当前位置:文档之家› 矩阵论在神经网络中的应用详解

矩阵论在神经网络中的应用详解

矩阵论在神经网络中的应用详解
矩阵论在神经网络中的应用详解

矩阵论论文

论文题目:矩阵微分在BP神经网络中的应用

姓名: 崔义新

学号: 20140830

院(系、部): 数学与信息技术学院

专业: 数学

班级: 2014级数学研究生

导师: 花强

完成时间: 2015 年 6 月

摘要

矩阵微分是矩阵论中的一部分,是实数微分的扩展和推广.因此,矩阵微分具有与实数微分的相类似定义与性质.矩阵微分作为矩阵论中的基础部分,在许多领域都有应用,如矩阵函数求解,神经网络等等.

BP网络,即反向传播网络(Back-Propagation Network)是一种多层前向反馈神经网络,它是将W-H学习规则一般化,对非线性可微分函数进行权值训练的多层网络. 它使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小.在其向前传播的过程中利用了矩阵的乘法原理,反传的过程中则是利用最速下降法,即沿着误差性能函数的负梯度方向进行,因此利用了矩阵微分.

关键词:矩阵微分;BP神经网络;

前 言

矩阵微分(Matrix Differential)也称矩阵求导(Matrix Derivative),在机器学习、图像处理、

最优化等领域的公式推导过程中经常用到.本文将对各种形式下的矩阵微分进行详细的推导.

BP (Back Propagation )神经网络是1986年由Rumelhart 和McCelland 为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一.BP 网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小.BP 神经网络模型拓扑结构包括输入层(input )、隐层(hiddenlayer)和输出层(outputlayer).

BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成.输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果.当实际输出与期望输出不符时,进入 误差的反向传播阶段. 误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传.周而复始的信息正向传播和 误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止.

1 矩阵的微分

1.1 相对于向量的微分的定义

定义1 对于n 维向量函数,设函数 12 ()(,,,)n f f x x x =X 是以向量X 为自变量的

数量函数,即以n 个变量 x i 为自变量的数量函数.

我们将列向量 1n f x f x ????????

????????????

叫做数量函数f 对列向量X 的导数,

记作

1n f x df

f f d f x ???

?????= = =?????

????????

grad X

12T n df f f f d x x x ??

???=?

??????

X (1.1)

例1.求函数22

2

12 ()T n

f x x x =++

+X X X = 对X 的导数 解:根据定义

1112222n n n f x x x df d f x x x ???

?????????????= = = =???????????????

?????????

X X 即 ()2T d d =X X X X 1.2相对于矩阵的微分的定义

定义2设函数()f f =A 是以P×m 矩阵A 的P×m 元素i j a 为自变量的数量函数,简称以矩阵A 为自变量的数量函数.例如

()()[]()32

111211212223112122

111211112122111T

f a a a a a a a a a a a a a f a a =+++++++????= ==

??? ????

a A a A 1112

2122

a a a a ?? ???A =

定义:P×m 矩阵

1111()

m i j p m

p p m f f a a f d f a d f f a a ??

??

??? ???? ?==

??? ??????? ? ????

?

A A (1.2) 称为数量函数f 对矩阵A 的导数,记作

()

d f d A A

.

例2:求()T f A =X AX 对矩阵A 的导数,其中向量X 是定常的,A 是对称的.

解:[]1111222

121111212122122221222()x a a f x x x a x x a x x a x a a a x ???? =+++ ???????A =

根据定义有

[]211

121121122212221

22()T f f a a x x x x df x x f f x d x x x a a ????

????? ?? ?== =???? ??? ?????? ?????

A =XX A

()=T d

d T X A X X X A

定义3如果矩阵()()()ij A t a t Cm n =∈?的每个元素()ij a t 都是t 的可微函数,则A(t )关于t 的导数(微商)定义为:

()'()(())ij m n dA t d

A t a t dt dt

?== (1.3) 1.3复合函数的微分

公式1 设()f f =Y ,()=Y Y X ,则

T T

T T d f d d f

d d d d f d f d d d d ?=????=??Y X

X Y Y X Y X (1.4) 证明:由给定条件有 T df df d d =?Y Y 和T

d d d d =?Y Y X X 将上式结合起来

T T T T T df d df df d df d d d d d d =??=?Y Y X =>Y X X Y X

公式2 设()f f =X,Y ,()=Y Y X ,则

T T T T T

d f f d f

d d df df f d d d d ???=+???????=+???Y X X X Y

Y X X Y X (1.5)

2 人工神经网络

2.1 人工神经网络的定义

定义4 人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统.它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理.

人工神经网络(Artificial Neural Networks, ANN )是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型.这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的.人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被

称为“训练”.

2.2 人工神经网络的模型

由于人工神经网络是受生物神经网络的启发构造而成的,所以在开始讨论人工神经网络之前,有必要首先考虑人脑皮层神经系统的组成.

科学研究发现,人的大脑中大约有100亿个生物神经元,它们通过60万亿个联接联成一个系统.每个神经元具有独立的接受、处理和传递电化学信号的能力.这种传递经由构成大脑通信系统的神经通路所完成.单个神经元处理一个事件需要3

10-s,而在硅芯片中处理一事件只需-9

10s.但人脑是一个非常高效的结构,大脑中每秒每个动作的能量约为16

10-J.图1所示是生物神经元及其10-J,而当今性能最好的计算机进行相应的操作需要6

相互联接的典型结构.

