当前位置:文档之家› 乙烯储罐课程设计

乙烯储罐课程设计

乙烯储罐课程设计
乙烯储罐课程设计

题目:乙烯储罐课程设计

学院班级:生工学院09级4班

专业:食品科学与工程

学生姓名:罗维

学号: 090604023

2011年6月8日

目录

第一章设计参数的选择 (3)

一、乙烯的特性 (3)

二、设计要求与数据 (3)

第二章设备结构设计 (4)

一、圆筒厚度的设计 (4)

二、封头厚度的计算 (5)

三、核算承载能力并选择鞍座 (5)

四、人孔的选择 (6)

五、接管、法兰、垫片和螺栓(柱) (6)

六、选配工艺接管 (7)

第三章设备总装配图 (8)

参考文献 (9)

第一章设计参数的选择

一、乙烯的特性

乙烯是由两个碳原子和四个氢原子组成的化合物。两个碳原子之间以双键连接。乙烯是合成纤维、合成橡胶、合成塑料(聚乙烯及聚氯乙烯)、合成乙醇(酒精)的基本化工原料,也用于制造氯乙烯、苯乙烯、环氧乙烷、醋酸、乙醛、乙醇和炸药等.

外观与性状:无色气体,略具烃类特有的臭味。

少量乙烯具有淡淡的甜味。

pH:水溶液是中性

熔点(℃):-169.4

沸点(℃):-103.9

相对密度(水=1):0.61

相对蒸气密度(空气=1):0.98

饱和蒸气压(kPa):4083.40(0℃)

燃烧热(kJ/mol):1411.0

临界温度(℃):9.2

临界压力(MPa): 5.04

辛醇/水分配系数的对数值:无资料

闪点(fp):无意义

引燃温度(℃):425

爆炸上限%(V/V):36.0

爆炸下限%(V/V): 2.7

溶解性:不溶于水,微溶于乙醇、酮、苯,溶于醚。溶于四氯化碳等有机溶剂。其它理化性质:可以和酸性高锰酸钾发生氧化还原反应,乙烯作为还原剂,被氧化成二氧化碳。酸性高锰酸钾被还原而褪色。

危险性类别:

侵入途径:吸入

健康危害:具有较强的麻醉作用。急性中毒:吸入高浓度乙烯可立即引起意识丧失,无明显的兴奋期,但吸入新鲜空气后,可很快苏醒。对眼及呼吸道粘膜有轻微刺激性。液态乙烯可致皮肤冻伤。慢性影响:长期接触,可引起头昏、全身不适、乏力、思维不集中。个别人有胃肠道功能紊乱。

环境危害:对环境有危害,对水体、土壤和大气可造成污染。

燃爆危险:本品易燃。

二、设计要求与数据

1、设计题目:卧式乙烯储罐

2、原始数据:公称直径Di(mm)1800, 长度L(mm)3523,最高工作压力Pmax(Mpa)2.2 ,设计压力P=2.2×1.1=2.42Mpa

3、操作温度:40℃

4、介质名称:乙烯

5、储罐容积:93m

6、主要元件材料的选择:根据GB150-1998[1]表4-1,选用筒体材料为16MnR (钢材标准为GB6654)。根据JB/T4731[2],鞍座选用材料为Q235-B ,其许用应力

[]MPa sa 147=σ。地脚螺栓选用符合GB/T 700规定的Q235,Q235的许用应力[]MPa bt

147=σ

表1:设计数据

第二章 设备结构设计

一、圆筒厚度的设计

已知D i =1800mm ,L=3523mm ,P=2.2MPa ,在操作温度-5~40℃的范围内,估计筒体壁厚大约为16mm ,在《常用容器钢板(管)许用应力表》中按设计温度40℃,板厚6~16mm 间插值取得a t MP 170][=σ

焊接接头采用V 坡口双面焊接,采用全部无损检测,其焊接接头系数由焊接接头系数表查得φ=1.00。

钢板负偏差由《钢板厚度负偏差表》查得C 1=0.8 mm ;乙烯的腐蚀裕量由《壳体、封头腐蚀裕量表》查得C 2=1 mm 。

乙烯储罐是内压薄壁容器,按公式计算筒体的设计厚度为

mm C C P D P c

t

i c d 52.1318.02.200.117021800

2.21][22=++-???=++-?=?σδ (3-1) 根据钢板的厚度规格,查《钢板的常用厚度表》,圆整为δn =14mm

二、封头厚度的计算

公称直径mm D DN i 1800==

选用标准椭圆形封头,长短轴比值为2,计算中式为

[]mm p D p c

t

i

c 8.611.2

25.0117021800

.225.02=?-???=

-=

φσδ (3-2)

同上,取01=C .8mm ,mm C 12=

则封头的名义厚度为mm mm mm n 8.4131.808.611=++≥δ 圆整后取为mm n 14=δ 可见,和筒体同厚。

三、核算承载能力并选择鞍座

首先粗略计算鞍座负荷。储罐总质量:4321W W W W W +++=,式中

1W —罐体的质量,Kg 2W —封头的质量,Kg

3W —乙烯的质量,Kg

4W —附件的质量,Kg

1. 罐体质量W 1:

DN=1800mm ,14=n δmm 的筒节,每米质量为m kg q /6271=,故

kg L q W 2209523.362711=?=?=; 2、封头的质量W 2:

DN=1800mm ,14=n δmm ,直边高度h=40mm 的椭圆形封头,其质量为

m kg q /4192=,故kg q W 8384192222=?==; 3、乙烯的质量W 3:

由于γV W ?=3,式中7.0=?,为装料系数;V 为贮罐体积,3m 70.10523.3545.2866.02=?+?=+=筒对V V V ;γ为乙烯的密度3m /kg 569,所以kg W 426256970.107.03=??=; 4、其他附件质量W 4:

人孔约200kg ,其他接口管总和按300kg 计,故kg W 5004=; 5、设备总质量W:

kg W W W W W 7809500426283822094321=+++=+++=

KN N Wg Q 6.238.1382642

8.978092≈=?==

每个鞍座只承受约38.26kN 负荷,所以选用轻型带垫板包角为120的鞍座即: JB/T4712-92 鞍座A1600-F; JB/T4712-92 鞍座A1600-S

因为当外伸长度A=0.207L 时,双支座跨距中间截面的最大弯矩和支座截面处的弯矩绝对值相等,从而使上述两截面上保持等强度,考虑到支座截面处除弯矩以外的其他载荷,面且支座截面处应力较为复杂,故常取支座处圆筒的弯矩略小于跨距中间圆筒的弯矩,通常取尺寸A 不超过0.2L 值,为此中国现行标准JB 4731《钢制卧式容器》规定A ≤0.2L ,A 最大不超过0.25L.否则由于容器外伸端的作用将使支座截面处的应力过大。

