当前位置:文档之家› 反函数与单调性

反函数与单调性

反函数与单调性
反函数与单调性

高一数学同步测试(5)—反函数与函数的单调性

第Ⅰ卷(共60分)

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有

一项是符合题目要求的.

1.函数)5(51

-≠+=x x y 的反函数是 ( ) A .)0(51

≠-=x x y B .)(5R x x y ∈+=

C .)0(51

≠+=x x

y D .)(5R x x y ∈-=

2.已知函数)(x f y =有反函数,且)1(+=x f y 的图象经过点)2,0(,则下列函数中可能 是)(x f y =的反函数的一个函数是 ( )

A .)20(42

≤≤-=

x x y

B .)20(412≤≤-+=x x y

C .)20(422

≤≤--=x x y

D .)22(412

≤≤---=x x y

3.设函数))((R x x f ∈为奇函数,),2()()2(,2

1

)1(f x f x f f +=+=

则=)5(f ( )A .0

B .1

C .2

5 D .5

4.函数f x x ax ()=--2

23在区间[1,2]上存在反函数的充分必要条件是 ( )

A .a ∈-∞(,]1

B .a ∈+∞[,)2

C .a ∈[,]12

D .a ∈-∞?+∞(,][,)12

5.若f(x)=-x 2+2ax 与1

)(+=x a

x g 在区间[1,2]上都是减函数,则a 的值范围是 ( )

A .)1,0()0,1(?-

B .]1,0()0,1(?-

C .(0,1)

D .]1,0(

6.函数),1(,11

ln

+∞∈-+=x x x y 的反函数为 ( )

A .),0(,11+∞∈+-=x e e y x x

B .),0(,11

+∞∈-+=x e e y x

x C .)0,(,11-∞∈+-=x e e y x x D .)0,(,1

1

-∞∈-+=x e e y x

x 7.已知函数()1

3

ax f x x +=-的反函数就是()f x 本身,则a 的值为

( )

A .3-

B .1

C .3

D .1-

8.设偶函数f(x)的定义域为R ,当x ],0[+∞∈时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系 是

( )

A. f(π)>f(-3)>f(-2)

B. f(π)>f(-2)>f(-3)

C. f(π)

D. f(π)

9. 函数()f x 存在反函数,则方程()()f x c c =为常数

( )

A .有且只有一个实数根

B .至少有一个实数根

C .至多有一个实数根

D .没有实数根

10.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的

( )

A .f (a )+f (b )≤-f (a )+f (b )

B .f (a )+f (b )≤f (-a )+f (-b )

C .f (a )+f (b )≥-f (a )+f (b )

D .f (a )+f (b )≥f (-a )+f (-b )

11.点(2,1)既在函数f (x )=

a

b

x a +1的图象上,又在它的反函数的图象上,则适合条件的数组(a ,b )有 ( )

A .1组

B .2组

C .3组

D .4组

12.设)(1

x f -是函数f(x)=x 的反函数,则下列不等式中恒成立的是

( )

A .12)(1

-≤-x x f B .12)(1

+≤-x x f

C .12)(1

-≥-x x f

D .12)(1

+≥-x x f

第Ⅱ卷(共90分)

二、填空题:本题共4小题,每小题4分,共16分.把答案填在题中的横线上.

13.已知函数)(x f y =是奇函数,当0≥x 时, 13)(+=x x f ,设)(x f 的反函数是y=g(x),

则g(-8)=__ .

14.函数f (x) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 15.已知f (x) = 4x -2x +

1 ,求f -

1(0)的值___________________.

16.若f(x)=-x 2+2ax 与1

)(+=

x a

x g 在区间[1,2]上都是减函数,则a 的值范围是________. 三、解答题:本大题共6小题,共74分.解答应写出必要的文字说明、证明过程及演算步骤. 17.用定义证明:函数1

()f x x x

=+

在[)1,x ∈+∞上是增函数. (12分)

18.设f(x)是R 上的奇函数 ,且当x ∈[0,+ ∞)时,f(x)=x(1+3x ),求f(x)在(- ∞,0)上

的表达式和在R 上的表达式.(12分)

19. 讨论函数f(x)=)0(1

2

≠-a x ax

,在-1

20.f(x)为偶函数,g(x)为奇函数且f(x)+g(x)=1

1

-x ,求f(x),g(x). (12分)

21.定义在(-1,1)上的奇函数f(x)是减函数且f(1-a)+f(1-a 2)<0,求实数a 的取值围. (12分)

22.已知函数f (x )=x

a

x x ++22,x ∈[1,+∞) (14分)

(1)当a =

2

1

时,求函数f (x )的最小值; (2)若对任意x ∈1,+∞),f (x )>0恒成立,试求实数a 的取值范围.

高一数学同步测试(5)—反函数与函数的单调性答案

一、选择题

1.A 2.B 3.C 4.D 5.D 6.B 7.D 8.A 9.C 10.B 11.A 12.C 二、填空题

13. 3- 14. 1,2??

-∞- ??? 15. 1. 16. ]1,0(.

三、解答题 17.任给[)1,21,x x ∈+∞且12x x <, 则1111()f x x x =+

222

1()f x x x =+ 12()()f x f x -=1212

11

x x x x +

-- 22122121

12

x x x x x x x x +--=

=

121212

()(1)

x x x x x x --.

[)1,21,x x ∈+∞ 且12x x <,1121212,1,0,0x x x x x x ≥∴>>-<. 121,x x ∴>即有1210x x ->,

121212

()(1)

x x x x x x --0<,

12()()f x f x ∴<, 即1

()f x x x

=+

在[)1,x ∈+∞上是增函数.

