当前位置:文档之家› 矩阵论文

矩阵论文

矩阵论文
矩阵论文

矩阵分析

姓名:秦梦瑶

学号: 20135035020

【摘要】

矩阵理论是工科线性代数中的一个重要内容,而逆矩阵是其非常重要并且是较难理解的一部分内容,然而在许多线性代数教科书中逆矩阵相关知识点的应用几乎未涉及到,以至于

很多学习矩阵论的人错误地认为所学东西没有多大用处。为了使学习的人对所学逆矩阵有具体地,形象地认识,而不只是停留在抽象的概念,结论的机械记忆上,为了能使逆矩阵的本质

掌握起来更简单。

本文介绍可逆矩阵在保密通信中应用。

【关键词】矩阵信息安全应用

一.信息安全简介

1信息安全,简称信安,意为保护信息及信息系统免受未经授权的进入、使用、披露、破坏、修改、检视、记录及销毁。政府、军队、公司、金融机构、医院、私人企业积累了大量的有关他们的雇员、顾客、产品、研究、金融数据的机密信息。绝大多数此类的信息现在被收集、产生、存储在电子计算机内,并通过网络传送到别的计算机。

万一诸如一家企业的顾客、财政状况、新产品线的机密信息落入了其竞争对手的掌握,这种安全性的丧失可能会导致经济上的损失、法律诉讼甚至该企业的破产。保护机密的信息是商业上的需求,并且在许多情况中也是道德和法律上的需求。对于个人来说,信息安全对于其个人隐私具有重大的影响,但这在不同的文化中的看法差异相当大。

信息安全的领域在最近这些年经历了巨大的成长和进化。有很多方式进入这一领域,并将之作为一项事业。它提供了许多专门的研究领域,包括:安全的网络和公共基础设施、安全的应用软件和数据库、安全测试、信息系统评估、企业安全规划以及数字取证技术等等。

自从人类有了书写文字之后,国家首脑和军队指挥官就已经明白,使用一些技巧来保证通信的机密以及获知其是否被篡改是非常有必要的。

恺撒被认为在公元前50年发明了凯撒密码,它被用来防止秘密的消息落入错误的人手中时被读取。

第二次世界大战使得信息安全研究取得了许多进展,并且标志着其开始成为一门专业的学问。

20世纪末以及21世纪初见证了通信、计算机硬件和软件以及数据加密领域的巨大发展。小巧、功能强大、价格低廉的计算设备使得对电子数据的加工处理能为小公司和家庭用户所负担和掌握。这些计算机很快被通常称为因特网或者万维网的网络连接起来。

在因特网上快速增长的电子数据处理和电子商务应用,以及不断出现的国际恐怖主义事件,增加了对更好地保护计算机及其存储、加工和传输的信息的需求。计算机安全、信息安全、以及信息保障等学科,是和许多专业的组织一起出现的。他们都持有共同的目标,即确保信息系统的安全和可靠。

二.信息安全的重要性

信息作为一种资源,它的普遍性、共享性、增值性、可处理性和多效用性,使其对于人

类具有特别重要的意义。信息安全的实质就是要保护信息系统或信息网络中的信息资源免受各种类型的威胁、干扰和破坏,即保证信息的安全性。根据国际标准化组织的定义,信息安全性的含义主要是指信息的完整性、可用性、保密性和可靠性。信息安全是任何国家、政府、部门、行业都必须十分重视的问题,是一个不容忽视的国家安全战略。但是,对于不同的部门和行业来说,其对信息安全的要求和重点却是有区别的。

我国的改革开放带来了各方面信息量的急剧增加,并要求大容量、高效率地传输这些信息。为了适应这一形势,通信技术发生了前所未有的爆炸性发展。目前,除有线通信外,短波、超短波、微波、卫星等无线电通信也正在越来越广泛地应用。与此同时,国外敌对势力为了窃取我国的政治、军事、经济、科学技术等方面的秘密信息,运用侦察台、侦察船、侦察机、卫星等手段,形成固定与移动、远距离与近距离、空中与地面相结合的立体侦察网,截取我国通信传输中的信息。

从文献中了解一个社会的内幕,早已是司空见惯的事情。在20世纪后50年中,从社会所属计算机中了解一个社会的内幕,正变得越来越容易。不管是机构还是个人,正把日益繁多的事情托付给计算机来完成,敏感信息正经过脆弱的通信线路在计算机系统之间传送,专用信息在计算机内存储或在计算机之间传送,电子银行业务使财务账目可通过通信线路查阅,执法部门从计算机中了解罪犯的前科,医生们用计算机管理病历,所有这一切,最重要的问题是不能在对非法(非授权)获取(访问)不加防范的条件下传输信息。

传输信息的方式很多,有局域计算机网、互联网和分布式数据库,有蜂窝式无线、分组交换式无线、卫星电视会议、电子邮件及其它各种传输技术。信息在存储、处理和交换过程中,都存在泄密或被截收、窃听、窜改和伪造的可能性。不难看出,单一的保密措施已很难保证通信和信息的安全,必须综合应用各种保密措施,即通过技术的、管理的、行政的手段,实现信源、信号、信息三个环节的保护,藉以达到秘密信息安全的目的。

三.保密通信

保密通信作为实现信息安全的有效手段是当今信息时代的一个非常重要的课题,在数

据通信中的传统的保密方法是采用通信双方协定的密钥字(定期或不定期变换),在通信开始时先验证对方身份。传输的信号也是经过加密的。

在数据加密法中最有代表性的是美国“数据加密标准”(DES)DES算法本身是公开的知识,但是各厂家生产的设备具体加密方式都各不相同。DES加密方法是用56位密钥字加上8位校验成为64位码字,密钥的变化范围有256种,对明文加密时采用分组移位操作。经过加密任何人企图截取信息用随机试验去解某一密钥事实上是办不到的。DES加密设备是一个插件,装入通信双方终端即构成保密通信,使用者并不知道所用密钥内容。当该保密系统工作时,由一随机数字发生器产生密钥,存储在一个电气可消失的存储器内,任何非法的人打开该单元或误用则密钥自动消失。

但是尽管算法复杂,由于设备设计标准化,加密本身也存在标准化问题,既是标准化就有失密可能。同时还存在密钥管理问题,通信双方要有相同密钥,一旦密钥丢失或泄露,或双方失去信任发生争执,就影响通信保密难于解决。所以还需要开发能验证身份的更有效的加密技术。

1976年美国人M.E.Hellman提出了一种公开密钥理论,其基本要领是给每一用户分配一对密钥,其中一个是只有使用者本人掌握秘密密钥,另一个是可以公开的密钥,两个密钥通过算法结成一定的关系。公开密钥只用于加密密钥通过算法结成一定的关系。公开密钥只用于加密,秘密密钥只用于解密,因而要想从一个密钥导出另一个密钥事实上是不可能的,即从数字观点来看,函数是单向的,而且只有惟一的解。这一方法的特点是把经过加密的报文发送出去而无需双方进行密钥互换、分配或同步。

