 例如数列{} (-1)n 有界,但它不收敛。 (3) 正确。 (4) 错误 例如数列21(1) n n x n ?? =+-??? ? 极限为1,极限大于零,但是11x =-小于零。 *3.用数列极限的精确定义证明下列极限: (1) 1 (1)lim 1n n n n -→∞+-=; (2) 22 2 lim 11 n n n n →∞-=++; (3) 3 2 3125lim -=-+∞→n n n 证:(1) 对于任给的正数ε,要使1(1)111n n n x n n ε-+--= -=<,只要1 n ε >即可,所以可取正整数1 N ε ≥ . 因此,0ε?>,1N ε?? ?=???? ,当n N >时,总有 1(1)1n n n ε-+--<,所以

高等数学求极限的14种方法(完整资料).doc

【最新整理,下载后即可编辑】 高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件。是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“0 0”“∞ ∞”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成

高等数学 第二章 极限与连续

第二章 极限与连续 教学要求 1.理解数列极限和函数极限(包括左、右极限)的概念,理解数列极限与函数极限的区别与联系。 2.熟练掌握极限的四则运算法则,熟练掌握两个重要极限及其应用。 3.理解无穷小与无穷大的概念,掌握无穷小比较方法以及利用无穷小等价求极限的方法。 4.理解函数连续性(包括左、右连续)与函数间断的概念,了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性定理、最大值与最小值定理和介值定理),并能灵活运用连续函数的性质。 教学重点 极限概念,极限四则运算法则;函数的连续性。 教学难点 极限定义,两个重要极限;连续与间断的判断。 教学内容 第一节 数列的极限 一、数列 1.数列的概念; 2.有界数列; 3.单调数列; 4.子列。 二、数列的极限 三、数列极限的性质与运算 1.数列极限的性质; 2.数列极限的运算法则。 第二节 函数的极限 一、函数极限的概念 1.自变量趋于有限值时函数的极限; 2.自变量趋于无穷大时函数的极限。 二、函数极限的性质 第三节 函数极限的运算法则 一、函数极限的运算法则 二、复合函数的极限运算法则 三、两个重要极限 1.重要极限1 1sin lim 0=→x x x ; 2.重要极限2 e x x x =+∞→)11(lim 或e x x x =+→1 0)1(lim 。

第四节无穷大与无穷小 一、无穷小 二、无穷大 第五节函数的连续性与间断点 一、函数的连续性概念 1.函数的增量; 2.函数的连续性 二、函数的间断点 第六节连续函数的性质 一、连续函数的和、差、积、商的连续性 二、反函数与复合函数的连续性 三、初等函数的连续性 四、闭区间商连续函数的性质

(完整版)《高等数学一》极限与连续历年试题模拟试题课后习题(汇总)(含答案解析).doc

. 第二章极限与连续 [单选题 ] 1、 若 x0 时,函数 f (x )为 x 2的高阶无穷小量,则=() A、0 B、 C、1 D、∞ 【从题库收藏夹删除】 【正确答案】 A 【您的答案】您未答题 【答案解析】 本题考察高阶无穷小. 根据高阶无穷小的定义,有. [单选题 ] 2、 与都存在是函数在点处有极限的(). A、必要条件 B、充分条件 C、充要条件 D、无关条件 【从题库收藏夹删除】 【正确答案】 A 【您的答案】您未答题 【答案解析】 时,极限存在的充分必要条件为左、右极限都存在并且相等,所以若函数在点处有极限,则必有与都存在.但二者都存在,不一定相等, 所以不一定有极限. [单选题 ] 3、 () .

A、 B、 1 C、 D、 0 【从题库收藏夹删除】 【正确答案】 A 【您的答案】您未答题 【答案解析】 [单选题 ] 4、 如果则(). A 、 0 B 、 1 C、 2 D、 5 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】 根据重要极限 , [单选题 ] 5、

() . A 、 0 B 、∞ C、 2 D、 -2 【从题库收藏夹删除】 【正确答案】 C 【您的答案】您未答题 【答案解析】 分子分母同除以,即 [单选题 ] 6、 () . A 、 0 B 、∞ C、 2 D、 -2 【从题库收藏夹删除】 【正确答案】 C 【您的答案】您未答题 【答案解析】 [单选题 ] 7、 设,则().