由标准椭圆封头的性质及查表可得,其直边高度h=40mm 。

表2:鞍式支座结构尺寸

四、人孔的选择

根据储罐是在常温下及最高工作压力为2.2 MPa 的条件下工作,人孔的标准按公称压力为2.2 MPa 等级选取,考虑到人孔盖直径较大较重,故选用水平吊盖人孔,该人孔结构中有吊钩和销轴,检修时只须松开螺栓将盖板绕轴旋转一个角度,由吊钩吊住,不必将盖板取下。

该人孔标记为:HG20592 法兰WN450—2.2 TG Q235A 人孔的筒体尺寸为Φ450×10,由标准查得补强圈尺寸为: 内径D i =484mm 外径D o =760mm ,开孔补强的有关计算参数如下:

mm D D d e n 20484760)8.114(45012≈--?=-=δδ

mm D D d e 9.19484

760)

8.114(45012=--?=-=δδ补

考虑到罐体与人孔筒节均有一定的壁厚裕量,故补强圈取20mm 厚 五、接管、法兰、垫片和螺栓(柱)

1接管和法兰

查HG/T 20592-2009[6]中表8.2 3-1 PN带颈对焊钢制管法兰,选取各管口公称直径,查得各法兰的尺寸。

查[6]中附录D中表D-3,得各法兰的质量。查[6]中表3.2.2,法兰的密封面均采用MFM(凹凸面密封)。

2、垫片

垫片尺寸为50mm,包覆金属材料为纯铝板,标准为GB/T 3880,代号为L3。

填充材料为有机非石棉纤维橡胶板。

垫片厚度均为3mm。

.3螺栓(螺柱)的选择

查HG/T 20613-2009[8]中表5.0.7-11和附录中表A.0.1,得螺柱的长度和平垫圈尺寸如下表

螺栓及垫片

六、选配工艺接管

1、乙烯进料管

采用无缝钢管YB231-70 50×4mm ,管的一端伸入罐切成45°, 管长400 mm。配用带劲对焊法兰HG20592 法兰 WN50—2.2 RF Q235A。

2. 乙烯出料管

采用可拆的压出管φ50×4mm,伸入到罐内离罐底约100 mm,外套无缝钢管φ89×6mm(管壁加厚,具有补强作用),都配用带颈对焊管法兰即HG 20592 法兰 WN50—2.2FF Q235A 。 3. 排污管

在罐的右端最底部设个排污管,规格是φ50×4mm ,管端焊有与截止阀相配的HG 20592 法兰 WN50—2.2RF Q235A 。排污管与罐体连接处焊有一厚度为10mm 的补强圈。 4. 安全阀接口管

安全阀接口管尺寸由安全阀泄放量决定。本贮罐选用φ80×4mm 的无缝钢管, HG 20592 法兰 WN80—2.2FF Q235A 。 5. 液面计接口管

本贮罐采用玻璃管液面计 BIW PN1.6,L=1000mm ,HG —227—80两支。与液面计相配的接口管尺寸为:φ20×3mm,管法兰采用HG 20592 法兰 WN20—2.2FF Q235A 。

6. 放空管接口管

采用φ50×3.5mm 无缝钢管,管法兰 HG20592 法兰 WN50—2.2FF Q235A 。

7、气相口

采用φ50×3.5mm 无缝钢管,管法兰 HG20592 法兰 WN50—2.2FF Q235A 。

8、水压试验及强度校核

校核罐体与封头水压试验强度,根据:

s e e i t t D P σ?

δδσ9.02)(≤+=

代入数据得:

a t MP 24.2041

)8.114(2)]

8.114(1800[2.225.1=?-?-+??=σ

查表得厚度为16mm 的16MnR 钢板的钢材屈服极限a s MP 345=σ

故在常温水压试验时的许用应力为a s MP 5.3103459.09.0=?=σ,故

s t σσ9.0< 因此满足水压试验要求。

第三章 设备总装配图

设备图见所附图纸,各零部件的名称、规格、尺寸、材料见明细表。 本贮罐技术要求:①本设备按GB 150—1998《钢制压力容器》进行制造、试验和验收;②焊接材料、对接焊接接头形式及尺寸可按GB 985—80中规定(设

计焊接头系数 =1.00);③焊接采用电弧焊,焊条牌号为Q345R之间E5016,Q345R与其他碳素钢之间E4315;④壳体焊缝制造完毕后,以2.2MPa表压进行水压试验;⑥管口方位按照设计图所示。

参考文献

[1] GB150-1998,《钢制压力容器》

[2] JB/T 4731-2005,《钢制卧式压力容器》

[3] HG20580-1998,《钢制化工容器设计基础规定》

[4] JB/T4746-2002,《钢制压力容器用封头》

[5] HG/T 21517-2005,《回转盖带颈平焊法兰人孔》

[6] HG/T 20592-2009,《钢制管法兰》

[7] HG/T 20609-2009,《钢制管法兰用金属包覆垫片》

[8] HG/T 20613-2009,《钢制管法兰用紧固件》

苯-甲苯精馏塔课程设计报告书

课程设计任务书 一、课题名称 苯——甲苯混合体系分离过程设计 二、课题条件(原始数据) 1、设计方案的选定 原料:苯、甲苯 年处理量:108000t 原料组成(甲苯的质量分率):0.5 塔顶产品组成:%99>D x 塔底产品组成:%2

设计容 摘要:精馏是分离液体混合物最常用的一种单元操作,在化工﹑炼油﹑石油化工等工业中得到广泛的应用。本设计的题目是苯—甲苯二元物系板式精馏塔的设计。在确定的工艺要求下,确定设计方案,设计容包括精馏塔工艺设计计算,塔辅助设备设计计算,精馏工艺过程流程图,精馏塔设备结构图,设计说明书。关键词:板式塔;苯--甲苯;工艺计算;结构图 一、简介 塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。根据塔气液接触部件的结构型式,可分为板式塔和填料塔。板式塔设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。填料塔装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)与液相接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。 工业上对塔设备的主要要:(1)生产能力大;(2)传热、传质效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量少;(6)制造安装容易,操作维修方便。此外,还要求不易堵塞、耐腐蚀等。 板式塔大致可分为两类:(1)有降液管的塔板,如泡罩、浮阀、筛板、导向筛板、新型垂直筛板、蛇形、S型、多降液管塔板;(2)无降液管的塔板,如穿流式筛板(栅板)、穿流式波纹板等。工业应用较多的是有降液管的塔板,如浮阀、筛板、泡罩塔板等。 苯的沸点为80.1℃,熔点为5.5℃,在常温下是一种无色、味甜、有芳香气味的透明液体,易挥发。苯比水密度低,密度为0.88g/ml,但其分子质量比水重。苯难溶于水,1升水中最多溶解1.7g苯;但苯是一种良好的有机溶剂,溶解有机分子和一些非极性的无机分子的能力很强。 甲苯是最简单,最重要的芳烃化合物之一。在空气中,甲苯只能不完全燃烧,火焰呈黄色。甲苯的熔点为-95 ℃,沸点为111 ℃。甲苯带有一种特殊的芳香味(与苯的气味类似),在常温常压下是一种无色透明,清澈如水的液体,密度为0.866克/厘米3,对光有很强的折射作用(折射率:1,4961)。甲苯

