当前位置:文档之家› 传热学考研知识点总结

传热学考研知识点总结

1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率2集总参数法:忽略物体内部导热热阻的简化分析方法

3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密度的峰值

5效能:表示换热器的实际换热效果与最大可能的换热效果之比

6对流换热是怎样的过程,热量如何传递的?对流:指流体各部分之间发生相对位移,冷热流体相互掺混所引起的热量传递方式。对流仅能发生在流体中,而且必然伴随有导热现象。对流两大类:自然对流与强制对流。

影响换热系数因素:流体的物性,换热表面的形状与布置,流速

7何谓膜状凝结过程,不凝结气体是如何影响凝结换热过程的?

蒸汽与低于饱和温度的壁面接触时,如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。

不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。因此,不凝结气体层的存在增加了传递过程的阻力。

8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内部温度变化的情况,着重指出几个典型阶段。

首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,经历了一段时间后,平壁的其他部分的温度也缓慢上升。

主要分为两个阶段:非正规状况阶段和正规状况阶段

9灰体有什么主要特征?灰体的吸收率与哪些因素有关?

灰体的主要特征是光谱吸收比与波长无关。灰体的吸收率恒等于同温度下的发射率,影响因素有:物体种类、表面温度和表面状况。

10气体与一般固体比较其辐射特性有什么主要差别?

气体辐射的主要特点是:(1)气体辐射对波长有选择性(2)气体辐射和吸收是在整个容积中进行的

11说明平均传热温压得意义,在纯逆流或顺流时计算方法上有什么差别?

平均传热温压就是在利用传热传热方程式来计算整个传热面上的热流量时,需要用到的整个传热面积上的平均温差。

纯顺流和纯逆流时都可按对数平均温差计算式计算,只是取值有所不同。

12边界层,边界层理论

边界层理论:(1)流场可划分为主流区和边界层区。只有在边界层区考虑粘性对流动的影响,在主流区可视作理想流体流动。(2)边界层厚度远小于壁面尺寸(3)边界层内流动状态分为层流与紊流,紊流边界层内紧靠壁面处仍有层流底层。

13液体发生大容器饱和沸腾时,随着壁面过热度的增高,会出现哪几个换热规律不同的区域?这几个区域的换热分别有什么特点?为什么把热流密度的峰值称为烧毁点?

分为四个区域:1、自然对流区,这个区域传热属于自然对流工况。2、核态沸腾区,换热特点:温压小、传热强。3、过度沸腾区:传热特点:热流密度随着温压的升高而降低,传热很不稳定。4、膜态沸腾区:

传热特点:传热系数很小。

由于超过热流密度的峰值可能会导致设备烧毁,所以热流密度的峰值也称为烧毁点。

14阐述兰贝特定律的内容。说明什么是漫射表面?角系数具有哪三个性质?在什么情况下是一个纯几何因子,和两个表面的温度和黑度没有关系?

兰贝特定律给出了黑体辐射能按空间方向的分布规律,它表明黑体单位面积辐射出去的能量在空间的不同方向分布是不均匀的,按空间纬度角的余弦规律变化:在垂直于该表面的方向最大,而与表面平行的方向为零。

光谱吸收比与波长无关的表面称为漫射表面。

角系数的三个性质:相对性、完整性、可加性。

当满足两个条件:(1)所研究的表面是漫射的(2)在所研究表面的不同地点上向外发射的辐射热流密度是均匀的。此时角系数是一个纯几何因子,和两个表面的温度和黑度没有关系。

15试述气体辐射的基本特点。气体能当灰体来处理吗?请说明原因

气体辐射的基本特点:(1)气体辐射对波长具有选择性(2)气体辐射和吸收是在整个容积中进行的。气体不能当做灰体来处理,因为气体辐射对波长具有选择性,而只有辐射与波长无关的物体才可以称为灰体。16试说明管槽内强制对流换热的入口效应。流体在管内流动过程中,随着流体在管内流动局部表面传热系数如何变化的?外掠单管的流动与管内的流动有什么不同

管槽内强制对流换热的入口效应:入口段由于热边界层较薄而具有比较充分的发展段高的表面传热系数。入口段的热边界层较薄,局部表面传热系数较高,且沿着主流方向逐渐降低。充分发展段的局部表面传热系数较低。

外掠单管流动的特点:边界层分离、发生绕流脱体而产生回流、漩涡和涡束。

18为什么在给圆管加保温材料的时候需要考虑临界热绝缘直径的问题而平壁不需要考虑?