图1:生物神经元及其相互联接的典型结构

(1)生物神经元主要由树突、轴突、突触和细胞体组成.其中树突是由细胞体向外伸出的,有不规则的表面和许多较短的分支.树突相当于信号的输入端,用于接受神经冲动.

(2)轴突是由细胞体向外伸出的最长的一条分支,即神经纤维,相当于信号的输出电缆.

(3)突触是神经元之间通过轴突(输出)和树突(输入)相互联结点.

(4)细胞体完成电化学信号整合与处理,当胞体中接受的累加刺激超过一个阈值时,胞体就被激发,此时它沿轴突通过树突向其它神经元发出信号.

我们要构造一个人工神经网络系统,要从以下三个方面对生物神经网络进行模拟:

(1)人工神经元(也简称为节点)本身的处理能力;

(2)节点与节点之间连接(人工神经网络拓扑结构);

(3)节点与节点之间连接的强度(通过学习算法来调整). 因此,首要任务是构造人工神经元模型.

对于每一个人工神经元来说,它可以接受一组来自系统中其它神经元的输入信号,每 个输入对应一个权,所有输入的加权和决定该神经元的激活状态.这里,每个权就相当于突触的“联接强度”.基本模型如下图2.

图中i y 是第i 个神经元的输出,它可与其他多个神经元通过权连接:1,...,,...,j n u u u 分别指与第i 个神经元连接的其他神经元输出;1,...,,...,i ji ni w w w 分别是指其他神经元与第i 个神经元连接的权值;i 是指第i 个神经元的阈值;i x 是第i 个神经元的净输入;()i f x 是非线性函数,称为输出函数或激活函数.激活函数常有以下几种行放大处理或限制在一个适当的范围内.典型的激活函数有符号函数、阶跃函数、S 型函数等.

目前,已有的人工神经网络模型至少有几十种,其分类方法也有多种.例如,若按网络拓扑结构,可分为无反馈网络与有反馈网络;若按网络的学习方法,可分为有导师的学习网络和无导师的学习网络;若按网络的性能,可分为连续型网络与离散型网络,或分为确定性网络与随机型网络;若按突触连接的性质,可分为一阶线性关联网络与高阶非线性关联网络.

2.3 BP 人工神经网络模型

1986年Rumelhart ,Hinton 和Williams 完整而简明地提出一种ANN 的误差反向传播训练算法(简称BP 算法),系统地解决了多层网络中隐含单元连接权的学习问题,由此算法构成的网络我们称为BP 网络.BP 网络是前向反馈网络的一种,也是当前应用最为广泛的一种网络.

误差反传算法的主要思想是把学习过程分为两个阶段:第一阶段(正向传播过程),给出输入信息通过输入层经隐含层处理并计算每个单元的实际输出值;第二阶段(反向过程),若在输出层未能得到期望的输出值,则逐层递归地计算实际输出与期望输出之差值(即误差),以便根据此差值调节权值,具体来说,就是可对每一权重计算出接收单元的

图2:人工神经网络基本模型

误差值与发送单元的激活值的积.

基于BP 算法的多层前馈型网络的结构如图3所示.

2.4 BP 人工神经网络基本算法公式推导

为了方便理解,不妨设含有共L 层和n 个节点的任意一个三层BP 神经网络,每层单位元只接受前一层的输出信息并输出给下一层各单元,各单位元的特性为Sigmoid 型(它是连续可微的,且值域在0-1之间).设给定N 个样本(,)(1,2,...,)k k x y k N =,任一节点i 的输出为i O ,对某一个输入为k x ,网络的输出为k y ,节点i 的输出为ik O 。

正向传播过程,对于输入层单位元一般无计算能力,只是作为传输和储存.现在研究

隐藏层,设输入层到隐藏层连接矩阵为21

ij w ,当输入第k 个样本,节点j 的输入为 221jk ij jk j

net w x =∑ (2.1)

隐藏层的第j 个单元,当输入第k 个样本时,节点j 的输出为

211

()jk jk k O f O b =+

其中,f 为非线性激活函数,一般取为(0,1)内连续取值Sigmoid 函数;l jk b 为l 层神经单位元的阈值,2jk

net 表示隐藏层,输入第k 个样本时,第j 个单元节点的输入. 类似的,输出层的输入为

3322

jk ij jk j

net w O =∑ (2.2)

对于输出层的输出,激活函数有时采用Sigmoid 函数,但有时也会采用纯线性函数,在此,我们以纯线性函数为例,则输出层的输出为

322

()jk jk k O f O b =+ (2.3)

采用的误差函数为

—期望输出 向量(导师信号)

+

隐 藏 层

信 号 流

图3:基于BP 算法的多层前馈型网络的结构

2

1()2k lk lk

l

E y y =

-∑ (2.4) 其中lk y 为单元j 的实际输出.总误差为

∑==

N

k k

E

N

E 1

21

(2.5)

定义 l k

jk l

jk

E net δ?=

? 于是 1

1--=??=????=??l jk l jk l jk l

jk

k l ij l

jk l jk k l ij k net E w net net E w E οδο (2.6) 下面分两种情况来讨论:

(1)若节点j 为输出单元,则jk l jk y =ο 32()()jk l l

k k jk jk k k jk l l

jk jk jk

y E E y y f net net y net δδ???'====--??? (2.7)

(2)若节点j 不是输出单元,则 21()l

jk l l

k k k jk

jk

jk l l l

jk jk jk jk

E E E f net net y net οδδ

ο????'====???? (2.8)