乙烯装置丙烯精馏塔优化设计_曹媛维

第40卷第9期2012年9月化学工程 CHEMICAL ENGINEERING (CHINA )Vol.40No.9Sep.2012 收稿日期:2011-11-01作者简介:曹媛维(1979—),女,硕士,工程师,主要从事乙烯装置的工艺设计工作,电话:(010)58676692, E-mail :caoyuanwei@hqcec.com 。乙烯装置丙烯精馏塔优化设计 曹媛维 (中国寰球工程公司,北京100029) 摘要:针对近年来大型乙烯装置中的丙烯精馏塔操作不稳定、能耗大的问题,利用PRO /Ⅱ软件模拟分析该塔流程,总结出随着装置规模大型化该塔采用多溢流塔板形式,计算中应考虑塔板形式对板效率取值的影响。当进料组成与设计工况不符或装置负荷增大时导致产品不达标的情况,可增设进料口在非设计工况下不同位置进料以满足分离的要求, 并且塔顶冷凝器和塔底再沸器需要考虑充分的设计余量。并创造性提出了,在传统工艺流程基础上在塔顶冷凝器后增设排放冷凝器进一步回收丙烯的节能优化方案,为实际生产提供建议性指导。关键词:丙烯精馏塔;操作波动;PRO /Ⅱ模拟中图分类号:TQ 051.81 文献标识码:B 文章编号:1005-9954(2012)09-0074-05DOI :10.3969/j.issn.1005-9954.2012.09.0017 Optimization design of propylene rectifying column in ethylene plant CAO Yuan-wei (China HuanQiu Contracting &Engineering Corporation ,Beijing 100029,China ) Abstract :According to high energy consumption and instable operation problems of propylene rectifying column in large-scale ethylene plants ,the propylene rectifying column system was simulated with PRO/Ⅱsoftware.The conclusion is that the influence of the tray type on the tray efficiency should be considered in calculation ,and it is better to use multi-overflow tray type for large-scale ethylene plant.If the propylene product is substandard in the inconsistent feed composition case or the increased duty case , the added feed nozzles are prefered to switch the diffierent feed location for different case.Enough design margin should be considered for the top condenser and the bottom reboiler.The energy saving optimization scheme that adding a new vent condenser after the top condenser to recover more propylene product is creatively put forward ,which provides the constructive guidance for the actual production.Key words :propylene rectifying column ;operation fluctuation ;PRO /Ⅱsimulation 丙烯主要用于生产聚丙烯、丙烯腈、环氧丙烷以 及异丙醇等, 是仅次于乙烯的重要石油化工原料[1] 。丙烯衍生物的快速发展带动了丙烯需求的快速增长, 据估计从2006年到2015年全球范围内丙烯需求仍以4.9%的速度持续增长,中国的丙烯需求预计年均 增长达到6.3%[2] 。目前从市场份额看,来自乙烯装置的丙烯占到59%,从炼厂轻烃分离装置回收的丙烯占到35%。本文针对乙烯装置实际运行中丙烯精馏塔进料组成和负荷波动大导致产品不合格、能耗高的问题,利用流程模拟软件PRO /Ⅱ优化该塔操作参数,并探索性地提出在冷凝器出口增设排放冷凝器进一步回收丙烯产品的工艺,为丙烯精馏塔在实际操作 中低能耗、平稳运行提供理论指导和建议。1原始工况的模拟计算 1.1 模拟计算条件 本模拟计算以80万t /a 乙烯装置丙烯精馏塔为例,该塔进料组成条件如表1所示。采出丙烯产品的规格按照GB/T 7716—2002中聚合级丙烯优等品(摩 尔分数99.6%),塔釜丙烯控制指标为摩尔分数≤2%。1.2模拟过程1.2.1 模拟图与模拟参数选择 工业生产中由于受到运输和加工制造的限制,将丙烯精馏塔分成双塔串联或并联操作,但在模拟

乙烯低温贮罐制作及安装工程监理细则

B13新浦化学工业(泰兴)有限公司VCM项目工程 监理实施细则 (低温乙烯贮罐) 内容提要: 专业工程特点 监理工作流程 监理工作控制目标及控制要点 监理工作方法及措施 项目监理机构(章): 专业监理工程师: 总监理工程师: 日期: 江苏省建设厅监制

一、工程概况: 1、工程名称:新浦化工氯乙烯项目乙烯低温贮罐制作及安装工程; 2、建设单位:新浦化学(泰兴)有限公司; 3、设计单位:上海工程化学设计院有限公司 4、施工单位:上海石化安装检修工程公司 5、监理单位:上海申峰工程建设监理有限公司 6、工程概况: 本工程为新浦化学(泰兴)有限公司乙烯低温贮罐,该 贮罐为双层钢结构立式贮罐,主要技术参数如下: 6.1 外罐(直径×高度)?35000×27600 外罐主体材料16MnR 内罐(直径×高度) ?33000×26400 内罐主体材料X12Ni5 6.2 物料名称:乙烯比重:568kg/m3。 6.3 贮罐工作温度:外罐-20~500C; 内罐-104~500C 该双层钢结构贮罐罐底板设计为搭接焊,罐壁板为对接焊,顶板为搭接焊。 贮罐制作安装工作特点是工作量大,室外作业,施工条件差,影响因素多,随机因素多,投入人力物力多等不利于焊接施工的特点。

二、目标分解 1、质量目标 2、HSE管理目标 三、设计要求适用规范及质量标准 1、低温乙烯贮罐设计施工图及技术文件 2、《现场设备、管道焊接工程施工及验收规范》GBJ50236-98