18.设x ∈(-∞,0),则-x

∈(0,+ ∞),∴f(-x)=-x(1-3x )。 f(x)是R 上的奇函数,

∴ f(x)=x(1-3x )(x ∈(- ∞,0)),f(x)在R 上的表达式是f(x)=x(1+3x ).

19.设-1

,)

1)(1()1)((2

22

12121--+-x

x x x x x a

∴当a>0时,f(x)在(-1,1)上为减函数;当a<0时,f(x)在(-1,1)上为增函数. 20. f(x)+g(x)=

11-x , ∴∴f(-x)+g(-x)= 11--x 即f(x)-g(x)=- 1

1-x ,将 ???

???

?

--

=--=+11)()(1

1)()(x x g x f x x g x f 联立解得f(x)=1)(,1122-=-x x x g x . 21. f(x)在(-1,1)上为奇函数且为减函数, ∴??

???->-<-<-<-<-111111

1122

a a a a ,则a ∈(0,1).

22.(1)当a =

21时,f (x )=x +x

21+2,x ∈[1,+∞). 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2

121

x x ) . ∵x 2>x 1≥1, ∴x 2-x 1>0,1-

2

121

x x >0, 则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数. ∴f (x )在区间[1,+∞)上的最小值为f (1)=2

7

. (2)在区间[1,+∞)上,

f (x )=x

a x x ++22>0恒成立?x 2+2x +a >0恒成立

设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数,

当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.

幂函数指数函数和对数函数·反函数

幂函数、指数函数和对数函数·反函数 教学目标 1.使学生正确理解反函数的概念,初步掌握求反函数的方法. 2.培养学生分析问题、解决问题的能力及抽象概括的能力. 3.使学生思维的深刻性进一步完善. 教学重点与难点 教学重点是求反函数的技能训练. 教学难点是反函数概念的理解. 教学过程设计 一、揭示课题 师:今天我们将学习函数中一个重要的概念——反函数. (板书:反函数 1.反函数的概念) 二、讲解新课 师:什么是反函数呢?让我们一起来思考这样一个问题:在函数y=2x+1中,如果把x当作因变量,把y当作自变量,能否构成一个函数呢? 生:可以构成一个函数. 师:为什么是个函数呢? 一的x与之相对应. 师:根据这位同学的表述,这是符合函数定义的,也就是说,按照上述原则,函数y=2x+1是存在反函数的.这个反函数的解析式是怎样的呢?

师:这种表示方法是没有问题的,但不符合我们的习惯,按习惯用字母x 表示自变量,用字母y表示因变量,故这个函数的解析式又可以 是不是同一函数呢? 生:是. 师:能具体解释一下吗? 和值域,皆为R,同时对应法则都是自变量减1除以2得因变量,也是相同的,所以它们是相同的函数. 生:有.就是y=2x+1. 那么,是不是所有函数都会有反函数呢? 生:不是所有函数都有反函数. 师:能举个例子说明吗? 生:如函数y=x2,将y当作自变量,x当作因变量,在y允许取值范围内,一个y可能对应两个x,如y=1,则对应x=±1,因此不能构成函数,说明它没有反函数. 师:说得非常好.如果从形的角度来解释,会看得更清楚,见图1,从图中可看出给出一个y能对应两个x.

对数函数性质及练习(有答案)

对数函数及其性质 1.对数函数的概念 (1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)对数函数的特征: 特征???? ? log a x 的系数:1log a x 的底数:常数,且是不等于1的正实数 log a x 的真数:仅是自变量x 判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征. 比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因 是不符合对数函数解析式的特点. 【例1-1】函数f (x )=(a 2 -a +1)log (a +1)x 是对数函数,则实数a =__________. 解析:由a 2 -a +1=1,解得a =0,1.又a +1>0,且a +1≠1,∴a =1.答案:1 【例1-2】下列函数中是对数函数的为__________. (1)y =log (a >0,且a ≠1);(2)y =log 2x +2; (3)y =8log 2(x +1);(4)y =log x 6(x >0,且x ≠1); (5)y =log 6x . 解析: 2.对数函数y =log a x (a >0,且a ≠1)的图象与性质

(1)图象与性质 谈重点对对数函数图象与性质的理解对数函数的图象恒在y轴右侧,其单调性取决于底数.a>1时,函数单调递增;0<a<1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用. (2)指数函数与对数函数的性质比较 (3)底数a对对数函数的图象的影响 ①底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上

反函数例题讲解

反函数例题讲解

————————————————————————————————作者:————————————————————————————————日期: ?