式中l jk ο是送到下一层(l +1)层的输入,计算

l jk

k

E ο??要从(l +1)层算回来. 在(l +1)层第m 个单元时

1

1111

1+++++=∑∑∑=??=????=??l mj m

l mk l mj

m m l mk k l jk l mk l mk k l jk k w w net E net net E E δοο (2.9) 将式(2.9)代入式(2.8)中,则得

)(1

1l jk l mj m

l mk

l jk net f w '?=++∑δ (2.10) 总结上述结果,有

???????=??'=-++∑1

1

1)(l jk

l jk l ij

k

m l jk l mj l mk l jk w E net f w οδδδ (2.11)

误差的反向传播,即首先由输出层开始逐层计算各层神经元的输出误差,然后根据误差梯度下降法来调节各层的权值和阈值,使修改后的网络的最终输出能接近期望值.根据误差

梯度下降法依次修正输出层权值的修正量32

ij w ?,输出层阈值的修正量2jk b ,隐含层权值的修正量21ij w ?,隐含层阈值的修正量1jk b .

输出层权值和阈值调整公式

3232()()()l ij jk k jk k w m y m y m ηδηδ?=-=- 323232(1

)()()ij ij ij w m w m w m +=+? 232()ij jk b m ηδ?=- 222(1)()ij ij k b m b m b +=+?

隐藏层权值和阈值调整公式

2121()()()l ij jk k jk k w m y m y m ηδηδ?=-=- 323232(1)()()ij ij ij w m w m w m +=+?

221()l ij jk jk b m ηδηδ?=-=- 222(1)()ij ij k b m b m b +=+?

2.5 BP 人工神经网络基本算法

BP 算法不仅有输入层节点,输出层节点,而且有一层或多层隐含节点.对于输入信息,首先向前传播到隐含层的节点上,经过各单元的激活函数(又称作用函数、转换函数)运算后,把隐含节点的输出信息传播到输出节点,最后给出输出结果.网络的学习过程由正向和反向传播两部分组成.在正向传播过程中,每一层的神经元的状态只影响下一层神经元网络.如果输出层不能得到期望输出,就是实际输出值与期望输出值之间有误差,那么转向反向传播过程,将误差信号沿原来的连接通路返回,通过修改各层神经元的权值,逐次地向输入层传播去进行计算,再经过正向传播过程,这两个过程的反复运用,使得误差信号最小.实际上,误差达到人们所希望的要求时,网络的学习过程就结束.

BP 算法是在导师指导下,适合于多层神经元网络的一种学习,它是建立在梯度下降法的基础上的.理论证明,含有一个隐含层的BP 网络可以实现以任意精度近似任何连续非线性函数.

具体步骤如下:

第一步,数据归一并进行网络初始化 根据系统输入输出序列(X,Y )确定网络输入层节点

数n ,输出层节点数l ,输入层输出层的神经元个数分别由函数输入和输出的维数确定.由实验经验隐含层节点个数需要大于输入层隐层节点数,设为m ,初始化输入层、隐层、输

出层之间的连接权值2132

,ij ij

w w ,初始化隐层阈值1k b ,输出层阈值2k b ,给定学习速率η以及学习误差error ;训练次数maxEpoch ,可以根据训练需要改动;

第二步,输入样本计算隐含层的输出值i O ,1,2,...,i m =,计算公式为211log ()b ij k

O sig X w =?+将其作为输出层的输入;

第三步,计算输出层的输出y ,1,2...,k k l = 22I ij k

y=purline(O w )+b ?; 第四步,利用公式21

()2

e Y Y =

∑∑-计算全局误差e ; 第五步,判断误差是否达到预先设定的要求或者训练次数是否达到最大值,如果是,算法结束;否则,进行第六步.

第六步,计算输出层到隐含层的误差信号32

,1,2...,k k l δ= ;

第七步,计算隐含层到输入层的误差信号21,1,2...,j k m δ=;

第八步,调整计算输出层到隐含层的权值和阈值322,ij k

w b ; 第九步,调整计算隐含层到输入层的权值和阈值211,ij k

w b ; 第十步,输入下一样本,依次循环.

结束语

人工神经网络,是由大量处理单元(神经元)组成的非线性大规模自适应动力系统.它具有自组织,自适应和自学习能力,以及具有非线性、非局域性,非定常性和非凸性等特点.它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理,记忆信息的方式设计一种新的机器使之具有人脑那样的信息处理能力.

本文描述了BP神经网络的基本原理和基本算法,介绍了与矩阵论中矩阵微分,向量微分的相关联系.

在理论方面,详细分析了算法提出的理论依据与总体思路.由于本算法能够通过梯度下降方法进行网络训练,因此,需要考虑如何对矩阵求梯度,如何对向量求导数,而这正是矩阵论所解决的问题,因此,两者之间存在着必然的联系.

从以上研究结果可以看出,BP神经网络是以矩阵论相关知识为基础的.由于本人能力有限,因此本课题在以后的研究中还需要进一步完善.