3、《工业安装工程质量检验评定统一标准》GB50252-98 4、《电器无损检测》JB4730-94 5、《钢制化工室焊接规范》JB4709-2000 6、《钢制焊接常压电器》JB/T4735-97 7、《立式圆筒形低温储罐施工技术规程》SH/T4735—2002 8、《石油化工设备和管道涂料防腐技术规范》SH3022-1999 9、《涂装前钢材表面锈蚀等级和防腐等级》GB8923-88 10、《管道与钢结构的现场涂漆规定》SP-74-V11-MS-0002 11、《钢板验收规范》GB/T3274-1988 12、《大型焊接、低压贮罐的设计和建造》API620标准 13、经审批的监理规划、施工组织设计 14、设计交底、图纸会审及设计变更单

10立方米液化石油气储罐设计_课程设计

10立方米液化石油气储罐设计 目录 目录 (1) 前言 (3) 课程设计任务书 (4) 第一章工艺设计 (6) 1.1液化石油气参数的确定 (6) 1.2设计温度 (6) 1.3设计压力 (6) 1.4设计储量 (7) 第二章机械设计 (8) 2.1筒体和封头的设计: (8) 2.1.1筒体设计 (8) 2.1.2封头设计 (8) 第三章结构设计 (10) 3.1液柱静压力 (10) 3.2圆筒厚度的设计 (10) 3.3椭圆封头厚度的设计 (11) 3.4开孔和选取法兰分析 (11) 3.5安全阀设计 (13) 3.6液面计设计 (16) 3.7接管,法兰,垫片和螺栓的选择 (17) 3.7.1接管和法兰 (17) 3.7.2垫片的选择 (18) 3.7.3螺栓(螺柱)的选择 (19) 3.8人孔的设计 (20) 3.8.1人孔的选取 (20) 3.8.2人孔补强圈设计 (21) 3.9鞍座选型和结构设计 (24) 3.9.1鞍座选型 (24) 3.9.2鞍座位置的确定 (25) 3.10焊接接头的设计 (26) 3.10.1筒体和封头的焊接 (26) 3.10.2接管与筒体的焊接 (26)

第四章强度校核 (28) 结束语 (43) 参考文献 (44)

前言 液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其是安全与防火, 还要注意在制造、安装等方面的特点。目前我国普遍采用常温压力贮罐, 常温贮罐一般有两种形式: 球形贮罐和圆筒形贮罐。球形贮罐和圆筒形贮罐相比: 前者具有投资少, 金属耗量少, 占地面积少等优点, 但加工制造及安装复杂, 焊接工作量大, 故安装费用较高。一般贮存总量大于500m 3或单罐容积大于200m 3时选用球形贮罐比较经济; 而圆筒形贮罐具有加工制造安装简单, 安装费用少等优点, 但金属耗量大占地面积大, 所以在总贮量小于500m 3, 单罐容积小于100m 3时选用卧式贮罐比较经济。圆筒形贮罐按安装方式可分为卧式和立式两种。在一般中、小型液化石油气站内大多选用卧式圆筒形贮罐, 只有某些特殊情况下(站内地方受限制等) 才选用立式。本文主要讨论卧式圆筒形液化石油气贮罐的设计。液化石油气呈液态时的特点。(1) 容积膨胀系数比汽油、煤油以及水等都大, 约为水的16倍, 因此, 往槽车、贮罐以及钢瓶充灌时要严格控制灌装量, 以确保安全;(2) 容重约为水的一半。因为液化石油气是由多种碳氢化合物组成的, 所以液化石油气的液态比重即为各组成成份的平均比重, 如在常温20℃时, 液态丙烷的比重为0. 50, 液态丁烷的比重为0. 56 0. 58, 因此, 液化石油气的液态比重大体可认为在0. 51左右, 即为水的一半。卧式液化石油气贮罐设计的特点。卧式液化石油气贮罐也是一个储存压力容器, 也应按GB150《钢制压力容器》进行制造、试验和验收; 并接受劳动部颁发《压力容器安全技术监察规程》(简称容规) 的监督。液化石油气贮罐, 不论是卧式还是球罐都属第三类压力容器。贮罐主要有筒体、封头、人孔、支座以及各种接管组成。贮罐上设有液相管、液相回液管、气相管、排污管以及安全阀、压力表、温度计、液面计等

乙烯乙烷精馏工艺设计说明书

化工原理课程设计 乙烯-乙烷精馏塔工艺设计说明书 学院(系):化工与环境生命学部 专业:能源化学工程 学生姓名:杨旭 学号:201341260 指导教师:董宏光 评阅教师: 完成日期:2016年7月7日 - 1 -

目录 第 1章概述......................................................... - 4 - 第2章方案流程简介.................................... 错误!未定义书签。 2.1精馏装置流程................................................ - 5 - 2.2 工艺流程....................................... 错误!未定义书签。 2.2.1工艺流程.............................................. - 5 - 2.2.2能量利用.............................................. - 5 - 2.3 设备选用....................................... 错误!未定义书签。 2.4 处理能力及产品质量要求......................... 错误!未定义书签。 2.5 设计的目的和意义 - 6 - 第3章精馏塔工艺设计............................................... - 7 - 3.1 设计条件.................................................... - 7 - 3.1.1 工艺条件.............................................. - 7 - 3.1.2 操作条件:........................................... - 7 - 3.1.3 塔板形式:............................................ - 7 - 3.1.4 处理量:.............................................. - 7 - 3.1.5 安装地点:............................................ - 7 - 3.1.6 塔板设计位置:........................................ - 7 - 3.2 物料衡算及热量衡算........................................ - 8 - 3.2.1 物料衡算............................................. - 8 - 3.2.2 热量衡算............................................. - 8 - 3.3 塔板数的计算........................................... - 9 - 3.3.1相对挥发度的查取...................................... - 9 - 3.3.2最小回流比计算:..................................... - 10 - 3.3.3 逐板计算过程:...................................... - 10 - 3.4 精馏塔工艺设计............................................. - 11 - 3.4.1 物性数据............................................. - 11 - 3.4.2 板间距和塔径的初步选取............................... - 11 - 3.4.3校核................................................. - 12 - 3.4.4塔板负荷性能图....................................... - 14 - 3.4.4 塔高的计算........................................... - 16 - 第4章再沸器的设计................................................ - 16 - - 2 -