A、 B、 2 C、 D、 0 【从题库收藏夹删除】 【正确答案】 B 【您的答案】您未答题 【答案解析】 [单选题 ] 8、 当时,与等价的无穷小量是(). A、 B、 C、 D、 【从题库收藏夹删除】 【正确答案】 B 【您的答案】您未答题 【答案解析】 由于故与等价, 推广,当时, [单选题 ] 9、 时,与等价的无穷小量是(). A、 B、

高等数学-求极限的各种方法

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x

例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim , 第一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分。 【解】22 212 12112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =??? ??-++∞→x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有: 当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x -, ()abx ax x x b ~11,2 1~ cos 12-+-; (2) 等价无穷小量代换,只能代换极限式中的因式.. ;

接触极限思想与微积分

热等效原理:在相同的电阻上分别通以直流电流和交流电流,经过一个交流周期的时间,如果它们在电阻上所消耗的电能相等的话,则把该直流电流(电压)的大小作为交流电流(电压)的有效值 接触极限思想与微积分 初步接触 早在小学数学课上,大家就开始接触极限与微积分的思想了:圆的面积。教材上推导圆的面积使用的方法是把圆均分成2n 个扇形,将n 个扇形按平移变换一字排开,扇尖朝下,形成向下锯齿形;类似地,再将另外n 个扇形一字排开,扇尖朝上。然后将两排扇形齿齿相合,形成一个“近似长方形”。圆的面积与该“近似长方形”的面积相等,若n 无限增大,则该“近似长方形”无限接近于长方形,此时该长方形的宽是圆的半径r ,长是圆的半周长πr ,所以该长方形面积(圆的面积)为πr 2。那时候,我对这种思想无限细分的思想产生了浓厚的兴趣,为以后的探索埋下了思想的根源。 激起兴趣 在初中阶段,我从书本上了解到我国家庭 电路的电压是220V ,并且是交流电(即大小随 时间作周期性变化的电压或电流)。这时候,我 看出了我国家庭电路的“矛盾”:电压是恒定的 (220V ),电压是变化的(交流电)。这种“矛 盾”激起了我刨根究底的好奇心,于是我翻阅 了大量资料,从中获知:我国家庭电路的交流 电是正余弦交流电,其有效值(根据热等效原 理*)是220V ,其峰值是220√2 V ,但为何峰 值与有效值相差√2倍呢?我暂不得而知。 到了初中阶段的尾声,我有意无意地阅读 到了人教版的物理教材中的某一版块(如图), 我突然有种莫名的熟悉感。噢!这不正与小学 计算圆面积的方法有着异曲同工之妙!这种极 限与微积分的思想迫使我深究,于是乎,我类 比出:速度恰好等于“加速度-时间”曲线下方 的面积;冲量恰好等于“力-时间”曲线下方的 面积;功恰好等于“力-距离”曲线下方的面积, 电功恰好等于“功率-时间”曲线下方的面 积…… 深入学习 我把交流电的表达式功率表达式求出来了,并作出它的“功率-时间”曲线,却愁于求曲线下方的面积。于是我决心自学“微积分”。 学习微积分的过程并不容易,微积分的世界里处处都是抽象的概念,有时还会有有悖常理的思想。 例如:函数f(x)=1/x (x ≥1),这个函数图像是我们熟悉的反比例函数图像的一部分。将该支曲线下方的面积绕x 轴旋转,形成一个旋转体。通过推论及计算,我们发现其体积是有限的,而其表面积是无限的。具体一点来讲:若这个旋转体是一个容器,那么它能装有限油漆,但表面需要刷无限的油漆。这样的例子有非常多,如:“一尺之捶,日取其半,万世不竭”、“阿基里斯”悖论、“二分法”悖论……

微积分-求极限的方法

求极限方法一:直接代入法 例一:()=24 例二:()= 类似这种你直接把x趋近的值代入到函数里面,就可以直接得到函数的极限了。 知识点1:当x趋近值代入后,分子为0,分母不为0时,函数极限等于0 知识点2:当x趋近值代入后,分子不为0,分母为0时,函数极限等于 方法二:因式分解法(一般是平方差,完全平方,十字相乘) 普通的就是分子分母约去相同的项,因为x是趋近值,所以上下是可以约去的,不用考虑0的问题。类似=() 下面讲个例 知识点3:=(x-y)() 例三:== 方法三:分母有理化(用于分母有根式,分子无根式) 例四:= 方法四:分子有理化(用于分子有根式,分母无根式) 例五:==1 方法五:分子分母同时有理化(用于分子有根式,分母有根式) 例六:

知识点4:(使用这个知识点时,必须注意只能在x趋近于无穷时使用,且使用时只用看各项的最高次数,不用管其他) 例七:()=(分子的最高次是两次,大于分母最高次一次,所以直接得出极限为无穷大) 例八:=0 (分子的最高次是一次,小于分母最高次两次,所以直接得出极限为零) ) 例九:(分子的最高次是一次,等于分母最高次一次,所以直接得出极限为分子最高次数项系数 分母最高次数项系数 方法六:通分法(若函数为两个分数相加减时,通常先同分再做处理,一般情况下同分后都要进行因式分解,然后分子分母约去相同的多项式) 例十:- 知识点5:当一个无穷小的函数乘以一个有界函数时,新函数的极限仍为无穷小。(有限个无穷小仍为无穷小=常量与无穷小量的乘积仍是无穷小量) 例十一:()=0 函数左边用知识点4得出是无穷小,右边3+cosx是有界函数,所以新函数极限为无穷小,即0 所有求极限的题中,代入x趋近值后,若出现或,都可以使用洛必达法则求解极限。

相关主题
文本预览
相关文档 最新文档