圆管外敷设保温层同时具有减小表面对流传热热阻及增加导热热阻两种相反的作用,在这两种作用下会存在一个散热量的最大值,,在此时的圆管外径就是临界绝缘直径。而平壁不存在这样的问题。

19为什么二氧化碳被称作“温室效应”气体?

气体的辐射与吸收对波长具有选择性,二氧化碳等气体聚集在地球的外侧就好像给地球罩上了一层玻璃窗:以可见光为主的太阳能可以达到地球的表面,而地球上一般温度下的物体所辐射的红外范围内的热辐射则大量被这些气体吸收,无法散发到宇宙空间,使得地球表面的温度逐渐升高。

20试分析大空间饱和沸腾和凝结两种情况下,如果存在少量不凝性气体会对传热效果分别产生什么影响?原因?

对于凝结,蒸气中的不可凝结气体会降低表面传热系数,因为在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。因此,不凝结气体层的存在增加了传递过程的阻力。

大空间饱和沸腾过程中,溶解于液体中的不凝结气体会使沸腾传热得到某种强化,这是因为,随着工作液体温度的升高,不凝结气体会从液体中逸出,使壁面附近的微小凹坑得以活化,成为汽泡的胚芽,从而使q~Δt沸腾曲线向着Δt减小的方向移动,即在相同的Δt下产生更高的热流密度,强化了传热。

21太阳能集热器的吸收板表面有时覆以一层选择性涂层,使表面吸收阳光的能力比本身辐射能力高出很多

倍。请问这一现象与吉尔霍夫定律是否矛盾?原因?

基尔霍夫定律表明物体的吸收比等于发射率,但是这一结论是在“物体与黑体投入辐射处于热平衡”这样严格的条件下才成立的,而太阳能集热器的吸收板表面涂上选择性涂层,投入辐射既非黑体辐射,更不是处于热平衡,所以,表面吸收阳光的能力比本身辐射能力高出很多倍,这一现象与基尔霍夫定律不相矛盾。22请说明Nu、Bi的物理意义,Bi趋于0和趋于无穷时各代表什么样的换热条件?

Nu数表明壁面上流体的无量纲温度梯度

Bi表明固体内部导热热阻与界面上换热热阻之比

Bi趋于0时平板内部导热热阻几乎可以忽略,因而任一时刻平板中各点的温度接近均匀,并随着时间的推移整体的下降,逐渐趋近于外界温度。

Bi趋于无穷时,表面的对流换热热阻几乎可以忽略,因而过程一开始平板的表面温度就被冷却到外界温度,随着时间的推移,平板内部各点的温度逐渐下降而趋近于外界温度。

23举例说明什么是温室效应,以及产生温室效应的原因

位于太阳照耀下被玻璃封闭起来的空间,例如小轿车、培养植物的暖房等,其内的温度明显地高于外界温度,这种现象称为温室效应。这是因为玻璃对太阳辐射具有强烈的选择性吸收性,从而大部分太阳辐射能穿过玻璃进入有吸热面的腔内,而吸热面发出的常温下的长波辐射却被玻璃阻隔在腔内,从而产生了所谓的温室效应。

24数值分析法的基本思想

对物理问题进行数值求解的基本思想可以概括为:把原来的时间、空间坐标系中连续的物理量的场,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。

25强化沸腾的方法

强化沸腾的方法:1、强化大容器沸腾的表面结构,2、强化管内沸腾的表面结构。

传热学知识点

传热学主要知识点 1.热量传递的三种基本方式。 热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。

2.导热的特点。 a 必须有温差; b 物体直接接触; c 依靠分子、原子及自由电子等微观粒子热运动而传递热量; d 在引力场下单纯的导热一般只发生在密实的固体中。