1978年L.Rivest、A.Shamir和L.Adleman三人合作在Hellman理论基础上提出了称

为RSA法的新的数字签名验证法,可以确证对方用户身份。他们认为,数字签名可以由公开密钥系统产生出来,其前提是公开密钥和秘密密钥是互逆的,就是说,假使一个明文报文是用某个秘密密钥“解密”的,则公开密钥“加密”就可以将报文恢复为明文格式。

图3.1基于加密技术的保密通信模型

4 可逆矩阵在通信中的应用

而逆矩阵正好在这一领域有其应用。我们可以用逆矩阵对所传递的明文消息进行保密措施后(即密文消息)发给接收方,而接收方则可以采用相对应的某种逆运算将密文消息编译成明文。

4 . 1 加密算法

设有矩阵方程C = AB ,其中B 为明文矩阵, A 为加密矩阵,用加密矩阵与明文矩阵的乘积来对所发送消息实施了加密,得到密文矩阵C 。如果A 为可逆矩阵,则方程有唯一解B = C ,其中为A的逆矩阵。

例如:发送的明文是“ send money”,则首先可将明文用9个整数构成的矩阵来表示:

B =

假设进行加密的矩阵A为:

A =

则密文矩阵C为:

C =

所以发送的信息为:31,80,54,37,83,67,29,69,50。

4 . 2 解密算法

解密时,采用下面矩阵乘法:B = C

例如:针对上面的加密矩阵A ,因A 可逆,可得:

=

故明文矩阵为:

B = C=

4 . 3 加密矩阵的生成

初等矩阵都是可逆的,而且初等矩阵的乘积仍然是可逆的。因此,通信中可以考虑利用若干个初等矩阵的乘积作为加密编码矩阵。它的生成方法如下:从单位矩阵出发,反复运用第一类和第三类初等变换矩阵去乘它,而其中的乘数k 必须取整数。这样得到矩阵将满足= ±1 而也将具有整数元素。例如:上面例子中的可逆的加密矩阵A 就是此方法可得。

2 . 4 应用实例

例:小王的朋友给小王发来一封密信,它是一个三阶方阵

他们约定:消息的每一个英文字母用一个整数来表示: a->1,b->2,……,y ->25, z ->26 ,约定好的加密矩阵,既密钥矩阵是

试求小王的朋友发送的密信内容。

解:试求密信的内容,先假设密信内容矩阵为X

X=

或=

既X=

或X=

可用matlab来求解此题,易得满足题意的只有一个矩阵:

X=

由英文字母与整数之间的对应关系即得密信内容为“I LOVE YOU”。

5 其它问题

除了密钥矩阵的生成这一基本问题以外, 在利用可逆矩阵实现保密通信时, 还有一些问题值得我们

探讨.

5.1 明文矩阵的选择

如果明文矩阵B为方阵。则当B 为可逆矩阵时有: 或, 其中为B 的逆矩阵。因此,如果窃密者以某种方式窃取到一对明文和相应的密文。碰巧其中的明文矩阵可逆。那么窃密者可以轻而易举地破解密文。

鉴于以上考虑, 在实际应用时, 明文矩阵不要采用方阵。

另外, 在实际应用中, 明文并不总是恰好可以分成整数个矩阵, 出现这种情况时需要补充一些数据。

补充的数据可以是有意义的, 也可以是无意义的。有时, 我们可以利用这些附加数据来达到某种特殊的效果, 比如数据的完整性检验等。

5.2 加密矩阵的选择

设。根据矩阵乘法的定义, 乘积矩阵C中第i行第j 列的元素等于矩阵A 中第i行的所有元素与矩阵B 中第j 列的对应元素之积的累加和。

因此, 利用可逆矩阵来实现保密通信的另一个问题是, 如果加密矩阵选择得不好, 密文矩阵的元素长度会急剧膨胀。

为了避免出现这种情况, 加密矩阵A 最好满足以下条件:

对任意的明文矩阵B,密文矩阵C 中的每一个元素的长度都不超过明文矩阵B 中对应位置上的元素的长度。或者退而求其次:

对任意的明文矩阵B,密文矩阵C 中所有元素的总长度不超过明文矩阵B 中所有元素的总长度。

如果能找到一个加密矩阵, 使得对任意的明文矩阵, 密文矩阵中所有元素的总长度在一个比较理想的程度上小于明文矩阵中所有元素的总长度, 那么这时的加密算法同时也是一种较好的压缩算法.

5.3算法优化

设加密矩阵A 为n 阶矩阵, 明文矩阵B 为n 行m 列矩阵, 利用向量的有关知识, 密文

矩阵C 的第i 行( 行向量)可以表示为

=++……..+

其中( j = 1, 2, ……, n)为矩阵A 的第i 行第j 列位置上的元素, 而则为矩阵B 的第n 行( 行向量) .

显然, 密文矩阵的每一个行向量都是明文矩阵的所有行向量的一种线性组合, 其组合系数正好是加密矩阵的相应行上的所有元素.根据矩阵乘法的定义直接计算密文矩阵时, 计算密文矩阵的每个元素需要做n 次乘法和n- 1 次加法, 因此计算整个密文矩阵总共需要次乘法和mn( n- 1) 次加法.

利用上述线性组合关系来计算密文矩阵时, 计算密文矩阵的每行元素需要做mn 次乘法和m( n-1) 次加法, 因此计算整个密文矩阵也总共需要mn2 次乘法和mn( n- 1) 次加法.

但是, 如果加密矩阵中含有一定数量的0 元素, 则利用线性组合来计算密文矩阵就有较大的优势.

加密矩阵每增加一个0元素, 计算密文矩阵就要少做m 次乘法和m 次加法.在实际应用中, 加密矩阵一般都含有一定数量的0 元素。

四总结

可逆矩阵作为矩阵乘法的逆运算,是矩阵的一种重要运算,在解决矩阵问题起着重要的作用。因而掌握可逆矩阵的求法,在解决实际问题时选择适当的方法,往往可以起到事半功倍的效果。对一些常用的方法并作系统的总结。下面总结几种常用的求逆矩阵的方法以及在数学领域和通讯领域的作用。

参考文献

[1] 同济大学数学系.工程数学·线性代数[M].北京:高等教育出版社,2007.

[2] 熊小兵.可逆矩阵在保密通信中的应用[J].大学数学,2007,23 (3):108~111.

[3] 陈怀琛,高淑萍,杨威.工程线性代数(MATLAB版)[M].北京:电子工业出版社,2007.

[4]欧海文, 戴宗铎. 一个无重复生成所有可逆矩阵的算法[ J] . 数学杂志, 1999, 19( 3) : 270-

276.

[5]华中科技大学数学系. 线性代数( 第2 版) [M] . 北京: 高等教育出版社, 2003.