反函数例题讲解 例 1.下列函数中,没有反函数的是 ( ) (A) y = x2-1(x<2 1 - )?(B) y = x3+1(x∈R ) ?(C) 1 -= x x y (x∈R ,x ≠1) (D) ? ? ?<-≥-=).1(4)2(22x x x x y , 分析:一个函数是否具有反函数,完全由这个函数的性质决定. 判断一个函数有没有反函数的依据是反函数的概念.从代数角度入手,可试解以y表示x 的式子;从几何角度入手,可画出原函数图像,再作观察、分析.作为选择题还可用特例指出不存在反函数. 本题应选(D). 因为若y = 4,则由 ? ? ?≥=-2422x x , 得 x = 3. 由 ? ? ?<=-144x x , 得 x = -1. ∴ (D )中函数没有反函数. 如果作出 ?? ?<-≥-=).1(4)2(22x x x x y , 的图像(如图),依图更易判断它没有反函数. 例2.求函数 211x y --=(-1≤x≤0)的反函数. 解:由 211x y --=,得:y x -=-112 . ∴ 1-x 2 = (1-y )2, x 2 = 1-(1-y )2 = 2y -y2 . ∵ -1≤x ≤0,故 22y y x --=. 又 当 -1≤x ≤0 时, 0≤1-x 2≤1, ∴ 0≤21x -≤1,0≤1-21x -≤1,

即 0≤y ≤1 . ∴ 所求的反函数为 22x x y --=(0≤x ≤1). 由此可见,对于用解析式表示的函数,求其反函数的主要步骤是: ① 把给出解析式中的自变量x 当作未知数,因变量y 当作系数,求出x = φ ( y ). ② 求给出函数的值域,并作为所得函数的定义域; ③ 依习惯,把自变量以x 表示,因变量为y 表示,改换x = φ ( y )为y = φ ( x ). 例3.已知函数 f ( x ) = x 2 + 2x + 2(x <-1),那么 f -1 (2 )的值为__________________. 分析:依据f -1 (2 )这一符号的意义,本题可由f ( x )先求得f -1 ( x ), 再求f -1 (2 )的值(略). 依据函数与反函数的联系,设f -1 (2 ) = m ,则有f ( m ) = 2.据此求f -1 (2 )的值会简捷些. 令 x 2 + 2x + 2 = 2,则得:x 2 + 2x = 0 . ∴ x = 0 或 x =-2 . 又x<-1,于是舍去x = 0,得x =-2,即 f -1 (2 ) = -2 . 例 4.已知函数 241)(x x f +=(x ≤0),那么 f ( x )的反函数f -1 ( x )的图像是 ( ) y (A y x 0 1 (D y x 1 y (B x -(C x -

反函数与函数的单调性

2005-2006学年度上学期 高中学生学科素质训练 高一数学同步测试(5)—反函数与函数的单调性 说明:本试卷分第I 卷和第II 卷两部分,第I 卷60分,第II 卷90分,共150分;答题时间150分钟. 第Ⅰ卷(共60分) 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有 一项是符合题目要求的. 1.函数)5(51 -≠+=x x y 的反函数是 ( ) A .)0(51 ≠-=x x y B .)(5R x x y ∈+= C .)0(51 ≠+=x x y D .)(5R x x y ∈-= 2.已知函数)(x f y =有反函数,且)1(+=x f y 的图象经过点)2,0(,则下列函数中可能 是)(x f y =的反函数的一个函数是 ( ) A .)20(42 ≤≤-= x x y B .)20(412≤≤-+=x x y C .)20(422 ≤≤--=x x y D .)22(412 ≤≤---=x x y 3.设函数))((R x x f ∈为奇函数,),2()()2(,2 1 )1(f x f x f f +=+= 则=)5(f ( )A .0 B .1 C .2 5 D .5 4.函数f x x ax ()=--2 23在区间[1,2]上存在反函数的充分必要条件是 ( ) A .a ∈-∞(,]1 B .a ∈+∞[,)2 C .a ∈[,]12 D .a ∈-∞?+∞(,][,)12 5.若f(x)=-x 2+2ax 与1 )(+=x a x g 在区间[1,2]上都是减函数,则a 的值范围是 ( ) A .)1,0()0,1(?- B .]1,0()0,1(?- C .(0,1) D .]1,0( 6.函数),1(,1 1 ln +∞∈-+=x x x y 的反函数为 ( )

(整理)函数凹凸性的应用

函数凹凸性的应用 什么叫函数的凸性呢?我们先以两个具体函数为例,从直观上看一看何谓函数的凸性. 如函数y =所表示的曲线是向上凸的,而 2y x =所表示的曲线是向下凸的,这与我们日常习惯上的称呼是相类似的.或 更准确地说:从几何上看,若y =f(x)的图形在区间I 上是凸的,那么连接曲线上任意两点所得的弦在曲线的上方;若y =f(x)的图形在区间I 上是凹的,那么连接曲线上任意两点所得的弦在曲线的下方. 如何把此直观的想法用数量关系表示出来呢? 设函数 ()f x 在区间I 上是凸的(向下凸),任意 1x , 2x I ∈( 12 x x <). 曲线 ()y f x =上任意两点11(,())A x f x ,11(,())B x f x 之间的图象位于弦AB 的下方,即任意 12(,)x x x ∈,() f x 的值小于或等于弦AB 在x 点的函数值,弦AB 的方程 211121 ()() ()() f x f x y x x f x x x -= -+-. 对任意 12(,) x x x ∈有,整理得 21 122121 ()()()x x x x f x f x f x x x x x --≤ +--. 令 221()x x t x x -= -,则有01t <<,且12(1)x tx t x =+-,易得1 21 1x x t x x -=--,上式可写成 1212[(1)]()(1)() f tx t x tf x t f x +-≤+- 1.1凸凹函数的定义 凸性也是函数变化的重要性质。通常把函数图像向上凸或向下凸的性质,叫做函数的凸性。图像向下