3.对流(热对流)(Convection)的概念。 流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。 4对流换热的特点。 当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点: a 导热与热对流同时存在的复杂热传递过程 b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差 c 壁面处会形成速度梯度很大的边界层 5.牛顿冷却公式的基本表达式及其中各物理量的定义。 [] W )(∞-=t t hA Φw [] 2m W )( f w t t h A Φq -==

6. 热辐射的特点。 a 任何物体,只要温度高于0 K,就会不停地向周围空间发出热辐射; b 可以在真空中传播; c 伴随能量形式的转变; d 具有强烈的方向性; e 辐射能与温度和波长均有关; f 发射辐射取决于温度的4次方。

7.导热系数, 表面传热系数和传热系数之间的区别。导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。 表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。影响h因素:流速、流体物性、壁面形状大小等。传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。 常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:0.599;空气:0.0259;保温材料:<0.14;水垢:1-3;烟垢:0.1-0.3。

考研传热学概念和问答总结

1.热流量:单位时间内所传递的热量 2.热流密度:单位传热面上的热流量 3.导热:当物体内有温度差或两个不同温度的物体接触时,在物体各部分之间不发生相对位移的情况下,物质微粒(分子、原子或自由电子)的热运动传递了热量,这种现象被称为热传导,简称导热。 4.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合用的热量传递过程,称为表面对流传热,简称对流传热。 5.辐射传热:物体不断向周围空间发出热辐射能,并被周围物体吸收。同时,物体也不断接收周围物体辐射给它的热能。这样,物体发出和接收过程的综合结果产生了物体间通过热辐射而进行的热量传递,称为表面辐射传热,简称辐射传热。 6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。 7.对流传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的对流传热量,单位为W/(m2·K)。对流传热系数表示对流传热能力的大小。 8.辐射传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的辐射传热量,单位为W/(m2·K)。辐射传热系数表示辐射传热能力的大小。 9.复合传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的复合传热量,单位为W/(m2·K)。复合传热系数表示复合传热能力的大小。 10.总传热系数:总传热过程中热量传递能力的大小。数值上表示传热温差为1K时,单位传热面积在单位时间内的传热量。 11.温度场:某一瞬间物体内各点温度分布的总称。一般来说,它是空间坐标和时间坐标的函数。 12.等温面(线):由物体内温度相同的点所连成的面(或线)。 13.温度梯度:在等温面法线方向上最大温度变化率。 14.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。热导率是材料固有的热物理性质,表示物质导热能力的大小。15.导温系数:材料传播温度变化能力大小的指标。 16.稳态导热:物体中各点温度不随时间而改变的导热过程。 17.非稳态导热:物体中各点温度随时间而改变的导热过程。 18.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。 19.保温(隔热)材料:λ≤0.12 W/(m·K)(平均温度不高于350℃时)的材料。 20.肋效率:肋片实际散热量与肋片最大可能散热量之比。 21接触热阻:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻。 22.定解条件(单值性条件):使微分方程获得适合某一特定问题解的附加条件,包括初始条件和边界条件。 23速度边界层:在流场中壁面附近流速发生急剧变化的薄层。 24温度边界层:在流体温度场中壁面附近温度发生急剧变化的薄层。 25定性温度:确定换热过程中流体物性的温度。 26特征尺度:对于对流传热起决定作用的几何尺寸。 27相似准则(如Nu,Re,Pr,Gr,Ra):由几个变量组成的无量纲的组合量。 28强迫对流传热:由于机械(泵或风机等)的作用或其它压差而引起的相对运动。 29自然对流传热:流体各部分之间由于密度差而引起的相对运动。