[6] 蓝以中. 高等代数简明教程( 上册) [M] . 北京: 北京大学出版社, 2002.

[7]张新发. 初等矩阵的关系及可逆矩阵的分解[ J] . 大学数学, 2003, 19( 2) : 82- 85

线性代数结课论文

华北水利水电大学 线性代数发展简史 课程名称:线性代数 专业班级: 成员组成:姓名 学号 联系方式: 年月日

摘要:一次方程也叫线性方程,讨论线性方程及线性运算的代数就是线性代数,它是高等代数的一大分支,同时也是大学数学教育中一门主要基础课程。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧式空间和二次型等。 关键词:线性代数行列式矩阵向量线性方程组二次型群论 正文: 1.引言:线性代数是大学数学教育中一门主要基础课程,对于培养面向21世纪人才起着重要作用。通过了解线性代数的发展简史可以让我们更好地理解数学,从而更好地学习并应用它。 2.1 行列式 我们知道,在线性代数中最重要的内容之一就是行列式,它不仅是一种语言和速记,而且他的大多数生动的概念能对新的思想领域提供钥匙,同时人们已经证明了这个概念是数学、物理中非常有用的工具。 行列式出现于线性方程组的求解,它的概念最早是由十七世纪日本数学家关孝和在其著作《解伏题之法》中提出的。他于1683年写

了这本书,书里对行列式的概念和它的算法进行了清除的叙述。同时代的德国数学家莱布尼茨是欧洲提出行列式的第一人,也是微积分学的奠基人之一,他于1693年4月在写给洛比达的一封信中使用并给出了行列式,而且给出方程组的系数行列式为零的条件。 1750年,瑞士数学家克莱姆在其著作《线性带分析导引》中,比较完整、明确地阐述了行列式的定义与展开法,并且发表了求解线性系统方程的重要公式,即我们现在所称的解线性方程组的克莱姆法则。 1764年,数学家贝祖将确定行列式每一项符号的方法进行了系统化,利用系数行列式等于零这一条件判断对给定了含n个未知量的n 个齐次线性方程是否有非零解。 尽管上述几位数学家对行列式的提出与应用做出了很大的贡献,但仍在很长一段时间内,行列式只是作为解线性方程组的一种工具使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。 可喜的是,法国数学家范德蒙给出了一条法则,用二阶余子式和它们的余子式来展开行列式,从而把行列式理论与线性方程组求解相分离,他也因此成为了第一个对行列式理论做出连贯的系统的阐述的人。范德蒙自幼在父亲的指导下学习音乐,但他对数学却有浓厚的兴趣,后来终于成为了法兰西科学院院士,就对行列式本身这一点来说,他是这门理论的奠基人。 1772年,拉普拉斯在论文《对积分和世界体系的探讨》中证明了范德蒙的一些规则,并推广了他的展开行列式的方法。

矩阵的开题报告doc

矩阵的开题报告 篇一:矩阵变换及应用开题报告 鞍山师范学院 数学系 13届学生毕业设计(论文)开题报告 课题名称:浅谈矩阵的变换及其应用 学生姓名:李露露 专业:数学与应用数学 班级:10级1班 学号: 30 指导教师:裴银淑 XX年 12月 26日 一、选题意义 1、理论意义: 矩阵是数学中的一个重要内容,是线性代数核心。矩阵的变换是矩阵中一种 十分重要的运算,它在解线性方程组求逆矩阵及矩阵理论的探讨中都可起到 非常重要的作用。很多复杂、繁琐的问题经过变换都可以化为简单、易于解 决的问题。因此,矩阵变换是研究代数问题的一个重要工具。 2、现实意义:

矩阵变换在物理、力学、信号与信息处理、通信、电子、系统、控制、模式 识别、土木、电机、航空航天等众多学科中式最富创造性和灵活性,并起着 不可代替的作用。 二、论文综述 1、国内外有关研究的综述: 矩阵不仅是个数学学科,而且也是许多理工学科的重要数学工具,因此国内 外有许多有关于矩阵的研究。英国数学家西尔维斯特首先使用了“矩阵”一词, 他与矩阵论的创立者凯莱一起发展了行列式理论。1858年,凯莱发表了关于矩 阵的第一篇论文《矩阵论的研究报告》。自此以后,国内外有了许多关于矩阵的 研究。在张贤达所著的《矩阵分析与应用》一书中,就有关于矩阵变换的内容, 在第一章中有关于矩阵初等变换的内容,并有初等变换在矩阵方程中的应用,在 第四章中也提到了Householder变换和Givens旋转。美国著名的约翰斯.霍普金 斯大学的RogerA.Horn和威廉姆和玛丽学院的

CharlesR.Johnson联合编著的《矩 阵分析》也有关于矩阵变换的内容,此书主要涉及的是矩阵变换的应用。国内外 关于矩阵变换的研究都取得了很大的进展,为矩阵知识所涉及的各个领域都作出 了巨大贡献。 2 、本人对以上综述的评价: 矩阵理论一直都是各个学科的基本数学工具,矩阵变换是矩阵理论的基础, 近年来有许多关于矩阵变换的研究,这些研究将一些繁琐复杂的问题简单化,也 极大地推进和丰富了电子信息、航空航天等领域的发展,同时促进了更多的数学 家加入到研究矩阵变换的队伍中,这样就使得矩阵变换知识日渐完善,并应用到 更多的领域中去。 三、论文提纲 前言 (一)、矩阵初等变换及应用 1、矩阵初等变换的基本概念 2、初等变换在方程组中的应用 3、初等变换在向量组中的应用

矩阵理论中的矩阵分析的实际应用论文

矩阵分析在同步捕获性能研究新应用 摘要:该文提出了一种利用概率转移矩阵计算捕获传输函数的方法,通过将以往分析方法中的流程图转换为概率转移矩阵,仅需知道一步转移概率矩阵,利用现代计算机编程语言(如MAPLE,MATLAB等)的符号运算功能,即可得到捕获系统的传输函数:通过对传输函数求导,可计算平均捕获时间。矩阵分析方法可完整地计算出捕获系统的传输函数,可弥补流程图方法在分析传统连续搜索捕获方案的传输函数时所忽略的项;可纠正流程图方法在分 析非连续搜索捕获方案的传输函数时所引起的误差。 关键词:CDMA;矩阵分析;传输函数;流程图;捕获 A Novel Acquisition Performance Evaluation Approach Based on Matrix Analysis Abstract:A novel acquisition performance analysis approach is proposed based on matrix analysis.Given the first step transition probability matrix,the transfer function of acquisition system can be obtained by utilizing the symbol operation function of computer programming such as MAPLE,MATLAB and so on,and the mean acquisition time can be computed by differentiating the transfer function.The transfer function of acquisition system can be computed perfectly by matrix analysis,it not only complements the items neglected in that of conventional serial acquisition scheme but also corrects the error items in that of nonconsecutive acquisition scheme.