机电工程学院空气储罐设计

齐齐哈尔大学设备设计课程设计题目名称:空气储罐设计 学院:机电工程学院 专业班级:过控102 学生姓名:王国涛 指导教师:刘岩 完成日期: 2013-12-20

目录 摘要3 绪论..................................................................4 第一章压缩空气的特性5 第二章设计参数的选择6 第三章容器的结构设计7 3.1圆筒厚度的设计7 3.2封头厚度的计算7 3.3筒体和封头的结构设计8 3.4人孔的选择9 3.5接管,法兰,垫片和螺栓(柱)9 3.6鞍座选型和结构设计12 第四章开孔补强设计15 4.1补强设计方法判别15 4.2有效补强范围15 4.3有效补强面积16 4.4补强面积17 第五章强度计算18 5.1水压实验应力校核18 5.2圆筒轴向弯矩计算18 5.3圆筒轴向应力计算及校核20 5.4切向剪应力的计算及校核22 5.5圆筒周向应力的计算和校核23 5.6鞍座应力计算及校核25 第六章归纳总结28 参考文献29

摘要 本说明书为《3.0m3空气储罐设计说明书》。扼要介绍了卧式储罐的特点及在工业中的广泛应用,详细的阐述了卧式储罐的结构及强度设计计算及制造、检修和维护。本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关规范,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计技术方案。 设计结果满足用户要求,安全性与经济性及环保要求均合格。 关键词:压力容器、卧式储罐、结构设计、强度校核、开孔补强

乙烯精馏塔的设计说明书

乙烯精馏塔的设计说明书 7.1.1 设计任务 由Aspen 模拟得到进料板上 S V =1.0310 (s m /3) S L =0.089141(s m /3) 气相密度V ρ=48.1423/m kg 液相密度L ρ=427.29(3/m kg 液体表面张力m σ= 2.982m mN / 7.1.2 塔和塔板主要工艺尺寸计算 塔板横截面的布置计算 1、塔径D 的计算 参考《化工原理》(下册)表10-1,取板间距H T =0.61m =L h 0.13m H T -L h =0.61-0.13=0.48m 两相流动参数计算如下 LV F = Vs Ls Lm Vm ρρ ∴LV F =( 0.0891411.0310)( 427. 2948. 142)2/1=0.258 参考《化工原理》(下册)图10-42筛板的泛点关联得:C 20f =0.075 f C =2.02020??? ??σf C =0.2 2.9820.0750.0512620?? = ? ?? u =f 5 .02 .02020??? ? ??-??? ??V V L f C ρρρσ=0.5 427.2948.1420.0512648.142-?? ???=0.1438(s m /) 本物系不易起泡,取泛点百分率为80%,可求出设计气速 n u '=0.8?0.1438=0.1150 s m / 所需的气体流通面积 /'Vs A n =n u '=1.0310/0.1150=8.96522m 4 1.0310 3.380.7850.1150 Vs D m u π'= ==? 根据塔设备系列化规格,将D '圆整到D=3.6 m 作为初选塔径,因此

储罐课程设计

目录 摘要 ............................................................................................................................... I ABSTRACT ................................................................................................................. I I 第一章绪论 (1) 1.1液化石油气储罐的用途与分类 (1) 1.2液化石油气特点 (1) 1.3液化石油气储罐的设计特点 (2) 第二章工艺计算 (3) 2.1设计题目 (3) 2.2设计数据 (3) 2.3设计压力、温度 (3) 2.4主要元件材料的选择 (4) 第三章结构设计与材料选择 (5) 3.1筒体与封头的壁厚计算 (5) 3.2筒体和封头的结构设计 (6) 3.3鞍座选型和结构设计 (7) 3.4接管,法兰,垫片和螺栓的选择 (10) 3.5人孔的选择 (15) 3.6安全阀的设计 (15) 第四章设计强度的校核 (19) 4.1水压试验应力校核 (19) 4.2筒体轴向弯矩计算 (20) 4.3筒体轴向应力计算及校核 (20) 4.4筒体和封头中的切向剪应力计算与校核 (21) 4.5封头中附加拉伸应力 (22) 4.6筒体的周向应力计算与校核 (22) 4.7鞍座应力计算与校核 (23) 第五章开孔补强设计 (26) 5.1补强设计方法判别 (26) 5.2有效补强范围 (26) 5.3有效补强面积 (27) 5.4.补强面积 (28)

甲醇-水溶液连续精馏塔课程设计91604

目录 设计任务书 一、概述 1、精馏操作对塔设备的要求和类型 (4) 2、精馏塔的设计步骤 (5) 二、精馏塔工艺设计计算 1、设计方案的确定 (6) 2、精馏塔物料衡算 (6) 3、塔板数的确定 (7) 的求取 (7) 3.1理论板层数N T 3.2实际板层数的求取 (8) 4、精馏塔的工艺条件及有关物性数据的计算 4.1操作温度的计算 (11) 4.2平均摩尔质量的计算 (11) 4.3平均密度的计算 (12) 4.4液相平均表面张力计算 (12) 4.5液体平均粘度计算 (13) 5、精馏塔塔体工艺尺寸计算 5.1塔径的计算 (14) 5.2精馏塔有效高度的计算 (15) 6、塔板主要工艺尺寸计算 6.1溢流装置计算 (16) 6.2塔板的布置 (17) 6.3浮阀计算及排列 (17) 7、浮阀塔流体力学性能验算 (19) 8、塔附件设计 (26) 7、精馏塔结构设计 (30)

7.1设计条件 (30) 7.2壳体厚度计算………………………………………………… 7.3风载荷与风弯矩计算………………………………………… 7.4地震弯矩的计算………………………………………………… 三、总结 (27) 化工原理课程设计任务书 一、设计题目: 甲醇-水溶液连续精馏塔设计 二、设计条件: 年产量: 95%的甲醇17000吨 料液组成(质量分数): (25%甲醇,75%水) 塔顶产品组成(质量分数): (95%甲醇,5%水) 塔底釜残液甲醇含量为6% 每年实际生产时间: 300天/年,每天24小时连续工作 连续操作、中间加料、泡点回流。 操作压力:常压 塔顶压力4kPa(表压) 塔板类型:浮阀塔 进料状况:泡点进料 单板压降:kPa 7.0 厂址:安徽省合肥市 塔釜间接蒸汽加热,加热蒸汽压力为0.5Mpa 三、设计任务 完成精馏塔的工艺设计,有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配图,编写设计说明书. 设计内容包括: 1、 精馏装置流程设计与论证 2、 浮阀塔内精馏过程的工艺计算 3、 浮阀塔主要工艺尺寸的确定 4、 塔盘设计 5、 流体力学条件校核、作负荷性能图 6、 主要辅助设备的选型 四、设计说明书内容 1 目录 2 概述(精馏基本原理) 3 工艺计算 4 结构计算 5 附属装置评价 6 参考文献 7 对设计自我评价 摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主