基于BP神经网络的字符识别算法的实现毕业论文

一、原始依据(包括设计或论文的工作基础、研究条件、应用环境、工作目 的等。) 工作基础:了解C++的基本概念和语法,熟练使用Visual C++6.0软件。 研究条件:BP神经网络的基本原理以及图像处理的基本常识。 应用环境:基于BP神经网络的图片图像文件中的字符识别。 工作目的:掌握基于Visual C++6.0应用程序的开发。 了解人工智能的基本概念并掌握神经网络算法的基本原理。 掌握Visual C++6.0中的图片处理的基本过程。 二、参考文献 [1]人工智能原理及其应用,王万森,电子工业,2007. [2]VC++深入详解,鑫,电子工业,2006. [3]人工神经网络原理, 马锐,机械工业,2010. [4]Visual C++数字图像处理典型案例详解,晶,机械工业,2012. [5]Application of Image Processing to the Characterization of Nanostructures Manuel F. M. Costa,Reviews on Advanced Materials Science,2004. 三、设计(研究)容和要求(包括设计或研究容、主要指标与技术参数,并根据课题性质对学生提出具体要求。) 1、掌握C++的基本概念和语法。 2、掌握二维神经网络的基本原理。了解BP神经网络的基本概念。 3、完成Visual C++中对于图像的灰度、二值化等预处理。 4、完成基于样本的神经网络的训练以及图像中数字的识别,并对其性能进 行统计和总结,分析其中的不足。

指导教师(签字) 年月日 审题小组组长(签字) 年月日理工大学本科生毕业设计(论文)开题报告

神经网络在PLC控制系统中的应用

神经网络在PLC控制系统中的应用 2010-11-11 18:30:00 来源:中国自动化网浏览:47 网友评论条点击查看 摘要:神经网络具有自学习、自调整、自适应能力。本文介绍了由PLC控制实现的神经网络PID自适应控制器。实验表明,该技术对于提高控制精度是行之有效的。具有在调速系统中推广应用的价值。 关键词:PLC;PID控制器;神经网络;直流调速系统 一、引言 虽然目前的交、直流传动系统都有较成熟的控制方案,采用线性PI或PID 调节器可以取得基本满意的控制效果。但是,常参数的PID调节器只对线形系统有效,它们的控制性能因为系统的非线性而降低。在电力传动系统中,虽可以建立电机模型,但是电机本身和负载的一些参数(如交流电机的转子电阻、拖动负载的转动惯量)是无法确定的、时变的。电气设备的机械饱和特性,开关的失控时间、控制延时都是不能精确建模的非线性因素。然而将模糊与神经网络技术引入电力传动系统设计智能控制器却可以很好地克服电力传动对象变参数、非线性等问题,大大提高系统的鲁棒性。引入模糊与神经网络技术的主要优点是不需要过程的复杂模型,而且适应性强,容易实现。 本文是将PID控制规律融进神经网络[3]之中,实现神经网络与PID控制规律的本质结合,共同完成PID自适应调节,并用PLC实现神经网络PID自适应控制,确保电力传动系统的控制精度和可靠性。 二、PID自适应控制器 常规PID控制算法为: (1) 用求和代替积分,微分用有限差分代替,即上式为: (2) 式中T为采样周期,KP是比例系数,KI=KP/TI是积分比例系数,KD=KPTD是微分比例系数。 根据上式,组成由两层线性神经网络构造的控制器,如图1所示。它是由比例、积分、微分三个单元组成的一种动态前向网络,各层神经元个数、连接方式、连接权值是按PID 控制规律的基本原则和已有的经验确定,能够保证系统的稳定和快速收敛。

基于BP神经网络的PID控制器的设计

基于BP神经网络的PID控制器的研究与 实现 课程名称:人工神经网络

目录 前言 (3) 一、BP神经网络 (4) 二、模拟PID控制系统 (5) 三、基于BP神经网络的PID控制器 (6) 四、仿真程序 (10) 五、运行结果 (17) 六、总结 (18) 参考文献 (19)

前言 人工神经网络是以一种简单神经元为节点,采用某种网络拓扑结构构成的活性网络,可以用来描述几乎任意的非线性系统。不仅如此,人工神经网络还具有学习能力、记忆能力、计算能力以及各种智能处理能力,在不同程度和层次上模仿人脑神经系统的信息处理、存储和检索的功能。不同领域的科学家,对人工神经网络有着不同的理解、不同的研究内容,并且采用不同的研究方法。对于控制领域的研究工作者来说,人工神经网络的魅力在于:①能够充分逼近任意复杂的非线性关系,从而形成非线性动力学系统,以表示某种被控对象的模型或控制器模型;②能够学习和适应不确定性系统的动态特性;③所有定量或定性的信息都分布储存于网络内的各神经单元,从而具有很强的容错性和鲁棒性;④采用信息的分布式并行处理,可以进行快速大量运算。对于长期困扰控制界的非线性系统和不确定性系统来说,人工神经网络无疑是一种解决问题的有效途径。正因为如此,把人工神经网络引入传统的PID 控制,将这两者结合,则可以在一定程度上解决传统PID 调节器不易在线实时整定参数、难于对一些复杂过程和参数慢时变系统进行有效控制的不足。

一、BP神经网络 BP神经网络是一种有隐含层的多层前馈网络,其结构如图1-1所示。如果把具有M个输入节点和L个输出节点的BP神经网络看成是从M维欧氏空间到L维欧氏空间的非线性映射,则对于具有一定非线性因数的工业过程被控对象,采用BP网络来描述,不失为一种好的选择。在BP神经网络中的神经元多采用S型函数作为活化函数,利用其连续可导性,便于引入最小二乘学习算法,即在网络学习过程中,使网络的输出与期望输出的误差边向后传播边修正加权系数,以期使误差均方值最小。BP神经网络的学习过程可分为前向网络计算和反向误差传播——连接加权系数修正两个部分,这两个部分是相继连续反复进行的,直至误差满足要求。不论学习过程是否已经结束,只要在网络的输入节点加入输入信号,则这些信号将一层一层向前传播;通过每一层时要根据当时的连接加权系数和节点的活化函数与阈值进行相应计算,所得的输出再继续向下一层传输。这个前向网络计算过程,既是网络学习过程的一部分,也是将来网络的工作模式。在学习过程结束之前,如果前向网络计算的输出和期望输出之间存在误差,则转入反向传播,将误差沿着原来的连接通路回送,作为修改加权系数的依据,目标是使误差减小。