矩阵论论文

西安理工大学 研究生课程论文 课程名称:矩阵论 任课教师:XXX 论文/研究报告题目:线性变换在 电路方程中的应用 完成日期:2014年11月5日学科:Xxxx 学号:XXXXXXX 姓名:XXX 成绩:

线性变换在电路方程中的应用 摘要:电路分析中的坐标变换和复杂绕组变压器分析中所用的变压器变换都是电路方程的线性变换。根据矩阵理论,对坐标变换和变压器变换进行了统一阐释。坐标变换本质是一个方阵和对角阵的相似变换,变压器变换的本质是新变量对旧变量的表示,当变换矩阵的逆阵等于它的转置(共轭转置)阵时,坐标变换和变压器变换数学表示是相同的。通过对电路方程系数矩阵和三角阵的相似变换,同时得到了三相 abc 坐标系和任意速度旋转两相 dq0 坐标系、瞬时值复数分量 120 坐标系、前进 - 后退 FB0 坐标系之间的变换矩阵。这有助于在更加基础的理论层面上揭示和理解电路方程线性变换的本质,也为提出电路方程线性变换的新类型提供了思路。 关键词:电路方程;线性变换;坐标变换;变压器变换 引言 在交流电机等电路分析中,常用的坐标变换是指三相静止 abc 坐标系任意速度旋转两相 d q坐标系、瞬时值复数分量 120 坐标系、 前进 - 后退 F B坐标系,以及它们对应的特殊坐标系的变量之间的 相互转换。电路方程坐标变换的主要目的是使电压、电流、磁链方程系数矩阵对角化和非时变化,从而简化数学模型,使分析和控制变得简单、准确、易行。还有一类电路方程变换,其目的是用旧变量表示出新变量,例如变压器中由原边变量利用变比变换而来的副边变量,把这类电路方程变换称为变压器变换。坐标变换已有很多文献进行了阐述,但这些阐述大都是基于物理概念的。变压器变换在复杂绕组变

师生教学关系矩阵论

师生教学关系矩阵论

————————————————————————————————作者:————————————————————————————————日期:

师生教学关系矩阵论-中学语文论文 师生教学关系矩阵论 ■ 梁红松 教学活动中,师生关系主要为教学关系,它是教育教学生产关系的主要方面。改革教育教学生产关系,释放、提高教育教学生产力,应该是新课程的本质追求。重新定位师生教学关系成为新课程改革的关键。 受苏联教育教学理论的影响,再加传统教育思想的历史沉淀,主客对立统一观长期占统治地位:教师是教育教学的主体,学生是客体。这种观念高度重视教师,而对学生则严重忽略。教育教学的创新发展被束缚住了。 新时期,中西文教交流日益密切,欧美教育教学理论涌入中国,学生的主体地位被重新发现,形成了“学生为主体,教师为主导,训练为主线”的三主教学观。新课程的启动,更把学生的自主合作探究活动视为教学的生命线。 但是,改革的深入,改革的各种问题逼迫我们更加细致透彻地分析研究师生教学关系。 教学是师生的交流互动,是教师的教与学生的学的和谐交融。它是师生双方的活动,其结果与目的却在单方的学生:培育符合社会时代需求的“社会人”。人之初,只是具备“社会人”发展可能性的“动物人”,如不接受教育(包括家庭、学校、社会教育等),就会象印度狼人一样,只是徒具人形的动物,从这个意义上说,教育教学是马克思所说的人的自身生产的一部分。母亲只生了我的身,教育使我们成为真正的人。 教师与学生、教师的教与学生的学通过符合与体现教育教学目的的教育教学资源(如教材等)的中介,浑然融合为一个不可分割的整体——教育教学活动。教

矩阵论论文

利用蚁群算法分析TSP问题 “旅行商问题”(Traveling Salesman Problem,TSP)可简单描述为:一位销售商从n个城市中的某一城市出发,不重复地走完其余n-1个城市并回到原出发点,在所有可能路径中求出路径长度最短的一条。旅行商的路线可以看作是对n城市所设计的一个环形,或者是对一列n个城市的排列。由于对n个城市所有可能的遍历数目可达(n-1)!个,因此解决这个问题需要O(n!)的计算时间。而由美国密执根大学的Holland教授发展起来的遗传算法,是一种求解问题的高效并行全局搜索方法,能够解决复杂的全局优化问题,解决TSP问题也成为遗传算法界的一个目标。 与粒子群算法相似,蚁群算法也是通过对生物的群体进行观察研究得来的。在研究蚂蚁的行为时发现,一只蚂蚁,不论是工蚁还是蚁后,都只能完成很简单的任务,没有任何一只蚂蚁能够指挥其他蚂蚁完成筑巢等各种复杂的行为。蚂蚁是如何分工,如何完成这些复杂的行为的这一问题引起了科学及的兴趣。 生物学家发现,蚁群具有高度的社会性。在蚂蚁的行动过程中,蚂蚁之间不只是通过视觉和触觉进行沟通,蚂蚁之间的信息传递还可以通过释放出一种挥发性的分泌物,这是一种信息素之类的生物信息介质。一只蚂蚁的行为极其简单,但是一个蚁群的行为则是复杂而又神奇的。蚂蚁在觅食的过程中,如果没有发现信息素,会随机选择一个方向前进,遇见障碍物也会绕开,直到遇见食物,若果遇见的食物比较小,就即刻搬回巢穴,假如食物很大,则会释放信息素之后回去搬救兵。在一只蚂蚁发现食物并留下信息素之后,其它的蚂蚁会跟着信息素很快找到食物。 虽然对蚂蚁的行为有了一定的了解,在实际模拟蚁群的时候仍然存在不少问题。蚂蚁觅食过程中在没有信息素的情况下,蚂蚁会随机向一个方向前进,不能转圈或者震动。虽然有了一个方向,蚂蚁也不能一直只向着同样方向做直线运动,这一运动需要有点随机性,由此,蚂蚁的运动在保持原有的方向的同时对外界的干扰能够做出反应,也有了新的试探。这一点在遇到障碍物时是非常重要的。在有了信息素之后,大多数的蚂蚁都会沿着信息素去找食物,这条路上的信息素会越来越多,但这并不一定会是最优的路径,所以还需要找到最优的路径。好在蚂