精馏塔的设计(毕业设计)

精馏塔尺寸设计计算 初馏塔的主要任务是分离乙酸和水、醋酸乙烯,釜液回收的乙酸作为气体分离塔吸收液及物料,塔顶醋酸乙烯和水经冷却后进行相分离。塔顶温度为102℃,塔釜温度为117℃,操作压力4kPa。 由于浮阀塔塔板需按一定的中心距开阀孔,阀孔上覆以可以升降的阀片,其结构比泡罩塔简单,而且生产能力大,效率高,弹性大。所以该初馏塔设计为浮阀塔,浮阀选用F1型重阀。在工艺过程中,对初馏塔的处理量要求较大,塔内液体流量大,所以塔板的液流形式选择双流型,以便减少液面落差,改善气液分布状况。 4.2.1 操作理论板数和操作回流比 初馏塔精馏过程计算采用简捷计算法。 (1)最少理论板数N m 系统最少理论板数,即所涉及蒸馏系统(包括塔顶全凝器和塔釜再沸器)在全回流下所需要的全部理论板数,一般按Fenske方程[20]求取。 式中x D,l,x D,h——轻、重关键组分在塔顶馏出物(液相或气相)中的摩尔分数; x W,l,x W,h——轻、重关键组分在塔釜液相中的摩尔分数; αav——轻、重关键组分在塔内的平均相对挥发度; N m——系统最少平衡级(理论板)数。 塔顶和塔釜的相对挥发度分别为αD=1.78,αW=1.84,则精馏段的平均相对挥发度: 由式(4-9)得最少理论板数: 初馏塔塔顶有全凝器与塔釜有再沸器,塔的最少理论板数N m应较小,则最少理论板数:。 (2)最小回流比 最小回流比,即在给定条件下以无穷多的塔板满足分离要求时,所需回流比R m,可用Underwood法计算。此法需先求出一个Underwood参数θ。 求出θ代入式(4-11)即得最小回流比。

式中——进料(包括气、液两相)中i组分的摩尔分数; c——组分个数; αi——i组分的相对挥发度; θ——Underwood参数; ——塔顶馏出物中i组分的摩尔分数。 进料状态为泡点液体进料,即q=1。取塔顶与塔釜温度的加权平均值为进料板温度(即计算温度),则 在进料板温度109.04℃下,取组分B(H2O)为基准组分,则各组分的相对挥发度分别为αAB=2.1,αBB=1,αCB=0.93,所以 利用试差法解得θ=0.9658,并代入式(4-11)得 (3)操作回流比R和操作理论板数N0 操作回流比与操作理论板数的选用取决于操作费用与基建投资的权衡。一般按R/R m=1.2~1.5的关系求出R,再根据Gilliland关联[20]求出N0。 取R/R m=1.2,得R=26.34,则有: 查Gilliland图得 解得操作理论板数N0=51。 4.2.2 实际塔板数 (1)进料板位置的确定 对于泡点进料,可用Kirkbride提出的经验式进行计算。

卧式储罐设计..

安徽工程大学 课程设计说明书 题目名称:卧式储罐设计 专业班级:食品122班 学生姓名:王飞腾 指导教师:季长路 完成日期: 2015-09-24

目录 摘要 (3) 第一章绪论 (4) 1.1设计任务: (4) 1.2设计思想: (4) 1.3设计特点: (4) 第二章材料及结构的选择与论证 (5) 2.1材料选择 (5) 2.2结构选择与论证 (5) 2.2.1 封头的选择 (5) 2.2.2容器支座的选择 (5) 2.3法兰型式 (6) 2.4液面计的选择 (6) 第三章结构设计 (7) 3.1壁厚的确定 (7) 3.2封头厚度设计 (7) 3.2.1计算封头厚度 (7) 3.2.2水压试验及强度校核 (8) 3.3储罐零部件的选取 (8) 3.3.1储罐支座 (8) 3.3.2 罐体质量 (8) 3.3.3封头质量 (9) 3.3.4液氨质量 (9) 3.3.5附件质量 (9) 第四章接管的选取 (10) 4.1液氨进料管 (10) 4.2平衡口管 (10) 4.3液位指示口管 (10) 4.4放空口管 (10) 4.5液体进口管 (11) 4.6液体出口管 (11) 第五章压力计选择 (12) 符号说明 (13) 总结 (14)

摘要 本说明书为《1.2m3液氨储罐设计说明书》。扼要介绍了卧式储罐的特点及在工业中的广泛应用,详细的阐述了卧式储罐的结构及强度设计计算及制造、检修和维护。 本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计方案。 设计结果满足用户要求,安全性与经济性及环保要求均合格。 关键词:压力容器、卧式储罐、结构设计、强度校核、开孔补强

化工原理课程设计-苯-甲苯精馏塔设计

资料 前言 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。 化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏是利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的方法。塔设备一般分为阶跃接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔。 筛板塔和泡罩塔相比较具有下列特点:生产能力大于%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。本次课程设计为年处理含苯质量分数36%的苯-甲苯混合液4万吨的筛板精馏塔设计,塔设备是化工、炼油生产中最重要的设备之一。它可使气(或汽)液或液液两相之间进行紧密接触,达到相际传质及传热的目的。 在设计过程中应考虑到设计的精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 |

'

目录 第一章绪论 (1) 精馏条件的确定 (1) 精馏的加热方式 (1) 精馏的进料状态 (1) 精馏的操作压力 (1) 确定设计方案 (1) 工艺和操作的要求 (2) 满足经济上的要求 (2) 保证安全生产 (2) 第二章设计计算 (3) 设计方案的确定 (3) 精馏塔的物料衡算 (3) 原料液进料量、塔顶、塔底摩尔分率 (3) 原料液及塔顶、塔底产品的平均摩尔质量 (3) 物料衡算 (3) 塔板计算 (4) 理论板数NT的求取 (4) 全塔效率的计算 (6) 求实际板数 (7) 有效塔高的计算 (7) 精馏塔的工艺条件及有关物性数据的计算 (8) 操作压力的计算 (8) 操作温度的计算 (8) 平均摩尔质量的计算 (8) 平均密度的计算 (10) 液体平均表面张力的计算 (11) 液体平均黏度的计算 (12) 气液负荷计算 (13)