反函数与函数的图像变换

反函数与函数的图像变换 一、反函数 当一个函数是一个一一映射时,可以把这个函数的因变量作为一个新函数的自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数。比如,指数函数2x y =与对数函数2log x 互为反函数。函数()y f x =的反函数用1()y f x -=表示。 设函数()y f x =()x A ∈的值域是C ,根据这个函数中,x y 的关系,我们可以用y 把x 表示出来,得到()x y ?=,若对于y 在C 中每一个值,都只有唯一的x A ∈与它对应,那么()x y ?=就表示以y 为自变量,x 为因变量的一个函数,这样的函数()x y ?=()y C ∈叫做函数()y f x =()x A ∈的反函数,记作1()x f y -=,习惯上改写成1()y f x -=。 1f -是对应法则,1()y f x -=是表示反函数的符号,是一个整体。 1f -表示的对应是f 的逆对应,11()() f x f x -≠。 ()y f x =也是1()y f x -=的反函数,()y f x =、1()y f x -=互为反函数。 只有当()y f x =是一一映射时,()f x 才有反函数。 特例:2x y =,2log x y →=,2log y x →=, 一般:()y f x =,1()x f y -→=,1()y f x -→=。 例1 求下列函数的反函数: (1)21x y -=+()0x >;(2)211,()11,x x f x x x ≤-?+=?>--+?。 二、互为反函数的两个函数的性质: 指数函数2x y =与对数函数2log x 的图像关于直线y x =对称。 根据反函数的定义,如果点(),a b 在函数()y f x =上,则点(),b a 在函数1()y f x -=上,从而可知函数()y f x =的图像与函数1()y f x -=的图像关于直线y x =对称。 指数函数2x y =与对数函数2log y x =都是增函数,一般的, ()y f x =与1()y f x -=的单调性一致。 例2 函数()y f x =反函数是自己本身,请写出一个这样的函数。 思考:若函数()y f x =是奇函数,且有反函数,那么1()y f x -=是奇函数吗? 奇函数一定有反函数吗? 偶函数呢?

幂函数 反函数 反比例

〖2.3〗幂函数 (1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. (图象关. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q p α= (其中,p q 互质,p 和q Z ∈),若 p 为奇数q 为奇数时,则q p y x =是奇函数,若p 为奇数q 为偶数时,则q p y x =是偶函数,若p 为偶数q 为奇数时,则q p y x =是非奇非偶函数. ⑤图象特征:幂函数 ,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.

反函数 反函数的基本知识点 一.定义:设式子)(x f y = 表示y 是x 的函数,定义域为A ,值域为C ,从式子)(x f y =中解出x ,得到式子)(y x ?=,如果对于y 在C 中的任何一个值,通过式子)(y x ?=,x 在A 中都有唯一确定的值和它对应,那么式子)(y x ?=就表示x 是y 的函数(y 是自变量),这样的函数,叫做)(x f y =的反函数 ,记作)(1y f x -=,即()y f y x 1)(-==?,一般习惯上对调()y f x 1-=中的字母y x ,,把它改写成)(1x f y -=。 (1).反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数; (2).原函数的定义域、值域分别是反函数的值域、定义域, ()图象在点图象上)在(点几何语言: )(),(,)()(11x f y a b P x f y b a P a b f b a f --='?==?= (3).()y f x =与1()y f x -=的图象关于y x =对称. 二.求反函数的一般步骤 (1) 确定原函数的值域,也就是反函数的定义域 (2) 由)(x f y =的解析式求出)(y x ?= (3) 将y x ,对换,得反函数的一般表达式)(1x f y -=,标上反函数的定义 域(反函数的定义域不能由反函数的解析式求得) 分段函数的反函数可以分别求出各段函数的反函数后再合成。 三.掌握下列一些结论

反函数例题讲解

反函数例题讲解 例1.下列函数中,没有反函数的是 ( ) (A) y = x 2-1(x <2 1-) (B) y = x 3+1(x ∈R ) (C) 1 -= x x y (x ∈R ,x ≠1) (D) ? ? ?<-≥-=).1(4)2(22x x x x y , 分析:一个函数是否具有反函数,完全由这个函数的性质决定. 判断一个函数有没有反函数的依据是反函数的概念.从代数角度入手,可试解以y 表示x 的式子;从几何角度入手,可画出原函数图像,再作观察、分析.作为选择题还可用特例指出不存在反函数. 本题应选(D ). 因为若y = 4,则由 ? ? ?≥=-2422x x , 得 x = 3. 由 ? ? ?<=-144x x , 得 x = -1. ∴ (D )中函数没有反函数. 如果作出 ? ? ?<-≥-=).1(4)2(22x x x x y , 的图像(如图),依图 更易判断它没有反函数. 例2.求函数 211x y --=(-1≤x ≤0)的反函数. 解:由 211x y --=,得:y x -=-112 . ∴ 1-x 2 = (1-y )2, x 2 = 1-(1-y )2 = 2y -y 2 . ∵ -1≤x ≤0,故 22y y x --=. 又 当 -1≤x ≤0 时, 0≤1-x 2≤1, ∴ 0≤21x -≤1,0≤1-21x -≤1, 即 0≤y ≤1 . ∴ 所求的反函数为 22x x y --=(0≤x ≤1).