基于神经网络的手写数字识别系统的设计与实现学士学位毕业论文

本科生毕业论文(设计) 题目基于神经网络的手写数字 识别系统的设计与实现

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

研究生必备的人工神经网络电子书汇总(31本)

研究生必备的人工神经网络电子书汇总(31本) 这些都是我从淘宝和百度文库里面搜集到的电子书,需要的可以联系我 QQ:415295747,或者登录我的博客https://www.doczj.com/doc/3013466181.html,/u/1723697742 1.神经网络在应用科学和工程中的应用——从基础原理到复杂的模式识别 5 译者序 6 前 9 致谢 10 作者简介 11 目录 19 第1章从数据到模型:理解生物学、生态学和自然系统的复杂性和挑战 27 第2章神经网络基础和线性数据分析模型 72 第3章用于非线性模式识别的神经网络 105 第4章神经网对非线性模式的学习 166 第5章从数据中抽取可靠模式的神经网络模型的实现 205 第6章数据探测、维数约简和特征提取 235 第7章使用贝叶斯统计的神经网络模型的不确定性评估 276 第8章应用自组织映射的方法发现数据中的未知聚类 359 第9章神经网络在时间序列预测中的应用 458 附录 2.MATLB 神经网络30个案例分析 第1章BP神经网络的数据分类——语音特征信号分类 23 第2章BP神经网络的非线性系统建模——非线性函数拟合 33 第3章遗传算法优化BP神经网络——非线性函数拟合 48 第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优 57 第5章基于BP_Adsboost的强分类器设计——公司财务预警建模 66 第6章PID神经元网络解耦控制算法——多变量系统控制 77 第7章RBF网络的回归——非线性函数回归的实现 85 第8章GRNN的数据预测——基于广义回归神经网络的货运量预测 93 第9章离散Hopfield神经网络的联想记忆——数字识别 102 第10章离散Hopfield神经网络的分类——高校科研能力评价 112 第11章连续Hopfield神经网络的优化——旅行商问题优化计算 124 第12章SVM的数据分类预测——意大利葡萄酒种类识别 134 第13章SVM的参数优化——如何更好的提升分类器的性能

Neural-Network-Introduction神经网络介绍大学毕业论文外文文献翻译及原文

毕业设计(论文) 外文文献翻译 文献、资料中文题目:神经网络介绍 文献、资料英文题目:Neural Network Introduction 文献、资料来源: 文献、资料发表(出版)日期: 院(部): 专业: 班级: 姓名: 学号: 指导教师: 翻译日期:2017.02.14

外文文献翻译 注:节选自Neural Network Introduction神经网络介绍,绪论。 History The history of artificial neural networks is filled with colorful, creative individuals from many different fields, many of whom struggled for decades to develop concepts that we now take for granted. This history has been documented by various authors. One particularly interesting book is Neurocomputing: Foundations of Research by John Anderson and Edward Rosenfeld. They have collected and edited a set of some 43 papers of special historical interest. Each paper is preceded by an introduction that puts the paper in historical perspective. Histories of some of the main neural network contributors are included at the beginning of various chapters throughout this text and will not be repeated here. However, it seems appropriate to give a brief overview, a sample of the major developments. At least two ingredients are necessary for the advancement of a technology: concept and implementation. First, one must have a concept, a way of thinking about a topic, some view of it that gives clarity not there before. This may involve a simple idea, or it may be more specific and include a mathematical description. To illustrate this point, consider the history of the heart. It was thought to be, at various times, the center of the soul or a source of heat. In the 17th century medical practitioners finally began to view the heart as a pump, and they designed experiments to study its pumping action. These experiments revolutionized our view of the circulatory system. Without the pump concept, an understanding of the heart was out of grasp. Concepts and their accompanying mathematics are not sufficient for a technology to mature unless there is some way to implement the system. For instance, the mathematics necessary for the reconstruction of images from computer-aided topography (CAT) scans was known many years before the availability of high-speed computers and efficient algorithms finally made it practical to implement a useful CAT system. The history of neural networks has progressed through both conceptual innovations and implementation developments. These advancements, however, seem to have occurred in fits and starts rather than by steady evolution.