传热学考研复习纲要

传热学考研复习纲要 第一章 1、傅里叶导热定律的概念、公式、单位、物理意义 2、导热、对流、辐射的概念; 3、传热学的分析方法; 4、传热方式的相关分析; 5、传热过程以及引入传热过程这一概念的目的; 第二章 1、导热系数的物理意义(导热图中斜率)、计算公式、影响因素、比较; 2、平壁、圆柱、球的导热热阻公式;平壁和圆柱的导热量计算公式; 3、导热微分方程的两大定律、各种情况下的公式及各项的物理意义; 4、等截面直肋的导热量等系列计算(重点)、测量气体温度的误差及降低方式; 5、肋效率的计算公式、物理意义、影响因素(提高肋效率的方法)、是不是肋效率越高越好、肋面总效率的公式及各符号的意义、什么形状的肋效率最高; 6、保温材料的概念、利用空气导热系数小这一特点制造保温材料的工程实例及原理; 7、导热模型及导热机理; 8、定解条件可分为:边界条件和初始条件、三类边界条件的公式及意义;

9、热扩散率的公式、物理意义、影响因素、与导热系数的区别和联系; 第三章 1、集中参数法的概念、物理意义、使用条件(使用这个判据的理由)、两种可以使用集中参数法的特殊情况(无限大平板、表面换热系数趋于零); 2、毕渥数的公式、物理意义、毕渥数不同的平壁温度分布图及特点; 3、傅里叶数的公式、物理意义; 4、集中参数法的计算:时间常数、变温所需时间、特征长度、判断依据、无限大平板(Bi趋于无穷)的计算方法; 5、时间常数的公式、影响因素、物理意义,与时间常数大小相关的分析题; 第四章 1、泰勒公式展开; 2、向前差分、向后差分、中心差分; 3、公式 第五章 1、对流换热的概念、影响因素(……四个流体物性)、强制对流以及自然对流的概念; 2、对流换热的分析方法(四个); 3、流动边界层和温度边界层的概念、厚度、特点(四个)、引入边界层的目的;

传热学考研知识点总结

常用的相似准则数:①努谢尔特:Nu=aL/λ分子是实际壁面处的温度变化率,分母是原为l的流体层导热机理引起的温度变化率反应实际传热量与导热分子扩散热量传递的比较。Nu大小表明对流换热强度。②雷诺准则Re=WL/V Re大小反映了流体惯性力和粘性力相对大小。Re是判断流态的。③格拉小夫准则Gr=gβ△tL³/V² Gr的大小表明浮升力和粘性力的的相对大小,Gr表明自然流动状态兑换热的影响。 ④普朗特准则: Pr=V/a Pr表明动量扩散率与热量扩散率的相对大小。 辐射换热时的角系数:①相对性②完整性③可加性 热交换器通常分为三类:间壁式、混合式和回热式,按传热表面的结构形式分为管式和板式间壁式热交换器按两种流体相互间的流动方向热交换器分为分为顺流,逆流,交叉流。 导温系数α也称为热扩散系数或热扩散率,它象征着物体在被加热或冷却是其内部各点温度趋于均匀一致的能力。Α大的物体被加热时,各处温度能较快的趋于一致。传热学考研总结 1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率 2集总参数法:忽略物体内部导热热阻的简化分析方法 3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密度的峰值 4效能:表示换热器的实际换热效果与最大可能的换热效果之比 5对流换热是怎样的过程,热量如何传递的? 对流换热:指流体各部分之间发生宏观运动产生的热量传递与流体内部分子导热引起的热量传递联合作用的结果。对流仅能发生在流体中,而且必然伴随有导热现象。 对流两大类:自然对流(不依靠泵或风机等外力作用,由于流体内部密度差引起的流动)与强制对流(依靠泵或风机等外力作用引起的流体宏观流动)。 影响换热系数因素:流体的物性,换热表面的形状与布置,流速,流动起因(自然、强制),流动状态(层流、湍流),有无相变。 6何谓凝结换热和沸腾换热,影响凝结换热和沸腾换热的因素? 蒸汽与低于饱和温度的壁面接触时,将汽化潜热传递给壁面的过程称为凝结过程。 如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。 如果凝结液体不能很好地润湿壁面,在壁面上形成一个个小液珠,这种凝结方式称为珠状凝结。 液体在固液界面上形成气泡引起热量由固体传递给液体的过程称为沸腾换热。 按沸腾液体是否做整体流动可分为大容器沸腾(池沸腾)和管内沸腾;按液体主体温度是否达到饱和温度可分为饱和沸腾和过冷沸腾。 不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大;蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层,因此,不凝结气体层的存在增加了传递过程的阻力。 影响凝结换热的因素:不凝结气体、蒸汽流速、管内冷凝、蒸汽过热度、液膜过冷度及温度分布非线性。 影响沸腾换热的因素:不凝结气体(使沸腾换热强化)、过冷度、重力加速度、液位高度、管内沸腾。 7强化凝结换热和沸腾换热的原则? 强化凝结换热的原则:减薄或消除液膜,及时排除冷凝液体。 强化沸腾换热的原则:增加汽化核心,提高壁面过热度。 8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内部温度变化的情况,着重指出几个典型阶段。 首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,经历了一段时间后,平壁的其他部分的温度也缓慢上升。 主要分为两个阶段:非正规状况阶段和正规状况阶段 9灰体有什么主要特征?灰体的吸收率与哪些因素有关?