矩阵论文

矩阵分析在雷达信号波达方向估计中的应用 摘要:本文介绍了矩阵分析在雷达信号波达方向估计中的应用,主要介绍了DOA 估计中 常用的基于矩阵特征空间分解的MUSIC 算法的基本原理,并用MATLAB 对此算法性能进行了仿真。 关键词:矩阵分析 DOA 估计MUSIC 算法算法仿真 1、引言 矩阵分析作为一种重要的数学工具,在信号与信息处理领域起着不可代替的作用。矩阵分解是解决矩阵问题的重要方法之一,将一个矩阵分解为几个简单矩阵的乘积,有很强的技巧性和实用性。比如在雷达信号波达方向估计常用的MUSIC 算法中涉及了较多的矩阵分解的知识。 2、矩阵分析在MUSIC 算法中的应用 波达方向(DOA)估计的基本问题就是确定同时处在空间某一区域多个感兴趣的信号的空间位置(即多个信号到达阵列参考阵元的方向角)。最早的也是最经典的超分辨率DOA 估计算法是著名的多信号分类(MulitPleSignalClassicfiaitno)法,简称MUSIC 算法,是一类经典的基于特征结构分析的空间谱估计[1,2]方法。该方法是Scmhidt 和Bienveun 及Kopp 于1979年独立提出的,后来scmhidi 于1986年重新发表[3]。 MUSIC 算法基本原理及矩阵分析如下: 阵列阵元数为M ,则信号()i S t 到达各阵元的相位差所组成的向量为 ()()()(M 1)11,,...,,...,i i T jw j w i i M i a e e a a θθθ---??==? ????? (1) 称为信号()i S t 的方向向量。又知共有N 个信号位于远场,则在第K 个阵元上观测或接收信号()k x t 为: ()()()()1 N k k i i k i x t a S t n t θ==+∑()k n t 表示第K 个阵元上的加性观测噪声。 将M 个阵元上的观测数据组成1M ?维数据向量: ()()()()12,,...,T M x t x t x t x t =???? (2) 类似地,定义1M ?维观测噪声向量: ()()()()12,n ,...,n T M n t n t t t =???? (3) 空间信号的1N ?维矢量: ()()()()12,s ,...,s T N s t s t t t =???? (4)

矩阵论在神经网络中的应用详解

矩阵论论文 论文题目:矩阵微分在BP神经网络中的应用 姓名: 崔义新 学号: 20140830 院(系、部): 数学与信息技术学院 专业: 数学 班级: 2014级数学研究生 导师: 花强 完成时间: 2015 年 6 月

摘要 矩阵微分是矩阵论中的一部分,是实数微分的扩展和推广.因此,矩阵微分具有与实数微分的相类似定义与性质.矩阵微分作为矩阵论中的基础部分,在许多领域都有应用,如矩阵函数求解,神经网络等等. BP网络,即反向传播网络(Back-Propagation Network)是一种多层前向反馈神经网络,它是将W-H学习规则一般化,对非线性可微分函数进行权值训练的多层网络. 它使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小.在其向前传播的过程中利用了矩阵的乘法原理,反传的过程中则是利用最速下降法,即沿着误差性能函数的负梯度方向进行,因此利用了矩阵微分. 关键词:矩阵微分;BP神经网络;

前 言 矩阵微分(Matrix Differential)也称矩阵求导(Matrix Derivative),在机器学习、图像处理、 最优化等领域的公式推导过程中经常用到.本文将对各种形式下的矩阵微分进行详细的推导. BP (Back Propagation )神经网络是1986年由Rumelhart 和McCelland 为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一.BP 网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小.BP 神经网络模型拓扑结构包括输入层(input )、隐层(hiddenlayer)和输出层(outputlayer). BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成.输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果.当实际输出与期望输出不符时,进入 误差的反向传播阶段. 误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传.周而复始的信息正向传播和 误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止. 1 矩阵的微分 1.1 相对于向量的微分的定义 定义1 对于n 维向量函数,设函数 12 ()(,,,)n f f x x x =X 是以向量X 为自变量的 数量函数,即以n 个变量 x i 为自变量的数量函数. 我们将列向量 1n f x f x ???????? ???????????? 叫做数量函数f 对列向量X 的导数, 记作 1n f x df f f d f x ??? ?????= = =????? ???????? grad X 12T n df f f f d x x x ?? ???=? ?????? X (1.1)

matlab结课论文

山西大同大学matlab课程结课作业MATLAB程序应用 姓名: 课程序号: 2 班级: 学号: 2013年12月

1.实验内容:已知!123n n =????? ,编写一个程序求满足100!10n ≤的 最大的n 值以及此时!n 的值。 function n n=2;m=1; while m<=10^100 m=m.*n;n=n+1; end m=m/(n-1);n=n-2; m n m = 1.7112e+098 n =69 2.设)15113111191715131 1(22 +--++--+=π,试根据公式编出计算pi 的Mat lab 主程序文件,pi 的精度为0.00001。 程序: k=0;n=1;b=0;a=0; while abs((pi-a))>0.00001 a=2*sqrt(2)*k; k=( bcos( *pi/2)+sin(b*pi/2))/n+k; n=n+2; b=b+1; end a 输出a=3.141602572083633 ; a-pi= 9.918493839577991e-006 3.有两个矩阵A 和B 如下:????????????---=771175420132861-1A ,????????????------=0162310013125673B , 将A 中所有等于-1的元素改为-2,将B 中所有小于0的元素改为1,然后将B 中等于0的元素的值改为A 的相应位置元素的值。请用Matlab 函数文件实现上述运算。

clear; clc; A=[1 -1 6 8;2 3 -1 0;-2 4 5 7;1 -1 7 7]; B=[-3 -7 6 -5;-2 1 3 -1;0 0 1 3;2 6 -1 0]; C=A;A(A==-1)=-2;U=A; D=B;B(B<0)=1;V=B; A=C;B=D;[i,j]=find(B==0);A(i,j)=0;W=A; A=C;B=D; A,B,W,U,V %用函数文件实现矩阵中元素的变换。 %A、B为输入变量。 %U、V、W分别存放A、B中间变换结果。 ; 4.用matlab主程序文件产生动画:呈现一小圆(半径为1)在一大圆(半径为3)的圆周外部滚动的动画,要求连续滚动20周。 clea close;clc;r; axis([-6 6 -6 6],'equal','manual');hold on; ezplot('x^2+y^2-9'); h=ezplot('x^2+y^2-1'); x=get(h,'xdata'); y=get(h,'ydata'); for t=1:7200 set(h,'xdata',x+4*cosd(t),'ydata',y+4*sind(t)); drawnow; end

矩阵论课程论文

西安理工大学 研究生课程论文报告 课程名称:矩阵论 课程代号: 任课教师: 论文报告题目:矩阵函数在线性定常系统 状态转移矩阵求解中的应用完成日期:2015 年10 月25 日学科:电力电子与电力传动 学号: 姓名: 成绩:

矩阵函数在线性定常系统状态转移矩阵 求解中的应用 摘 要 控制系统的运动是系统性能定量分析的重要内容。“运动”是物理学上的一个概念,它是通过求系统方程的解)(t x 、)(t y 来分析研究的。由于状态方程是矩阵微分(差分)方程,输出方程式为矩阵代数方程,因此求系统方程的解主要是求状态方程的解。而求状态方程的解的关键是求状态转移矩阵。本文主要介绍了矩阵对角化标准型,约当标准型,凯莱-哈密顿定理及矩阵函数知识在线性定常系统的齐次状态方程的状态转移矩阵求解中的应用。 关键词:状态转移矩阵,约当标准型,凯莱-哈密顿定理,矩阵函数. 1.问题提出 线性系统有线性定常系统和线性时变系统,最为基本的是线性定常系统。而线性定常系统根据有无初始输入,分为线性定常齐次方程,和线性定常非齐次方程。本文只给出线性定常系统的齐次状态方程的状态转移矩阵的求解。 线性定常系统齐次方程的解亦即系统的自由解,是指系统输入为零时,由初始状态引起的自由运动。 线性定常系统齐次状态方程为 ()()t Ax t x = ()1-1 其中,x 是n 维状态向量;A 为n n ?系数矩阵。设初始时刻00=t ,系统的初始状态()()00x t x =。仿照标量微分方程求解的方法求方程()1-1的解。 设方程()1-1的解为t 的向量幂级数形式,即 )(t x = ++++++k k t b t b t b t b b 332210 ()2-1 式中,() ,2,1,0=i b i 为n 维向量。 式()2-1代入方程()1-1得 () +++++=+++++-k k k k t b t b t b b b A t kb t b t b b 3322101232132 ()3-1 既然式()2-1是方程()1-1的解,则式()3-1对任意的t 都成立。因此,式()3-1的等式两边t 的同次幂项的系数应相等,有

矩阵理论的发展史简介

矩阵理论的发展史简介 根据世界数学发展史记载,矩阵概念产生于19世纪50年代,是为了解线性方程组的需要而产生的。 然而,在公元前我国就已经有了矩阵的萌芽。在我国的《九章算术》一书中已经有所描述,只是没有将它作为一个独立的概念加以研究,而仅用它解决实际问题,所以没能形成独立的矩阵理论。 1850年,英国数学家西尔维斯特 (SylveSter,1814--1897)在研究方程的个数与未知量的个数不相同的线性方程组时,由于无法使用行列式,所以引入了矩阵的概念。 1855年,英国数学家凯莱 (Caylag,1821--1895)在研究线性变换下的不变量时,为了简洁、方便,引入了矩阵的概念。1858年,凯莱在《矩阵论的研究报告》中,定义了两个矩阵相等、相加以及数与矩阵的数乘等运算和算律,同时,定义了零矩阵、单位阵等特殊矩阵,更重要的是在该文中他给出了矩阵相乘、矩阵可逆等概念,以及利用伴随阵求逆阵的方法,证明了有关的算律,如矩阵乘法有结合律,没有交换律,两个非零阵乘积可以为零矩阵等结论,定义了转置阵、对称阵、反对称阵等概念。 1878年,德国数学家弗罗伯纽斯 (Frobeniws,1849一1917)在他的论文中引入了λ矩阵的行列式因子、不变因子和初等因子等概念,证明了两个λ矩阵等价当且仅当它们有相同的不变因子和初等因子,同时给出了正交矩阵的定义,1879年,他又在自己的论文中引进矩阵秩的概念. 矩阵的理论发展非常迅速,到19世纪末,矩阵理论体系已基本形成。到20世纪,矩阵理论得到了进一步的发展。目前,它己经发展成为在物理、控制论、机器人学、生物学、经济学等学科有大量应用的数学分支 (择自张力宏编高等代数)

矩阵论在机械工程中的应用

西安理工大学 研究生课程论文/研究报告 课程名称:矩阵论 任课教师:XXX 论文/研究报告题目: 矩阵论在机械工程中的应用 完成日期:2013 年10 月22 日 学科:矩阵轮 学号: 姓名:袁XX 成绩:

矩阵论在机械工程中的应用 摘要:矩阵论在机械工程中无论是在设计、制造、运行、试验、测试过程中都有广泛应用。矩阵论使得机械工程的许多计算变得简便。 关键词:矩阵论;机械设计;机械制造、机、电、液复合系统;数控机床;机器人; 引言:机械工程上无论在设计、制造、运行、试验、测璧等过程巾,经常要处理许多变量和变量之间的关系,这些变量间常存在着线性关系,而某些非线性关系的问题,在一定条件下也可以用线性关系近似表示,因而许多问题就涉及求解线性方程组。例如描述液压或机械系统运动微分方程组的求解,各种机械部件强度设计或应力求解,汽轮机、柴油机气缸等部件用有限元素法求解温度场等等.又例如,从一组测量数据 y x i i ,,(i=0,1,2…)去求出表示变量y 与二函数关系的近似公式x a a a n n x x f y +++==....)(10解的问题,可归结为求解以多项式系数 a a a a n ......,,210为未知量的线性方程组;再如,用有限元素法求构件应力分布,就要建立并 求解以节点位移为未知量的线性方程组,这类方程组中也常有几百个未知量,构成大型线性方程组;另外在推导一复杂控制系统的数学模型时,由于其输入和输出的数量可达数百个,使描述系统运动的微分方程组非常复杂综上所述,如果我们利用“矩阵运算”来表达这些大型线性方程组,可以具有符号简单、运算简易、分析方便、求解迅速等优点,因而它已得到了广泛 的应用.本文拟对矩阵论在机械工程中的应用作一简要介。【1】 矩阵论在机械设计过程中的应用 在机械设计过程中矩阵的应用,十分广泛。在机械结构的校核阶段需要对机械结构的强度、刚度、柔度进行设计、校核计算,在运用弹性力学,理论力学等复杂力学知识进行校验时存在许多变量之间的关系,用普通数学方程来表示会显得十分冗杂,并且求解过程也不是很方便,往往通过矩阵来表示他们之间的关系,通过矩阵来求解未知变量。例如:摩擦接触在工程中很普遍,如齿轮传动、摩擦传动等。摩擦的影响给原本就很复杂的接触分析带来了巨大困难,所以,摩擦接触行为的分析,被认为是固体力学中最具挑战性的问题之一,国内外许多学者致力于摩擦接触问题的研究,有人采用增量解法,理论阐述严谨,算例解答合理,具有一定的权威性,许多学者都引用它的算例和分析结果,不足之处是占内存大,迭代求解过程繁琐,计算量大。这也是摩擦接触分析面临的普遍困难,在一定程度上限制了它的工程应用。有人提出三维弹性接触分析的边界元柔度矩阵法来解决这个问题,这种方法计算也是矩阵在机械工程中应用的一大体现,矩阵的应用大大减少了边界元处理的数据量、建模简便、求解精度高而且由于柔度矩阵的使用使得在用计算机进行运算时占用内存少,迭代速度明显提升 【2】。在机械动力学设计过程中,由于要计算各点在每一时刻的位姿,必须引入矩阵来描述各个构建的位姿、速度、加速度。虽然可以通过各种仿真软件来进行仿真,但其内部计算都是通过一系列的矩阵运算、变换来完成的。例如:凸轮一连杆组合机构是纺织、轻工等多种工作机械中应用非常广泛的一种组合机构。它除可以保持原来凸轮机构和连杆机构的基本功能外,还能在运动学、动力学和传动性能等方面获得优良的性能,它能分别或同时准确地实现