由此可见,对于用解析式表示的函数,求其反函数的主要步骤是: ① 把给出解析式中的自变量x 当作未知数,因变量y 当作系数,求出x = φ ( y ). ② 求给出函数的值域,并作为所得函数的定义域; ③ 依习惯,把自变量以x 表示,因变量为y 表示,改换x = φ ( y )为y = φ ( x ). 例3.已知函数 f ( x ) = x 2 + 2x + 2(x <-1),那么 f -1 (2 )的值为__________________. 分析:依据f -1 (2 )这一符号的意义,本题可由f ( x )先求得f -1 ( x ),再求f -1 (2 )的值(略). 依据函数与反函数的联系,设f -1 (2 ) = m ,则有f ( m ) = 2.据此求f - 1 (2 )的值会简捷些. 令 x 2 + 2x + 2 = 2,则得:x 2 + 2x = 0 . ∴ x = 0 或 x =-2 . 又x <-1,于是舍去x = 0,得x =-2,即 f -1 (2 ) = -2 . 例4.已知函数 241)(x x f +=(x ≤0),那么 f ( x )的反函数f -1 ( x ) 的图像是 ( ) (A ((B (C

反函数定义

反函数定义 一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y 把x表示出,得到x= g(y). 若对于y在C中的任何一个值,通过x= g(y),x在A 中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^-1(x). 反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域. 反函数性质 (1)互为反函数的两个函数的图象关于直线y=x对称; 函数及其反函数的图形关于直线y=x对称 (2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)大部分偶函数不存在反函数(唯一有反函数的偶函数是f(x)=a^x,x∈{0},但是y=k(常数)无法通过水平线测试,所以没有反函数。)。奇函数不一定存在反函数。被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。 (5)一切隐函数具有反函数;

(6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。 (8)反函数是相互的且具有唯一性 (9)定义域、值域相反对应法则互逆(三反) (10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)) 例:y=2x-1的反函数是y=0.5x+0.5 y=2^x的反函数是y=log2 x 例题:求函数3x-2的反函数 解:y=3x-2的定义域为R,值域为R. 由y=3x-2解得 x=1/3(y+2) 将x,y互换,则所求y=3x-2的反函数是 y=1/3(x+2)(x属于R) (11)反函数的导数关系:如果X=F(Y)在区间I上单调,可导,且F‘(Y)不等于0,那么他的反函数Y=F’(X)在区间S={X|X=F(Y),Y属于I }内也可导,且[F‘(X)]'=1\[F’(Y)]'。 反函数说明 ⑴在函数x=f’(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f‘(y)中的字母x,y,把它改写成y=f’(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式。

指数函数、对数函数、幂函数的图像和性质知识点总结

(一)指数与指数函数 1.根式 (1)根式的概念 (2).两个重要公式 ①?? ??????<-≥==)0()0(||a a a a a a a n n ; ②a a n n =)((注意a 必须使n a 有意义)。 2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m n m n a a a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)m n m n m n a a m n N n a a - *= = >∈>、且 ③0的正分数指数幂等于0,0的负分数指数幂没有意义. 注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①a r as =a r+s (a>0,r 、s∈Q); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r bs (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质 y =a x a>1 0

图象 定义域R 值域(0,+∞) 性质(1)过定点(0,1) (2)当x>0时,y>1; x<0时,00时,0d1>1>a1>b1,∴c>d>1>a>b。即无论在轴的左侧还是右侧,底数按逆时针方向变大。 (二)对数与对数函数 1、对数的概念 (1)对数的定义 如果(01) x a N a a =>≠ 且,那么数x叫做以a为底,N的对数,记作log N a x=,其中a叫做对数的底数,N叫做真数。 (2 对数形式特点记法 一般对数 底数为a0,1 a a >≠ 且log N a 常用对数底数为10 lg N 自然对数底数为e ln N 2 (1)对数的性质(0,1 a a >≠ 且):①1 log0 a =,②log1 a a =,③log N a a N =,④log N a a N =。(2)对数的重要公式:

函数的凹凸性在高考中的应用

函数的凹凸性在高考中的应用 崇仁二中廖国华 教学目的: ①了解函数的凹凸性,掌握增量法解决凹凸曲线问题。 ②培养学生探索创新能力,鼓励学生进行研究型学习。 教学重点:掌握增量法解决凹凸曲线问题 教学难点:函数的凹凸性定义及图像特征 教学过程: 一、课题导入 1.展示崇仁县第二中学2008届高三第一次月考试题12得分统计表 2.组织学生现场解答月考试题12并进行得分统计,以引出课题——— 题目:一高为H、满缸水量为V的鱼缸的截面如图1所示,其底部碰了一个小洞,满缸水从洞中流出.若鱼缸水深为h时水的体积为V,则函数V=f(h)的大致图象可能是图2中的().(选自《中学数学教学参考》2001年第1~2合期)的《试题集绵》. 函数凹凸性问题是近几年高考与平时训练中的一种新题型.这种题情景新颖、背景公平,能考查学生的创新能力和潜在的数学素质,体现“高考命题范围遵循教学大纲,又不拘泥于教学大纲”的改革精神.但由于函数曲线的凹凸性在中学教材中既没有明确的定义,又没有作专门的研究,因此,就多数学生而言,对这类凹凸性曲线问题往往束手无策;而教师的“导数”理解又不能被学生所接受.所以,对这类非常规性问题作一探索,并引导学生去得到一般性的解法,无疑对学生数学素质的提高和创新精神的培养以及在迅速准确解答高考中出现此类的试题都是十分重要的。 二、新课讲授 1、凹凸函数定义及几何特征 图1 图2