传热学知识点

传热学主要知识点 1. 热量传递的三种基本方式。 热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。 2.导热的特点。 a 必须有温差; b 物体直接接触; c 依靠分子、原子及自由电子等微观粒子热运动而传递热量; d 在引力场下单纯的导热一般只发生在密实的固体中。 3.对流(热对流)(Convection)的概念。 流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。 4对流换热的特点。 当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点: a 导热与热对流同时存在的复杂热传递过程 b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差 c 壁面处会形成速度梯度很大的边界层 5.牛顿冷却公式的基本表达式及其中各物理量的定义。 [] W )(∞-=t t hA Φw

6. 热辐射的特点。 a 任何物体,只要温度高于0 K ,就会不停地向周围空间发出热辐射; b 可以在真空中传播; c 伴随能量形式的转变; d 具有强烈的方向性; e 辐射能与温度和波长均有关; f 发射辐射取决于温度的4次方。 7.导热系数, 表面传热系数和传热系数之间的区别。导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。 表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。影响h 因素:流速、流体物性、壁面形状大小等。传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。 常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:0.599;空气:0.0259;保温材料:<0.14;水垢:1-3;烟垢:0.1-0.3。 8. 实际热量传递过程: 常常表现为三种基本方式的相互串联/并联作用。 [] 2m W )( f w t t h A Φq -==

(完整版)传热学知识点总结

Φ-=B A c t t R 1211k R h h δλ=++传热学与工程热力学的关系: a 工程热力学研究平衡态下热能的性质、热能与机械能及其他形式能量之间相互转换的规律, 传热学研究过程和非平衡态热量传递规律。 b 热力不考虑热量传递过程的时间,而传热学时间是重要参数。 c 传热学以热力学第一定律和第二定律为基础。 传热学研究内容 传热学是研究温差引起的热量传递规律的学科,研究热量传递的机理、规律、计算和测试方法。 热传导 a 必须有温差 b 直接接触 c 依靠分子、原子及自由电子等微观粒子热运动而传递热量,不发生宏观的相对位移 d 没有能量形式的转化 热对流 a 必须有流体的宏观运动,必须有温差; b 对流换热既有对流,也有导热; c 流体与壁面必须直接接触; d 没有热量形式之间的转化。 热辐射: a 不需要物体直接接触,且在真空中辐射能的传递最有效。 b 在辐射换热过程中,不仅有能量的转换,而且伴随有能量形式的转化。 c .只要温度大于零就有.........能量..辐射。... d .物体的...辐射能力与其温度性质..........有关。... 传热热阻与欧姆定律 在一个串联的热量传递的过程中,如果通过各个环节的热流量相同,则各串联环节的的总热阻等于各串联环节热阻之和(I 总=I1+I2,则R 总=R1+R2) 第二章 温度场:描述了各个时刻....物体内所有各点.... 的温度分布。 稳态温度场::稳态工作条件下的温度场,此时物体中个点的温度不随时间而变 非稳态温度场:工作条件变动的温度场,温度分布随时间而变。 等温面:温度场中同一瞬间相同各点连成的面 等温线:在任何一个二维的截面上等温面表现为 肋效率:肋片的实际散热量ф与假设整个肋表面...处于肋基温度.... 时的理想散热量ф0 之比 接触热阻 Rc :壁与壁之间真正完全接触,增加了附加的传递阻力 三类边界条件 第一类:规定了边界上的温度值 第二类:规定了边界上的热流密度值 第三类:规定了边界上物体与周围流体间的表面..传热系数....h 及周围..流体的温度..... 。 导热微分方程所依据的基本定理 傅里叶定律和能量守恒定律 傅里叶定律及导热微分方程的适用范围 适用于:热流密度不是很高,过程作用时间足够长,过程发生的空间尺度范围足够大 不适用的:a 当导热物体温度接近0k 时b 当过程作用时间极短时c 当过成发生的空间尺度极小,与微观粒子的平均自由程相接近时