矩阵分析结课论文

矩阵分析结课论文 《矩阵分析的应用与学习心得》 姓名:雷仁鹏 学号:2120120053 学院:宇航学院

矩阵分析的应用 摘要:本文主要通简单的实例,进行浅显地说明矩阵在求解方程过程中的应用:第一,通过矩阵进行相容方程的求解;第二,通过矩阵进行不相容方程的求解;其中,在不相容方程的求解过程中,会涉及到广义逆矩阵、伪逆矩阵以及矩阵的满秩分解。在具有实际物理背景下的有关方程组能够通过矩阵的理论知识,得到、高效地求解。 关键字:矩阵方程求解相容方程 不相容方程 最小二乘解 满秩分解 一、 矩阵在相容方程求解中的应用 已知n 元线性方程组如下表示: 11112211 21122222 1122...............n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=??+++=?? ??+++=? 其矩阵的表达形式如下: 111112********* 2 n n n n nn n n x b a a a a a a x b a a a x b ???? ???????????? ??=?????????? ???????? 矩阵A 可记为 1112121 2221 2 n n n n nn a a a a a a A a a a ?????? =???? ?? 如果矩阵A 满秩,且非矛盾方程,则可以通过消元法计算出每个未知量。见如下示例: 例1设桥式电路中闭合回路的电流分别为 3 21I I I 、、,如图2所示:

图2 已知14 ,1,2,1,1,254321======E R R R R R ,计算流过中央支路AB 的电 流AB I . 解:由基尔霍夫第二定律(电压定律)得如下方程组: ??? ??=-+-=-+-+=-+-+E I I R I I R I I R I I R I R I I R I I R I R )()(0)()(0)()(2341321253242331221511 即 ??? ??=+--=-+-=--14 3202404321 321321I I I I I I I I I 同样计算如下几个行列式 2132124 1 114=------=A 84321424 110 1=----=D 1263 14120 1 1042=----=D 210 14 2104 1 014 3=----=D 所以 10,6,4332211====== A D I A D I A D I 从而,流过中央支路AB 的电流为221-=-=I I I AB . 即电流是从B 流向A 的.

矩阵论B卷及答案上海交通大学

上海交通大学《矩阵论》 B 卷 姓名: 班级: 学号: 一、 单项选择题(每题3分,共15分)(答案AAAAB ) 1. 设1 ()k k A f A k ∞ ==∑收敛,则A 可以取为 A. 0091?? ??--?? B. 0091?? ??-?? C. 1011?? ??-?? D. 100.11?? ???? 注:A 的特征值为0,-1,而1k k x k ∞ =∑的收敛区间为[1,1)- 2. 设M 是n 阶实数矩阵,若M 的n 个盖尔圆彼此分离,则M A. 可以对角化 B. 不能对角化 C. 幂收敛 D. 幂发散 注:由定理M 有n 个不同特征值,故可以对角化 3. 设211112121M --?? ??=--?? ??--?? 的,则M 不存在 A. QR 分解 B. 满秩分解 C. 奇异值分解 D. 谱分解 注:M 的秩为2故无QR 分解 4. 设,则A = A. 21402003 1-?? ? ? ?? ? B. 1 1401006 1-?? ? ? ?? ? C. 2 2402003 1-?? ? ? ?? ? D. 20 4020061-?? ? ? ??? 注:' ()At At e Ae =,故() ' A At t A Ae Ae e ==== 5. 设3阶矩阵A 满足多项式222(4)(3)A E A E O --=, 且其最小多项式m (x )满足条件(1)(3)1m m ==,则A 可以相似于

A. 200130002M ?? ??=?? ??-?? B. 20002002M ????=?????? C. 2 001 2002M ??-? ?=-????-? ? D. 200030013M -?? ??=?????? 注:B 中矩阵的最小多项式为()2 2x - 二、填空题(每题3分,共15分) 1. 设 220A A -=,则cos 2A = [ E+()2cos11A - ]。 2.已知n n A C ?∈,并且()1A ρ<,则矩阵幂级数 k k kA ∞ =∑=[ () 2 A E A - ]。 3.设矩 阵 1111A ?=?? ,则A 的谱半径()A ρ= [ 3 ]。 4. 设 (,)m n Hom R R σ∈,则dim(Im )dim(ker )σσ⊥⊥+=n 5. 设5阶复数矩阵A 的特征多项式为22()(1)(2)f λλλλ=-+,则 2|A +E |= [ 20 ]. 注:把E 写成1或I 均可; () A E A -也可有其它等价形式如 ()()() 22 2 ,, E E E A A A E A E A E A ----- --等 三、(8分)利用初等变换求1BA -,其中

矩阵分析结课论文

矩阵分析在电路中的应用 本人主要通简单的实例,进行浅显地说明矩阵在求解方程过程中的应用:第一,通过矩阵进行相容方程的求解;第二,通过矩阵进行不相容方程的求解;其中,在不相容方程的求解过程中,会涉及到广义逆矩阵、伪逆矩阵以及矩阵的满秩分解。在具有实际物理背景下的有关方程组能够通过矩阵的理论知识,得到、高效地求解。 一、 矩阵在相容方程求解中的应用 已知n 元线性方程组如下表示: 11112211 21122222 1122...............n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=??+++=?? ??+++=? 其矩阵的表达形式如下: 111112********* 2n n n n nn n n x b a a a a a a x b a a a x b ???? ??????????????=?????????????????? 矩阵A 可记为 1112121 2221 2 n n n n nn a a a a a a A a a a ??????=?????? 如果矩阵A 满秩,且非矛盾方程,则可以通过消元法计算出每个未知量。见如下示例: 例1设桥式电路中闭合回路的电流分别为 3 21I I I 、、,如图2所示:

图2 已知14 ,1,2,1,1,254321======E R R R R R ,计算流过中央支路AB 的电 流AB I . 解:由基尔霍夫第二定律(电压定律)得如下方程组: ?? ? ??=-+-=-+-+=-+-+E I I R I I R I I R I I R I R I I R I I R I R )()(0)()(0 )()(2341321253242331221511 即 ??? ??=+--=-+-=--14 3202404321 321321I I I I I I I I I 同样计算如下几个行列式 2132124 1 114=------=A 8432 1424 1101=----=D 1263 14120 11042=----=D 210 14 2104 1 0143=----=D 所以 10,6,4332211====== A D I A D I A D I 从而,流过中央支路AB 的电流为221-=-=I I I AB . 即电流是从B 流向A 的.