⑴引出凹凸函数的定义: 如图3根据单调函数的图像特征可知:函数)(1x f 与)(2x f 都是增函数。但是)(1x f 与)(2x f 递增方式不同。不同在哪儿?把形如)(1x f 的增长方式的函数称为凹函数,而形如)(2x f 的增长方式的函数称为凸函数。 ⑵凹凸函数定义(根据同济大学数学教研室主编《高等数学》第201页): 设函数f 为定义在区间I 上的函数,若对(a ,b )上任意两点1x 、2x ,恒有: (1)1212()()()2 2 x x f x f x f ++<,则称f 为(a ,b )上的凹函数; (2)12 12()() ( )2 2 x x f x f x f ++> ,则称f 为(a ,b )上的凸函数。 ⑶凹凸函数的几何特征: 几何特征1(形状特征) 图4(凹函数) 图5(凸函数) 如图,设21,A A 是凹函数y=)(x f 曲线上两点,它们对应的横坐标12x x <,则 111(,())A x f x ,222(,())A x f x ,过点12 2 x x +作ox 轴的垂线交函数于A ,交21A A 于B , 凹函数的形状特征是:其函数曲线任意两点1A 与2A 之间的部分位于弦21A A 的下方; 凸函数的形状特征是:其函数曲线任意两点1A 与2A 之间的部分位于弦21A A 的上方。 简记为:形状凹下凸上。

高一数学函数的单调性和反函数人教版知识精讲

高一数学函数的单调性和反函数人教版 【同步教育信息】 一. 本周教学内容: 函数的单调性和反函数 二. 学习目标: 1. 理解函数的单调性和函数单调增、减区间的意义,理解增减性的几何意义,能应用定义证明函数的单调性。 2. 能判断一些简单函数在给定区间的单调性。 3. 理解反函数的概念。 4. 明确原函数与其反函数的定义域和值域间的关系。 5. 能熟练地求一些函数的反函数。 【例题讲解】 [例1] 证明函数x x x f 1)(2 -=在(0,∞+)上是增函数。 证明:设1x 、2x 是(0,∞+)上任意两个值,且21x x < )1(1)()(12122212x x x x x f x f ---=-2 1212211)(x x x x -+-= 2112 1212))((x x x x x x x x -++-=)1)((2 11212x x x x x x ++-= 由12x x >,012 112>++x x x x ,则0)()(12>-x f x f ,即)()(12x f x f > 故x x x f 1)(2-=在区间(0,∞+)上是增函数。 [例2] 讨论函数1 )(2-=x ax x f 的单调性,并加以证明,其中0>a 。 解:11)()(21122212---=-x ax x ax x f x f ) 1)(1()1)((21222121--+-=x x x x x x a (1)当121-<,即21u u >,且m u u n ≥>≥21 又由)(u f 在],[n m 上为增函数,故有)()(21u f u f > 即)]([)]([21x g f x g f >,所以函数)]([x g f 在],[b a 上为减函数 说明:已知)(u f 和)(x g u =,则)]([x g f 称为复合函数,复合函数单调性规律是: (1))(u f 为增函数,)(x g 为增函数,则)]([x g f 为增函数。 (2))(u f 为增函数,)(x g 为减函数,则)]([x g f 为减函数。

幂函数知识点总结与练习题

幂函数 (1)幂函数的定义: 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. ①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q p α= (其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q p y x =是奇函数,若p 为奇数q 为偶数时,则q p y x =是偶函数,若p 为偶数q 为奇数时,则q p y x =是非奇非偶函数. ⑤图象特征:幂函数,(0,)y x x α =∈+∞,当1α>时,若01x <<,其图象在直线y x =下 方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上

方,若1x >,其图象在直线y x =下方. 幂函数练习题 一、选择题: 1.下列函数中既是偶函数又是(,)-∞0上是增函数的是 ( ) A .y x =43 B .y x =32 C .y x =-2 D .y x =-14 2.函数2 -=x y 在区间]2,2 1[上的最大值是 ( ) A . 4 1 B .1- C .4 D .4- 3.下列所给出的函数中,是幂函数的是 ( ) A .3 x y -= B .3 -=x y C .3 2x y = D .13 -=x y 4.函数3 4x y =的图象是 ( ) A . B . C . D . 5.下列命题中正确的是 ( ) A .当0=α时函数α x y =的图象是一条直线 B .幂函数的图象都经过(0,0)和(1,1)点 C .若幂函数αx y =是奇函数,则α x y =是定义域上的增函数 D .幂函数的图象不可能出现在第四象限 6.函数3 x y =和3 1 x y =图象满足 ( ) A .关于原点对称 B .关于x 轴对称 C .关于y 轴对称 D .关于直线x y =对称 7. 函数R x x x y ∈=|,|,满足 ( ) A .是奇函数又是减函数 B .是偶函数又是增函数 C .是奇函数又是增函数 D .是偶函数又是减函数 8.如图1—9所示,幂函数α x y =在第一象限的图象,比较1,,,,,04321αααα的大小( ) A .102431<<<<<αααα B .104321<<<<<αααα 1α 4α 2α