(完整版)传热学知识点

(完整版)传热学知识点 传热学主要知识点 1. 热量传递的三种基本方式。 热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。 2. 导热的特点。 a 必须有温差; b 物体直接接触; c 依靠分子、原子及自由电子等微观粒子热运动而传递热量; d 在引力场下单纯的导热一般只发生在密实的固体中。 3. 对流(热对流)(Convection)的概念。 流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。 4 对流换热的特点。 当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点: a 导热与热对流同时存在的复杂热传递过程 b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差 c 壁面处会形成速度梯度很大的边界层 5. 牛顿冷却公式的基本表达式及其中各物理量的定义。 q ' = h (t w - t ∞ ) (w) = q 'A = Ah (t w - t ∞ ) w / m 2 h 是对流换热系数单位 w/(m 2 k) q ' 是热流密度(导热速率),单位(W/m 2) 是导热量 W 6. 热辐射的特点。 a 任何物体,只要温度高于 0 K ,就会不停地向周围空间发出热辐射; b 可以在真空中传播;

c 伴随能量形式的转变; d 具有强烈的方向性; e 辐射能与温度和波长均有关; f 发射辐射取决于温度的 4 次方。 7. 导热系数, 表面传热系数和传热系数之间的区别。导热系数:表征材料导热 能力的大小,是一种物性参数,与材料种类和温度关。 表面传热系数:当流体与壁面温度相差1 度时、每单位壁面面积上、单位时间内所传递的热量。影响h 因素:流速、流体物性、壁面形状大小等传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。 第一章导热理论基础 1 傅立叶定律的基本表达式及其中各物理量的意义。傅立叶定律(导热基本定律): q ' = -k ?dT q ' = -k ?T = -k (i ?T + j ?T + k ?T ) x ?dx ?x ?y ?z q ' = -k ?T n ?n T(x,y,z)为标量温度场 圆筒壁表面的导热速率 q r = -kA dT dr = -k (2rL ) dT dr 垂直导过等温面的热流密度,正比于该处的温度梯度,方向与温度梯度相反。 (1) 空隙中充有空气,空气导热系数小,因此保温性好; (2) 空隙太大,会形成自然对流换热,辐射的影响也会增强,因此并非空隙越大越好。 (3) 由于水分的渗入,替代了相当一部分空气,而且更主要的是水分将从高温区向低温区迁移而传递热量。因此,湿材料的导热系数比干材料和水都要大。所以,建筑物的围护结构,特别是冷、热设备的保温层,都应采取防潮措施。 导热微分方程式的理论基础。傅里叶定律 + 热力学第一定律

传热学考研知识点总结

传热学考研知识点总结 对流换热是怎样的过程,热量如何传递的?如下是xx整理的,希望对你有所帮助。 §1-1 “三个W” §1-2 热量传递的三种基本方式§1-3 传热过程和传热系数 要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析。作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。本章重点: 1.传热学研究的基本问题物体内部温度分布的计算方法热量的传递速率增强或削弱热传递速率的方法 2.热量传递的三种基本方式 (1).导热:依靠微观粒子的热运动而产生的热量传递。传热学重点研究的是在宏观温差作用下所发生的热量传递。傅立叶导热公式: (2).对流换热:当流体流过物体表面时所发生的热量传递过程。牛顿冷却公式: (3).辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过