矩阵论课程结业论文

浅谈矩阵论的发展 在《九章算术》中用矩阵形式解方程组已相当成熟,但那时仅用它作为线性方程组系数的排列形式解决实际问题,并没有建立起独立的矩阵理论。直到18 世纪末至19 世纪中叶,这种排列形式在线性方程组和行列式计算中应用日益广泛,行列式的发展提供了矩阵发展的条件。矩阵的早期发展,除了矩阵理论在内容上的发展,即从不同领域的研究中发展出来的有关矩阵的概念,以及随之引起的相似、对角化和标准型的矩阵分类以外,还有矩阵发展中更深刻的一面,即西尔维斯特、凯莱等人在行列式和矩阵理论上的发展及思想,这为代数不变量理论的创立奠定了理论基础。 一、矩阵早期发展的社会与文化背景 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个述语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。 英国数学家凯莱(A.Cayley,1821-1895) 一般被公认为是矩阵论的创立者,因为他首先把矩阵作为一个独立的数学概念提出来,并首先发表了关于这个题目的一系列文章。凯莱同研究线性变换下的不变量相结合,首先引进矩阵以简化记号。1858 年,他发表了关于这一课题的第一篇论文《矩阵论的研究报告》,系统地阐述了关于矩阵的理论。文中他定义了矩阵的相等、矩阵的运算法则、矩阵的转置以及矩阵的逆等一系列基本概念,指出了矩阵加法的可交换性与可结合性。另外,凯莱还给出了方阵的特征方程和特征根(特征值)以及有关矩阵的一些基本结果。凯莱出生于一个古老而有才能的英国家庭,剑桥大学三一学院大学毕业后留校讲授数学,三年后他转从律师职业,工作卓有成效,并利用业余时间研究数学,发表了大量的数学论文。 1855 年,埃米特(C.Hermite,1822-1901) 证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。后来,克莱伯施(A.Clebsch,1831-1872) 、布克海姆(A.Buchheim) 等证明了对称矩阵的特征根性质。泰伯(H.Taber) 引入矩阵的迹的概念并给出了一些有关的结论。 在矩阵论的发展史上,弗罗伯纽斯(G.Frobenius,1849-1917) 的贡献是不可磨灭的。他讨论了最小多项式问题,引进了矩阵的秩、不变因子和初等因子、正交矩阵、矩阵的相似变换、合同矩阵等概念,以合乎逻辑的形式整理了不变因子和初等因子的理论,并讨论了正交矩阵与合同矩阵的一些重要性质。1854 年,约当研究了矩阵化为标准型的问题。1892 年,梅茨勒(H.Metzler) 引进了矩阵的超越函数概念并将其写成矩阵的幂级数的形式。傅立叶、西尔和庞加莱的著作中还讨论了无限阶矩阵问题,这主要是适用方程发展的需要而开始的。 矩阵本身所具有的性质依赖于元素的性质,矩阵由最初作为一种工具经过两个多世纪的发展,现在已成为独立的一门数学分支——矩阵论。而矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论。矩阵及其理论现已广泛地应用于现代科技的各个领域。 二18世纪末19世纪初高斯和艾森斯坦等人的矩阵思想 2.1 二次理论研究中孕育的矩阵思想 从18 世纪末到19 世纪初,数学家们对矩阵的阵列形式是用二次型的形式来表示的,对矩阵理论的发展及思想的形成是渗透在二次型理论中的。1773 年[1]64,拉格朗日将齐次多项式

矩阵论论文

研究生课程论文/研究报告 课程名称:矩阵论 任课教师: 论文/研究报告题目:矩阵论的应用—线性定常系统建模和线性定常系统状态方程求解完成日期:年月日 学科: 学号: 姓名: 成绩:

矩阵论的应用—线性定常系统建模和线性定常系统状 态方程求解 摘要 我们知道在进行系统的分析和设计时,首先要建立数学模型然后再进行求解分析。根据系统分析、设计所用方法不同,或所要解决的问题不同,描述同一系统的数学模型亦有所不同。本文先介绍描述系统内部特性和端部特性的状态空间表达式及其在s 域分析得到传递函数,然后再利用系统状态转移矩阵求线性定常系统状态方程的解。 关键词:数学模型、状态空间表达式、传递函数、线性定常系统状态方程的解 一、线性定常系统的状态空间表达式及其传递函数 如下图1所示电路图,电压u(t)为电路的输入量,电容上的电压uc(t)为电路的输出量。R 、L 、C 分别为电路的电阻、电感、电容。由电路知识可知,回路中的电流i(t)和电容上电压uc(t)的变化规律满足如下方程: ()()()()di t L Ri t uc t u t dt ++= 1 ()()i t dt uc t C =? 其中i(t)和uc(t)为该电路系统的状态变量(状态变量就是确定系统状态的最小一组变量)。 状态空间:以选择的一组状态变量为坐标轴而构成的正交空间,成为正交空间。系统在任意时刻的状态可以用状态空间中的一个点来表示。 图1 将上式方程组改写成状态空间表达式为: ()11()()1 ()()00di t R i t dt L L u t L duc t uc t C dt --???? ?? ???????=+ ????? ?? ????? ??????? ??① 如将电容上的电压uc 作为电路的输出量,则 []()()01()i t uc t uc t ?? =?? ?? ②

项目管理结课论文

机电162邓爽160607237项目管理作业 软饮料经生产后推向市场是一个十分直接的过程。饮料的原料浓缩原汁由原生产厂生产。浓缩原汁运到各包装厂,添加一些其他成分后就完成了最终饮料的生产。接着将最终的产品瓶装,灌装后运往分销中心,最后到零售网点销售。这一供应链直到饮料最终客户为止,其中有许多客户和供应商关系。在每一个这样的关系过程中,都必须满足客户的期望才能把握得当。客户的期望包括准时交货,饮料供应量充足以及饮料的价格和质量等。为了更清楚的观察之一供应链怎样运作,同时找到一个能够适用于有较大地域差异的各地区普遍的客户服务经验,许多公司都试图集中一般被称为CRM 的客户关系管理。 本项目是一个建立集中的客户部门,将选中的客户服务信息系统和各地区公司及总公司连接并网。 2、请为管理和实施该项目设计一个合理的组织方式; 项目组织型

3、拟定该项目的重大里程碑计划; 4、借助WBS 确定项目范围,要求分解后的项目工作数目大约15个左右; 5、确定该项目的责任矩阵; 参与项目各方的责任一般通过责任分配矩阵的形式进行表达,直观地将项目责任方的 里程碑事件 6月 7月 8月 9月 10月 11月 上 中 下 上 中 下 上 中 下 上 中 下 上 中 下 上 中 下 方案完成 设计完成 单元完成 总装完成 测试完成 原料浓缩原汁 原汁生产商 添加配方 饮料加工厂 成品 包装厂 分销中心 分销中心 分销中心 零售网点 零售网点 零售网点 .... ....客户 关系 供应商 关系 客户 关系 供应商 关系 客户关系 供应商关系

责任和权利完整地表达了出来,便于项目各方进行有效的协调,对项目的成功实施非常关键。

相关主题
文本预览
相关文档 最新文档