神经网络的应用及其发展

神经网络的应用及其发展 [摘要] 该文介绍了神经网络的发展、优点及其应用和发展动向,着重论述了神经网络目前的几个研究热点,即神经网络与遗传算法、灰色系统、专家系统、模糊控制、小波分析的结合。 [关键词]遗传算法灰色系统专家系统模糊控制小波分析 一、前言 神经网络最早的研究20世纪40年代心理学家Mcculloch和数学家Pitts合作提出的,他们提出的MP模型拉开了神经网络研究的序幕。神经网络的发展大致经过三个阶段:1947~1969年为初期,在这期间科学家们提出了许多神经元模型和学习规则,如MP模型、HEBB学习规则和感知器等;1970~1986年为过渡期,这个期间神经网络研究经过了一个低潮,继续发展。在此期间,科学家们做了大量的工作,如Hopfield教授对网络引入能量函数的概念,给出了网络的稳定性判据,提出了用于联想记忆和优化计算的途径。1984年,Hiton教授提出Boltzman机模型。1986年Kumelhart等人提出误差反向传播神经网络,简称BP 网络。目前,BP网络已成为广泛使用的网络;1987年至今为发展期,在此期间,神经网络受到国际重视,各个国家都展开研究,形成神经网络发展的另一个高潮。神经网络具有以下优点: (1) 具有很强的鲁棒性和容错性,因为信息是分布贮于网络内的神经元中。 (2) 并行处理方法,使得计算快速。 (3) 自学习、自组织、自适应性,使得网络可以处理不确定或不知道的系统。 (4) 可以充分逼近任意复杂的非线性关系。 (5) 具有很强的信息综合能力,能同时处理定量和定性的信息,能很好地协调多种输入信息关系,适用于多信息融合和多媒体技术。 二、神经网络应用现状 神经网络以其独特的结构和处理信息的方法,在许多实际应用领域中取得了显著的成效,主要应用如下: (1) 图像处理。对图像进行边缘监测、图像分割、图像压缩和图像恢复。

(完整版)基于神经网络的手写数字识别系统的设计与实现毕业论文

中南大学 本科生毕业论文(设计) 题目基于神经网络的手写数字 识别系统的设计与实现

目录 摘要 (Ⅰ) ABSTRACT (Ⅱ) 第一章绪论 (1) 1.1手写体数字识别研究的发展及研究现状 (1) 1.2神经网络在手写体数字识别中的应用 (3) 1.3 论文结构简介 (4) 第二章手写体数字识别 (5) 2.1手写体数字识别的一般方法及难点 (5) 2.2 图像预处理概述 (6) 2.3 图像预处理的处理步骤 (6) 2.3.1 图像的平滑去噪 (6) 2.3.2 二值话处理 (7) 2.3.3 归一化 (8) 2.3.4 细化 (10) 2.4 小结 (10) 第三章特征提取 (12) 3.1 特征提取的概述 (12) 3.2 统计特征 (12) 3.3 结构特征 (13) 3.3.1 结构特征提取 (14) 3.3.2 笔划特征的提取 (14) 3.3.3 数字的特征向量说明 (15) 3.3 知识库的建立 (15)

第四章神经网络在数字识别中的应用 (17) 4.1 神经网络简介及其工作原理 (17) 4.1.1神经网络概述[14] (17) 4.1.2神经网络的工作原理 (17) 4.2神经网络的学习与训练[15] (18) 4.3 BP神经网络 (20) 4.3.1 BP算法 (20) 4.3.2 BP网络的一般学习算法 (21) 4.3.3 BP网络的设计 (22) 4.4 BP学习算法的局限性与对策 (26) 4.5 对BP算法的改进 (27) 第五章系统的实现与结果分析 (29) 5.1 软件开发平台 (29) 5.1.1 MATLAB简介 (29) 5.1.2 MATLAB的特点 (29) 5.1.3 使用MATLAB的优势 (30) 5.2 系统设计思路 (30) 5.3 系统流程图 (31) 5.4 MATLAB程序设计 (31) 5.5 实验数据及结果分析 (32) 结论 (27) 参考文献 (28) 致谢 (30) 附录 (31)

PNN神经网络评价方法本科毕业设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

基于神经网络的智能控制系统概述

神经网络的智能控制系统 摘要:介绍了神经网络的基本概念,论述了人工神经网络的产生与发展,以及人工神经网络在控制系统中的应用现状,分析了人工神经网络的特点和监视控制系统的原理,并阐述了几种基于神经网络的控制系统, 最后展望了基于神经网络控制的发展方向。 关键词:人工神经网络;控制系统;监视控制系统;智能控制; 1引言 基于神经网络的控制(NCC).神经网络控制是一门崭新的智能信息处理学科,研究非程序的、适应性的、大脑风格的信息处理的本质和能力。它的发展对人工智能、计算机科学、信息科学、非线性科学、认识科学、自动控制、微电子、模式识别、脑神经科学等产生了重要影响。 人工神经网络是一门发展十分迅速的交叉学科,它是由大量处理单元组成的非线性大规模自适应动力系统,具有学习能力、记忆能力、计算能力以及智能处理能力,并在不同程度和层次上模仿人脑神经系统的信息处理、存储及检索功能。同时,人工神经网络具有非线性、非局域性、非定常性、非凸性等特点,因此在智能控制、模式识别、计算机视觉、自适应滤波和信号处理、非线性优化、自动目标识别、连续语音识别、声纳信号的处理、知识处理、智能传感技术与机器人、生物医学工程等方面都有了长足的发展。 神经网络控制是一种基本上不依赖于模型的控制方法,它适合于具有不确定性或高度非线性的控制对象,并具有较强的自适应和自学习功能,因此是智能控制的一个重要分支领域。人工神经网络利用物理器件来模拟生物神经网络的某些结构和功能,具有并行和分布式的信息处理网络结构,该结构一般由几个神经元组成,每一个神经元有一个单一的输出,但可通过连接的很多其它神经元,获得有多个连接通道的输入,每个连接通道对应一个连接权系数。 2人工神经网络的产生与发展 早在1943年,美国神经生物学家W.S.McCul-loch就与数学家W.Pitts合作,采用数理模型的方法研究脑细胞的动作和结构,以及生物神经元的一些基本生理特征,提出第一个神经计算模型,即神经元的阈值元件模型(MP模型),并指出:即使是最简单的神经网络,从原则上讲也可以进行任意算术或逻辑函数的计算。1949年,D.O.Hebb提出了改变神经元连接强度的Hebb规则,其正确性30年后才得到证实,至今仍在各种神经网络模型中起着重要的作用。 1957年F.Rosenblatt提出并设计制作了著名的感知器(Perceptron),从而掀起第一次研究神经网络的热潮。1960年B.Windrow和M.E.Hoff提出自适应线性单元(Adaline)网络,这与当时占主导地位的以顺序离散符号推理为基本特征的AI途径完全不同,因而引起人们的兴趣,同时也引起符号主义与连接主义的争论。1969年M.Minsky和S.Papert编写了影响很大的《Perceptron》一书。