乙苯-苯乙烯精馏塔设计

毕业设计 题目年产10万吨苯乙烯工艺设计 姓名 所在系部化学工程 专业班级有机化工 指导老师 前言 本设计的内容为10万吨/年乙苯脱氢制苯乙烯装置,包括工艺设计,设备设计及平面布置图。 本设计的依据是采用低活性、高选择性催化剂,参照鲁姆斯(Lummus)公司生产苯乙烯的技术,以乙苯脱氢法生产苯乙烯。苯乙烯单体生产工艺技术:深度减压,绝热乙苯脱氢工艺乙苯脱氢反应在绝热式固定床反应器中进行,其特点是:转化率高,可达55%,选择性好,可达90%。特殊的脱氢反应器系统:在低压(深度真空下)下操作以达到最高的乙苯单程转化率和最高的苯乙烯选择性。该系统是由蒸汽过热器、过热蒸汽输送管线和反应产物换热器组成,设计为热联合机械联合装置。整个脱氢系统的压力降小,以维持压缩机入口尽可能高压,同时维持脱氢反应器尽可能低压,从而提高苯乙烯的选择性,同时不损失压缩能和投资费用。 所需要的催化剂用量和反应器体积较小,且催化剂不宜磨损,能在高温高压下操作,内部结构简单,选价便宜。在苯乙烯蒸馏中采用一种专用的不含硫的苯乙烯阻聚剂。它经济有效且能使苯乙烯焦油作为燃料清洁地燃烧。 工业设计的优化和设备的良好设计可使操作无故障,从而可减少生产波动. 本设计装置主要由脱氢反应和精馏两个工序系统所组成。原料来自乙苯生产装置或原料采购部门,循环水、冷冻水、电和蒸汽来由公用工程系统提供,生产出的苯乙烯产品到成品库。 此设计过程中,为了计算方便,忽略了一些计算过程,故有一定的误差,另由于计算时间比较仓促,有些问题不能够直接解决。设计中有不少错误之处,请指导老师予以批评指正,多提出宝贵意见。 苯乙烯设计任务书 一、设计题目:年产10万吨苯乙烯的生产工艺设计 二、设计原始条件: 2、操作条件: 年工作日:300天,每天24小时,乙苯总转化率为55% 乙苯损失量为纯乙苯投料量为4.66%

《压力容器与管道安全》课程设计.

湖南大学 《压力容器与管道安全》课程设计 专业安全工程 姓名刘恶 学号023412229 课程名称压力容器与管道安全 指导教师杨有豪马莲 市政与环境工程学院 2019年12月

目录 1. 目的与任务 (2) 2. 储罐的设计要求 (2) 2.1 设计题目 (2) 2.2 设计要求 (2) 3. 卧式液氨储罐的结构设计 (3) 3.1储罐主要结构的设计 (3) 3.1.1筒体和封头的结构选择 (3) 3.1.2用方案一计算筒体和封头的厚度 (4) 3.1.3用方案二计算筒体和封头的厚度 (5) 3.1.4两种方案的比较 (6) 3.2计算鞍座反力 (7) 3.3支座及其位置选取 (8) 3.3.1鞍座数量的确定 (8) 3.3.2鞍座安装位置的确定 (8) 3.3.3鞍座标准的选用 (10) 3.4储罐应力校核 (10) 3.4.1筒体轴向应力校核 (10) 3.4.2筒体和封头切向剪应力校核 (12) 3.4.3筒体周向应力校核 (12) 3.4.4鞍座有效断面的平均应力校核 (13) 3.5 入孔设计 (13) 3.6开孔补强计算 (14) 3.7接管与法兰联结设计 (16) 参考文献 (19)

1. 目的与任务 本课程设计是在学完《压力容器与管道安全》之后综合利用所学知识完成一个压力容器设计。该课程设计的主要任务 1.是通过解决一、两个实际问题,巩固和加深对压力容器的结构、原理、特性的认识和基本知识的理解,提高综合运用课程所学知识的能力。 2.培养根据课题需要选学参考书籍,查阅手册、图表和文献资料的自学能力。通过独立思考,深入钻研有关问题,学会自己分析解决问题的方法。 3.通过实际设计方案的分析比较,设计计算,元件选择等环节,初步掌握工程中压力容器设计方法。 4.培养严肃认真的工作作风和科学态度。通过课程设计实践,逐步建立正确的生产观点、经济观点和全局观点,获得初步的应用经验,为以后从事生产和科研工作打下一定的基础。 2. 储罐的设计要求 2.1 设计题目 某厂需添置一台液氨贮罐,设计原始数据:设计压力P=1.9Mpa,设计温度T=43℃,容器内径D=1230mm,容积V=3.1m3,设备充装系数0.9。采用鞍式支座。试设计该设备。 2.2 设计要求 根据已知的条件,按照以下顺序进行设计: 1.主要结构设计—筒体、封头、接管、法兰密封、鞍座及其位置。 2.主要材料—焊缝和探伤 3.筒体和封头的厚度计算 4.计算鞍座反力

课程设计液氨储罐设计

湖北大学化学化工学院化工设备机械基础课程设计计算说明书 课程设计题目: 液氨储罐设计 姓名邹晓双 学号 专业年级12级化工2班 指导教师鲁德平 日期 目录 一、设计任务书 (1) 二、液氨储罐设计参数的确定 (2) 1、根据要求选择罐体和封头的材料 (2) 2、确定设计温度与设计压力 (2)

3、其他设计参数 (2) 三、筒体和封头壁厚的计算 (2) 1、筒体壁厚的计算 (2) 设计参数的确定 (3) 筒体壁厚的设计 (3) 刚度条件设计筒体的最小壁厚 (3) 2、罐体封头壁厚的计算 (3) 3、罐体的水压试验 (3) 液压试验压力的确定 (3) 液压试验的强度校核 . (3) 压力表的量程、水温的要求 (3) 液压试验的操作过程 (3) 4、罐体的气压试验 (4) 气压试验压力的确定 (4) 气压试验的强度校核 (4) 、气压试验的操作过程 (4) 四、罐体的开孔与补强 (4) 1、开孔补强的设计准则 (4) 2、开孔补强的计 算 ..................................4 、开孔

补强的有关计算参数 .......................5 、补强圈的 设计 (5) 五、选择鞍座并核算承载能力 (5) 1、支座的设计 (5) 2、鞍座的计算 (6) 3、安装位置 (6) 4、人孔的设计 (6) 5、液面计的设计 (7) 六、选配工艺接管 (7) 1、液氨进料管 (7) 2、液氨出料管 (7) 3、排污管 (7) 4、安全阀接口管 (7) 5、压力表接口管 (8) 七、设计结果一览表 (9) 八、液氨储罐装配图(见附图)............................... 一、设计任务书 试设计一液氨储罐,其公称容积、储罐内径、罐体(不包括封头)长度见下表。使用地点:家乡--湖北省十堰市竹溪县。 技术特性表