函数凹凸性判别法与应用讲解

函数凹凸性判别法与应用 作者:祝红丽 指导老师:邢抱花 摘要 函数的凹凸性是函数的重要性质之一.它反映在函数图象上就是曲线的弯曲方向,通过 它可以较好地掌握函数对应曲线的性状.本文基于函数凹凸性概念的分析,着重探讨了函数凹凸 性的判别方法以及在解题中的应用,如在不等式证明中的应用以及在求函数最值时的应用等.并 结合相关例题做了较详细的论述. 关键词 凹凸性 导数 不等式 应用 1 引言 函数的凹凸理论在高等数学中占有重要地位.函数的凹凸性揭示了函数的因变量随自变 量变化而变化的快慢程度,如果结合函数的其它性质,可以使我们对函数的认识更加精确. 以函数()y f x 在某区间I 上单调增加为例说明.我们不难理解,随着自变量x 的稳定增 加,当函数y 的增量越来越大时,函数图形是凹的,当函数y 的增量越来越小时,函数图 形是凸的,当函数y 的增量保持不变时,函数图象是直线,对于减函数我们可以作类似的分 析. 作为研究分析函数的工具和方法,它在许多学科里有着重要的应用.长期以来,很多学 者致力于函数凹凸性的判别法及其应用的研究.近年来,关于函数凹凸性的判定与应用的研 究取得了一些成果,使函数凹凸性的判别法与应用更加的广泛. 本文先从两个具体的函数图象为出发点,直观上观察函数图象的弯曲方向,从而引出函 数凹凸性的概念和拐点的定义.并在此基础上介绍了凹凸函数的几何特征,接着介绍函数凹 凸性的几种判别方法,如:用定义去判别函数的凹凸性,利用二阶导函数判别函数的凹凸性, 及利用函数凹凸性的判定定理判别函数的凹凸性.其中利用函数凹凸性的概念是最基本的判 别方法,利用二阶导函数与函数凹凸性之间的关系是最常用的判别方法.最后举例介绍了函 数凹凸性在证明不等式、求函数最值以及函数作图中的应用.虽然说并不是所有的不等式都 能利用函数的凹凸性证明,但是利用函数的凹凸性去证明某些不等式,是其它方法不可替代 的.利用函数凹凸性证明不等式丰富了不等式的证明方法,开阔了解题思路.利用导数分析函 数的上升、下降,图形的凹凸性和极值.根据对这些的讨论可以帮助我们画出用公式表示的 函数图形,了解函数的凹凸性能够使对函数图形的描绘更加精确化.

反函数专题复习(2013版)

反函数专题复习 知识点: 1、反函数定义:若函数y =f (x )(x ∈A )的值域为C ,由这个函数中x 、y 的关系,用y 把 x 表示出来,得到x =?(y ).如果对于y 在C 中的任何一个值,通过x =?(y ),x 在A 中 都有唯一的值和它对应,那么,x =?(y )就表示y 是自变量,x 是自变量y 的函数.这样的函数x =?(y )(y ∈C )叫做函数y =f (x )(x ∈A )的反函数,记作x =f -1 (y ). 在函数x =f -1 (y )中,y 表示自变量,x 表示函数.习惯上,我们一般用x 表示自变量, y 表示函数,因此我们常常对调函数x =f -1(y )中的字母x 、y ,把它改写成y =f -1(x ). 2、互为反函数的两个函数y =f (x )与y =f -1 (x )在同一直角坐标系中的图象关于直线y =x 对称. 3、若y =f (x )是[a ,b ]上的单调函数,则y =f (x )一定有反函数,且反函数的单调性与 y =f (x )一致. 4、若y =f (x ),x ∈[a ,b ](a <b )是偶函数,则y =f (x )无反函数。 5、求反函数的步骤: (1)解关于x 的方程y =f (x ),得到x =f -1 (y ). (2)把第一步得到的式子中的x 、y 对换位置,得到y =f -1 (x ). (3)求出并说明反函数的定义域〔即函数y =f (x )的值域〕. 双基练习: 1、函数y =- 11 +x (x ≠-1)的反函数是( A ) A.y =-x 1-1(x ≠0) B.y =-x 1 +1(x ≠0) C.y =-x +1(x ∈R ) D.y =-x -1(x ∈R ) 2、函数y =log 2(x +1)+1(x >0)的反函数为( A ) A.y =2x - 1-1(x >1) B.y =2x - 1+1(x >1) C.y =2x +1-1(x >0) D.y =2x +1+1(x >0) 3、函数f (x )=-12+x (x ≥- 2 1 )的反函数( D ) A.在[-21,+∞)上为增函数 B.在[-2 1 ,+∞)上为减函数 C.在(-∞,0]上为增函数 D.在(-∞,0]上为减函数 4、函数f (x )=-x 2(x ∈(-∞,-2])的反函数f - 1(x )=______________. 答案:-x -(x ≤-4)

指数对数幂函数知识点总结

指数对数幂函数知识点总 结

篇一:指数、对数、幂函数知识点 指数、对数、幂函数知识归纳 知识要点梳理 知识点一:指数及指数幂的运算1.根式的概念 的次方根的定义:一般地,如果 ; 当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为. 负数没有偶次方根,0的任何次方根都是0.式子 叫做根式,叫做根指数,叫做被开方数. ; ,那么叫做的次方根,其中 2.n次方根的性质:(1)当为奇数时, ; (2)当为偶数时, 3.分数指数幂的意义: ; 注意:0的正分数指数幂等与0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:(1)(2)(3) 知点二:指数函数及其性质1.指数函数概念:一般地,函数变量,函数的定义域为 . 叫做指数函数,其中是自 1.(2013·北京高考理科·T5)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)= ( ) A.ex+1 B.ex-1 C.e-x+1 D.e-x-1 2.(2013·上海高考文科·T8)方程 3.(2013·湖南高考理科·T16)设函数 f(x)?ax?bx?cx,其中c?a?0,c?b?0. 9x