神经网络分析应用

基于动态BP神经网络的预测方法及其应用来源:中国论文下载中心 [ 08-05-05 15:35:00 ] 作者:朱海燕朱晓莲黄頔编辑:studa0714 摘要人工神经网络是一种新的数学建模方式,它具有通过学习逼近任意非线性映射的能力。本文提出了一种基于动态BP神经网络的预测方法,阐述了其基本原理,并以典型实例验证。 关键字神经网络,BP模型,预测 1 引言 在系统建模、辨识和预测中,对于线性系统,在频域,传递函数矩阵可以很好地表达系统的黑箱式输入输出模型;在时域,Box-Jenkins方法、回归分析方法、ARMA模型等,通过各种参数估计方法也可以给出描述。对于非线性时间序列预测系统,双线性模型、门限自回归模型、ARCH模型都需要在对数据的内在规律知道不多的情况下对序列间关系进行假定。可以说传统的非线性系统预测,在理论研究和实际应用方面,都存在极大的困难。相比之下,神经网络可以在不了解输入或输出变量间关系的前提下完成非线性建模[4,6]。神经元、神经网络都有非线性、非局域性、非定常性、非凸性和混沌等特性,与各种预测方法有机结合具有很好的发展前景,也给预测系统带来了新的方向与突破。建模算法和预测系统的稳定性、动态性等研究成为当今热点问题。目前在系统建模与预测中,应用最多的是静态的多层前向神经网络,这主要是因为这种网络具有通过学习逼近任意非线性映射的能力。利用静态的多层前向神经网络建立系统的输入/输出模型,本质上就是基于网络逼近能力,通过学习获知系统差分方程中的非线性函数。但在实际应用中,需要建模和预测的多为非线性动态系统,利用静态的多层前向神经网络必须事先给定模型的阶次,即预先确定系统的模型,这一点非常难做到。近来,有关基于动态网络的建模和预测的研究,代表了神经网络建模和预测新的发展方向。 2 BP神经网络模型 BP网络是采用Widrow-Hoff学习算法和非线性可微转移函数的多层网络。典型的BP算法采用梯度下降法,也就是Widrow-Hoff算法。现在有许多基本的优化算法,例如变尺度算法和牛顿算法。如图1所示,BP神经网络包括以下单元:①处理单元(神经元)(图中用圆圈表示),即神经网络的基本组成部分。输入层的处理单元只是将输入值转入相邻的联接权重,隐层和输出层的处理单元将它们的输入值求和并根据转移函数计算输出值。②联接权重(图中如V,W)。它将神经网络中的处理单元联系起来,其值随各处理单元的联接程度而变化。③层。神经网络一般具有输入层x、隐层y和输出层o。④阈值。其值可为恒值或可变值,它可使网络能更自由地获取所要描述的函数关系。⑤转移函数F。它是将输入的数据转化为输出的处理单元,通常为非线性函数。

神经网络实现非线性系统设计范本

神经网络实现非线性系统设计

毕业设计(论文) 中文题目神经网络实现非线性系统设计英文题目 Neural Network Nonlinear System 院系: 年级专业: 姓名: 学号: 指导教师: 职称: 月日

【摘要】神经网络具有极强的非线性及自适应自学习的特性,常被用来模拟判断、拟合和控制等智能行为,成功渗透了几乎所有的工程应用领域,是一个在人工智能方向迅速发展的具有重大研究意义的前沿课题。 本文前两章主要介绍了神经网络的发展背景和研究现状,还有BP 网络的结构原理及相关功能。然后,对如何利用GUI工具和神经网络原理设计非线性系统的基本流程进行了详细的阐述。最后,经过利用Matlab软件进行编程,以及是经过对BP神经网络算法及函数的运用,研究其在函数逼近和数据拟合方面的应用,并分析了相关参数对运行结果的影响。 【关键词】BP网络,GUI,非线性系统 【ABSTRACT】Neural network has a strong nonlinear and adaptive self-organizing properties, often used to simulate the behavior of intelligent decision-making, cognitive control, and the successful penetration of almost all engineering applications, is a rapid development in the direction of artificial intelligence