化工原理课程设计之苯甲苯连续精馏塔浮阀塔的设计

化工原理课程设计 设计题目:苯-甲苯连续精馏塔浮阀塔的设计设计人: 班级: 学号: 指导老师: 设计时间:

目录 设计任务书 (3) 前言 (4) 第一章工艺流程设计 (5) 第二章塔设备的工艺计算 (6) 第三章塔和塔板主要工艺尺寸计算 (15) 第四章塔板的流体力学验算 (18) 第五章塔板负荷性能图 (21) 第六章换热器的设计计算与选型 (25) 第七章主要工艺管道的计算与选择 (28) 结束语 (30) 参考文献 (32) 附录 (33)

化工原理课程设计任务书 设计题目:苯—甲苯连续精馏塔(浮阀塔)的设计 一、工艺设计部分 (一)任务及操作条件 1. 基本条件:含苯25%(质量分数,下同)的原料液以泡点状态进入塔内,回流比为最小回流比的 1.25倍。 2. 分离要求:塔顶产品中苯含量不低于95%,塔底甲苯中苯含量不高于2%。 3. 生产能力:每小时处理9.4吨。 4. 操作条件:顶压强为4 KPa (表压),单板压降≯0.7KPa,采用表压0.6 MPa的饱和蒸汽加热。(二)塔设备类型浮阀塔。 (三)厂址:湘潭地区(年平均气温为17.4℃) (四)设计内容 1. 设计方案的确定、流程选择及说明。 2. 塔及塔板的工艺计算塔高(含裙座)、塔径及塔板结构尺寸;塔板流体力学验算;塔板的负荷性能图;设计结果概要或设计一览表。 3. 辅助设备计算及选型(注意:结果要汇总)。 4. 自控系统设计(针对关键参数)。 5. 图纸:工艺管道及控制流程图;塔板布置图;精馏塔的工艺条件图。 6. 对本设计的评述或有关问题的分析讨论。 二、按要求编制相应的设计说明书 设计说明书的装订顺序及要求如下: 1. 封面(设计题目,设计人的姓名、班级及学号等) 2. 目录 3. 设计任务书 4. 前言(课程设计的目的及意义) 5. 工艺流程设计 6. 塔设备的工艺计算(计算完成后应该有计算结果汇总表) 7. 换热器的设计计算与选型(完成后应该有结果汇总表) 8. 主要工艺管道的计算与选择(完成后应该有结果汇总表) 8. 结束语(主要是对自己设计结果的简单评价) 9. 参考文献(按在设计说明书中出现的先后顺序编排,且序号在设计说明书引用时要求标注) 10. 设计图纸 三、主要参考资料 [1] 化工原理;[2] 化工设备机械基础;[3] 化工原理课程设计;[4] 化工工艺设计手册 四、指导教师安排杨明平;胡忠于;陈东初;黄念东 五、时间安排第17周~第18周

中北大学--玻璃钢卧式储罐课程设计

概述 在当前已经开发的复合材料制品中,玻璃纤维增强树脂基复合材料(俗称玻璃钢)的贮罐占有相当的比重。玻璃钢贮罐有较好的耐腐蚀性和承载能力,与金属贮罐相比,制造工艺比较简单且容易修补,所以,在石油,化工等部门已有逐步替代金属贮罐的趋势。近几年来,我国生产的玻璃钢贮罐已由中小吨位向大吨位发展,最大的玻璃钢贮罐容积已达到3 m 1500。 目前玻璃钢贮罐的设计方法有两种,一种是以强度为标准,在已经的安全系数下,使贮罐的应力小于材料的许用应力;另一种是以变形为标准,使贮罐的应变不超过规定值。在实际产品设计中,由于材料强度极限的数据积累较充分,而且能方便的使用最大应力失效准则及相应的设计标准,所以第一种方法较通用,而应变设计方法在变形需严格控制时才使用。 玻璃贮罐按使用功能与放置场地的不同,可以有多种结构形式。按使用压力不同,有压力贮罐和常压贮罐之分;按形状不同有圆柱形、球形、箱形等结构形式;按置于地面或运输车上有静置贮罐和运输贮罐之分。 由于玻璃钢贮罐具有耐腐蚀性、质量轻、强度高、易制造、运输安装费用低等特点,已广泛应用与化工、石油,造纸、医药、食品、冶金、粮食、饲料等领域。 (1)玻璃钢贮罐化学应用:贮存酸、碱、盐及各类化学用品。 (2)玻璃钢地下油罐:用于汽车加油站代替钢油罐。 (3)玻璃钢运输贮罐:分为汽车运输和火车运输贮罐两种。 & 本文着重讨论了卧式玻璃钢贮罐的造型设计、性能设计、结构设计、工艺设计、安装、及检 验等各方面。 {

2.性能设计 原材料的选择原则 ()比强度,比刚度高的原则 ()材料与结构的使用环境相适应的原则 】 ()满足结构特殊性能的原则 ()满足工艺要求的原则 ()成本低效益高的原则 树脂基体的选择 树脂的选择按如下要求选取: ()要求基体材料能在结构使用温度范围内正常工作; ()要求基体材料具有一定的力学性能; ()要求基体材料的断裂伸长率大于或者接近纤维的断裂伸长率; ( ()要求基体材料具有满足使用要求的物理、化学性能; ()要求基体材料具有一定的公益性。 玻璃钢制品所用的树脂原料有:聚酯、环氧、酚醛、呋喃树脂及改性树脂等。目前可供选择的的树脂主要有两类:一类为热固性树脂,其中包括环氧树脂、聚酰亚胺是指、酚醛树脂和聚酯树脂。连一类为热塑性树脂,如聚醚醚酮、尼龙、聚苯乙烯、聚醚酰亚胺等。 目前树脂基复合材料中用得较多的基体是热固性树脂,它们有较高的力学性能,但工作温度低。对于需耐高温的复合材料,主要是用聚酰亚胺作为基体材料,目前较新的树脂基体有双马来酰胺、聚醚醚酮等,能满足一般高温的要求,且韧性好,有较大的复合材料强度许用值。 贮罐储存质量分数的硫酸,根据耐酸性,力学性能和经济效益综合考虑,可选用酚醛树脂。 增强材料的选择 目前已有多种纤维可作为复合材料的增强材料,如加各种玻璃纤维、凯夫拉纤维、氧化铝纤维、硼纤维、碳纤维等,有些纤维已经有多种不同性能的品种。 选择纤维类别,是根据结构的功能选取能满足一定的力学、物理和化学性能的纤维。

相关主题
文本预览
相关文档 最新文档