的实数解为. ?1?3x 3?1 且a=b?,(1)记集合M??(a,b,c)a,b,c不能构成一个三角形的三条边长, 则(a,b,c)?M所对应的f(x)的零点的取值集合为____. (2)若a,b,c是?ABC的三条边长,则下列结论正确的是. (写出所有正确结论的序号) ①?x????,1?,f?x??0; ②?x?R,使得ax,bx,cx不能构成一个三角形的三边长;③若?ABC为钝角三角形,则?x??1,2?,使f?x??0. 知识点三:对数与对数运算1.对数的定义(1)若叫做底数, 叫做真数. ,则叫做以为底 的对数,记作 , (2)负数和零没有对数. (3)对数式与指数式的互化:2.几个重要的对数恒等式: , , . . 3.常用对数与自然对数: 常用对数: ,即 ;自然对数: ,即 (其中 …). 4.对数的运算性质如果 ①加法:

第20讲 对数函数的性质及反函数

(一) 教学目标 1.教学知识点 1. 对数函数的单调性;2.同底数对数比较大小;3.不同底数对数比较大小; 4.对数形式的复合函数的定义域、值域; 5.对数形式的复合函数的单调性. 2.能力训练要求 1. 掌握对数函数的单调性;2.掌握同底数对数比较大小的方法; 3.掌握不同底数对数比较大小的方法;4.掌握对数形式的复合函数的定义域、值域; 5.掌握对数形式的复合函数的单调性; 6.培养学生的数学应用意识. 3.众优渗透目标 1.用联系的观点分析问题、解决问题; 2.认识事物之间的相互转化. 教学重点 1.利用对数函数单调性比较同底数对数的大小; 2.求对数形式的复合函数的定义域、值域的方法; 3.求对数形式的复合函数的单调性的方法. 教学难点 1.不同底数的对数比较大小;2.对数形式的复合函数的单调性的讨论. 教学过程 一、 复习引入: 1.对数函数的定义: 函数x y a log =)10(≠>a a 且叫做对数函数,对数函数x y a log = )10(≠>a a 且的定义域为),0(+∞,值域为),(+∞-∞. 2、

2. 函数y =x +a 与x y a log =的图象可能是__________ 二、新授内容: 例1.比较下列各组中两个值的大小: ⑴6log ,7log 76; ⑵8.0log ,log 23π. (3)6log ,7.0,67.067.0 解:⑴16log 7log 66=> ,17log 6log 77=<,6log 7log 76>∴. ⑵01log log 33=>π ,01log 8.0log 22=<,8.0log log 23>∴π. 小结1:引入中间变量比较大小:例1仍是利用对数函数的增减性比较两个对数的大小,当不能直接比较时,经常在两个对数中间插入1或0等,间接比较两个对数的大小. 练习: 1.比较大小(备用题) ⑴3.0log 7.0log 4.03.0<; ⑵2 1 6.04.3318.0log 7.0log - ?? ? ??<<; ⑶1.0log 1.0log 2.03.0> . 例2.已知x = 4 9 时,不等式 log a (x 2 – x – 2)>log a (–x 2 +2x + 3)成立, 求使此不等式成立的x 的取值范围. 解:∵x = 49使原不等式成立. ∴log a [249)49(2--]>log a )34 9 2)49(1[2+?+? 即log a 1613>log a 1639. 而1613<16 39 . 所以y = log a x 为减函数,故0<a <1. ∴原不等式可化为??? ? ???++-<-->++->--322032022222x x x x x x x x , 解得??? ???? <<-<<->-<2513121x x x x 或. 故使不等式成立的x 的取值范围是)2 5 , 2( 例3.若函数)10(log )( <<=a x x f a 在区间[a ,2a]上的最大值是最小值的3倍, ③

反函数基础练习含答案

反函数基础练习 (一)选择题 1.函数y =-x 2(x ≤0)的反函数是 [ ] A y (x 0) B y (x 0) C y (x 0) D y |x| .=-≥.=≤.=-≤.=-x x x -- 2.函数y =-x(2+x)(x ≥0)的反函数的定义域是 [ ] A .[0,+∞) B .[-∞, 1] C .(0,1] D .(-∞,0] 3y 1(x 2).函数=+≥的反函数是x -2 [ ] A .y =2-(x -1)2(x ≥2) B .y =2+(x -1)2(x ≥2) C .y =2-(x -1)2(x ≥1) D .y =2+(x -1)2(x ≥1) 4.下列各组函数中互为反函数的是 [ ] A y y x B y y 2.=和=.=和= x x x 11

C y y (x 1) D y x (x 1)y (x 0) 2.= 和=≠.=≥和=≥313131 1x x x x x +-+- 5.如果y =f(x)的反函数是y =f -1(x),则下列命题中一定正确的是 [ ] A .若y =f(x)在[1,2]上是增函数,则y =f -1(x)在[1,2]上也是增函数 B .若y =f(x)是奇函数,则y =f -1(x)也是奇函数 C .若y =f(x)是偶函数,则y =f -1(x)也是偶函数 D .若f(x)的图像与y 轴有交点,则f -1(x)的图像与y 轴也有交点 6.如果两个函数的图像关于直线y =x 对称,而其中一个函数是 y =-,那么另一个函数是x -1 [ ] A .y =x 2+1(x ≤0) B .y =x 2+1(x ≥1) C .y =x 2-1(x ≤0) D .y =x 2-1(x ≥1) 7.设点(a ,b)在函数y =f(x)的图像上,那么y =f -1(x)的图像上一定有点 [ ] A .(a ,f -1(a)) B .(f -1(b),b) C .(f -1(a),a) D .(b , f -1(b))

相关主题
文本预览
相关文档 最新文档