神经网络研究的现状

万方数据

万方数据

神经网络研究的现状 刊名: 甘肃科技纵横 英文刊名:SCIENTIFIC & TECHNICAL INFORMATION OF GANSU 年,卷(期):2006,35(4) 本文读者也读过(10条) 1.卢海林.王鑫改进的BP神经网络在单桩竖向承载力预测中的应用[期刊论文]-长江大学学报(自然科学版)2005,2(7) 2.张国栋.彭刚.王钊.朱暾BP神经网络在单桩承载力预测中的应用[期刊论文]-三峡大学学报(自然科学版) 2003,25(1) 3.张永央.陈新朝复合载体夯扩桩单桩竖向极限承载力研究[期刊论文]-资源环境与工程2008,22(z1) 4.王昆明.蒋洪胜.姜千君.WANG Kun-ming.JIANG Hong-sheng.JIANG Qian-jun嵌岩桩竖向承载力预测的遗传BP神经网络模型研究[期刊论文]-山东建筑大学学报2008,23(6) 5.刘世奇.潘冬子.陈静曦.LIU Shi-qi.PAN Dong-zi.Chen Jing-xi小波分析在基桩浅部缺陷检测中的应用[期刊论文]-无损检测2005,27(4) 6.刘曦文.LIU Xi-wen BP神经网络在地基承载力预测中的应用[期刊论文]-山西建筑2010,36(30) 7.蒋洪胜.戚靖骅.万立华.JIANG Hong-sheng.QI Jing-hua.WAN Li-hua基于遗传-BP神经网络预测单桩竖向承载力[期刊论文]-山东建筑工程学院学报2006,21(3) 8.牟粼琳.李卓球.林佳木.MOU Linlin.LI Zhuoqiu.LIN Jiamu低应变桩基检测模拟信号的小波分析系统研究[期刊论文]-武汉理工大学学报(信息与管理工程版)2008,30(3) 9.潘冬子.程升明.唐颖栋.Pan Dongzi.Cheng Shengming.Tang Yingdong小波神经网络在基桩缺陷诊断分析中的应用[期刊论文]-振动、测试与诊断2006,26(3) 10.熊水金基于小波分析的低应变反射波法测桩信号处理中的小波基选取[期刊论文]-内蒙古石油化工2008,34(7)本文链接:https://www.doczj.com/doc/3013466181.html,/Periodical_gskjzh200604024.aspx

神经网络控制完整版

神经网络控制 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉

BP神经网络-本科生毕业设计论文-小论文

基于智能计算的水质预测预警系统的设计与实现 温子铭1,刘双印1 (1.广东海洋大学信息学院,广东湛江524088) 摘要:及时准确地掌握水质变化趋势是确保水产品健康养殖的关键,为此,本设计采用智能计算与现代Web开发技术有机结合,以软件工程为指导,按照面向对象程序设计的方法,构建5种基于智能计算的水质预测预警模型;采用J2EE为开发工具设计实现了B/S架构的水质预测预警系统。该系统主要有水质数据管理、水质数据趋势展示、水质指标溶解氧浓度预测、水质预警管理等功能模块组成,用户界面友好,水质预测精度较高,能够满足水产养殖水质管理的需要。该系统的研制为提前掌握水质未来发展趋势、水污染预警提供基础数据和手段,为应对突发水质事件、水质调节、水产养殖生产管理与规划提供科学的决策依据,有一定的实用价值。 关键词:水产养殖;水质趋势;J2EE;水质预测预警系统;智能计算; Design and Implementation of Water Quality Predicting and Early Warning System Base on Smart Computing Wen Ziming, Liu Shuangyin (1. Information Institute of Guangdong Ocean University, Zhanjiang,GuangDong 524088) Abstract:Have a good command of water quality trends in time and accurately is the key to assure health growth of the aquatic products. Therefore, this design is combined with intelligent computing and modern web development technology, on the guidance of software engineer, and also established five kinds of water quality predicting and early warning models based on intelligent technology according to the measure of Object-Oriented Programming; We adopted J2EE as development tool to achieve the water quality predicting and early warning system based on B/S framework. This system mainly included water quality data management module, water quality data trend module, dissolved oxygen prediction module and water quality early warning module. It’s useful for users and can meet the needs of aquatic water quality management. The establishment of this system provide the basic data and methods to handling the future water quality trend and water pollution early warning. And also provide the scientific decision for dealing with the water pollution events, water quality adjustment, aquaculture management and plans. It has practical value. Key words: Aquaculture, water quality trend, J2EE, water quality predicting and early warning system, intelligent computing. 1引言 我国是水产养殖大国,也是世界上唯一一个养殖产量超过捕捞产量的国家, 水产养殖为解决食品供给、粮食安全、改善民生,增加农民收入等方面发挥了重要作用。但目前水产养殖业主要沿用大量消耗资源和粗放式经营的传统养殖模式,投饵、施药、施肥不科学不合理、极大地恶化了水产品赖以生存的水体环境,严重制约着水产养殖业健康可持续发展。为此,亟需利用智能信息处理技术对水产养殖水质进行准确预测,及时掌握养殖水质的变化规律,辨识水质异常变化并进行提前预警,对防范水质恶化与疾病爆发、水环境保护与治理提供科学决策依据,在实现水产品高产、优质、高效的健康养殖、推进渔业信息现代化中将发挥重要的作用。 针对水产养殖过程中出现的水质问题和现有水质预测系统在实际应用过程中出现的问题,本文在研究当前水质方面期刊、书籍等之后,认为在这个智能化的年代,智能计算是水质预测的趋势,它将在未来的水质预测中扮演越来越重要的角色。智能计算讲求的是大量数据的学习,学习量越大,智能计算的数据处理能力就越强。相比之人脑,计算机拥有更强的运算能力,因此计算机对于智能计算的支持是完美的。在本文中,本人将通过基于水质预测预警系统的设计与实现来对智能计算与计算机的 第一作者:温子铭,男, 学士,广东人,2012届信息管理与信息系统专业。

神经网络控制修订稿

神经网络控制 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量

相关主题
文本预览
相关文档 最新文档