程共同作用的结果。由于电磁波只能直线传播,所以只有两个物体相互看得见的部分才能发生辐射换热。黑体热辐射公式:实际物体热辐射: 传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程。最简单的传热过程由三个环节串联组成。 传热学研究的基础 傅立叶定律 能量守恒定律+ 牛顿冷却公式 + 质量动量守恒定律四次方定律本章难点 1.对三种传热形式关系的理解各种方式热量传递的机理不同,但却可以同时存在于一个传热现象中。 2.热阻概念的理解严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。 思考题: 1.冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。为什么? 2.试分析室内暖气片的散热过程。 3.冬天住在新建的居民楼比住旧楼房感觉更冷。试用传热学观点解释原因。 4.从教材表1-1给出的几种h数值,你可以得到什么结论?

传热学考研复习资料

传热学考研复习资料 考研生物学专业中,传热学占据了很重要的一环。掌握好传热学的知识,不仅可以在考试中拿高分,还对于未来的科研和工作都有很大的帮助。在复习传热学的过程中,需要掌握以下几个方面。 第一,热学基础知识。传热学是基于热学的基础理论的,因此复习传热学必须先掌握热学的基础知识。例如:热力学第一定律和第二定律,热平衡和温度,热容和比热容等等。这些基础知识不仅需要记忆,还需要深入理解。只有对这些基础知识掌握的扎实,才能够更好地学习传热学的知识。 第二,传热学的分类和原理。在传热学中,有三种方式传热:传导、对流和辐射。对于每种方式的传热,都有不同的物理原理和数学公式。因此,需要详细地了解每一种传热方式的分类和原理,掌握各种传热方程式的推导过程和应用场景,能够快速判断传热方式并应用相应的传热方程式。 第三,传热学的计算方法。传热学是一门数学科学,因此在复习传热学时,要掌握各种传热计算的方法和技巧。例如:传导热量的计算、换热器的热传递、传热表面积的计算和传热系数的计

算等等。这些计算不仅需要理解各种计算方法的基本原理,还要学会应用计算机辅助传热计算。 第四,复习传热学的实践应用。传热学在许多领域中都有广泛应用,如制冷空调、发电厂、化工、冶金、工业炉等等。因此,在复习传热学的过程中,需要了解传热学在实践中的应用,举一些实际例子深入掌握传热学的应用规律和实践意义。同时,还需要了解一些传热学分支的最新研究进展,以及在新技术、新材料等方面的应用前景等等。 总之,掌握好传热学知识对于考取生物学专业研究生来说是非常重要的。通过系统化的学习,深入研究这个学科,在考试和未来的科研和工作中都可以大有裨益。希望这篇文章对大家有所帮助。

传热学知识点总结

传热学知识点总结 传热学是物理学的一个重要分支,研究物体间传递热量的规律和方式。下面是一些传热学的重要知识点的总结。 1.热量传递方式: 传热学研究的第一个重要问题是热量的传递方式。主要有三种方式: 传导、对流和辐射。传导是通过固体或液体内部的分子振动和自由电子振 动而传递热量的方式;对流是通过液体或气体的运动而传递热量的方式; 辐射是通过热辐射的电磁波传递热量的方式。不同物体间的传热方式通常 是综合应用这些方式。 2.热传导: 热传导是固体或液体内部的热量传递方式。它遵循傅里叶热传导定律,即热传导速率正比于温度梯度,与导热系数成正比。导热系数是物质的一 个固有特性,用于描述物质对热量的导热能力。热情况下,低导热系数的 物质不容易传递热量,而高导热系数的物质能够更好地传递热量。 3.对流传热: 对流是热量通过液体或气体的运动而传递的方式。它分为自然对流和 强迫对流。自然对流是由密度差异引起的液体或气体的自发运动,如气流 中的热空气上升;强迫对流是通过外部力量推动流体运动,如风扇吹起的 空气。对流传热具有较高的传热效率,因为流体的运动可以带走物体表面 的热量。 4.辐射传热:

辐射是通过热辐射的电磁波传递热量的方式。所有物体在室温下都会 发射辐射,其强度与温度的四次方成正比。黑体是指一个理想化的物体, 能够完全吸收所有辐射,并以最大强度发射辐射。根据斯特藩-玻尔兹曼 定律,黑体辐射的强度正比于温度的四次方。实际物体的辐射强度可以用 其发射率和黑体辐射强度之间的比例来描述。 5.热传导方程: 热传导方程是研究固体或液体内部热量传递的数学模型。它描述了材 料内部温度随时间和空间的变化。热传导方程是一个偏微分方程,其中包 含了热传导系数、材料的热容和密度等参数。 6.传热换热系数: 传热换热系数描述了传热过程中介质对热量的传递能力。它是一个物 质特性,不同物质和不同传热方式都有不同的传热换热系数。传热换热系 数的大小直接影响传热速率,较大的传热换热系数意味着更快的传热速率。 7.传热实例应用: 传热学的知识在工业生产和日常生活中有很多应用。例如,散热器使 用对流和辐射的方式将汽车引擎中产生的热量散发到空气中;太阳能板利 用辐射传热的方式将太阳能转化为热能;导热材料的选择对于电子设备的 散热和隔热至关重要。 总的来说,传热学是一个研究热量传递规律的重要学科,涉及热传导、对流和辐射等多种传热方式。掌握传热学的知识可以帮助我们更好地理解 和应用热传递过程。

传热学知识点总结

传热学知识点总结 传热学知识点总结 传热学,是研究热量传递规律的科学,是研究由温差引起的热能传递规律的科学。大约在上世纪30年代,传热学形成了独立的学科。以下是小编整理的传热学知识点总结,欢迎阅读! 第一章 §1-1 “三个W” §1-2 热量传递的三种基本方式 §1-3 传热过程和传热系数 要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析(有哪些热量传递方式和环节)。作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。 本章重点: 1.传热学研究的基本问题 物体内部温度分布的计算方法 热量的传递速率 增强或削弱热传递速率的方法 2.热量传递的三种基本方式 (1).导热:依靠微观粒子的热运动而产生的热量传递。传热学重点研究的是在宏观温差作用下所发生的热量传递。 傅立叶导热公式: (2).对流换热:当流体流过物体表面时所发生的热量传递过程。 牛顿冷却公式: (3).辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。由于电磁波只能直线传播,所以只有两个物体相互看得见的部分才能发生辐射换热。

黑体热辐射公式: 实际物体热辐射: 3.传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程。 最简单的传热过程由三个环节串联组成。 4.传热学研究的基础 傅立叶定律 能量守恒定律+ 牛顿冷却公式 + 质量动量守恒定律 四次方定律 本章难点 1.对三种传热形式关系的理解 各种方式热量传递的机理不同,但却可以(串联或并联)同时存在于一个传热现象中。 2.热阻概念的理解 严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。思考题: 1.冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。为什么? 2.试分析室内暖气片的散热过程。 3.冬天住在新建的居民楼比住旧楼房感觉更冷。试用传热学观点解释原因。 4.从教材表1-1给出的几种h数值,你可以得到什么结论? 5.夏天,有两个完全相同的液氮贮存容器放在一起,一个表面已结霜,另一个则没有。请问哪个容器的隔热性能更好,为什么第二章导热基本定律及稳态导热 §2-1 导热的基本概念和定律 §2-2 导热微分方程 §2-3 一维稳态导热 §2-4伸展体的.一维稳态导热 要求:本章应着重掌握Fourier定律及其应用,影响导热系数的因

传热学基本概念知识点

传热学基本概念知识点 1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率 2集总参数法:忽略物体内部导热热阻的简化分析方法 3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密度的峰值 5效能:表示换热器的实际换热效果与最大可能的换热效果之比 6对流换热是怎样的过程,热量如何传递的?对流:指流体各部分之间发生相对位移,冷热流体相互掺混所引起的热量传递方式。对流仅能发生在流体中,而且必然伴随有导热现象。对流两大类:自然对流与强制对流。 影响换热系数因素:流体的物性,换热表面的形状与布置,流速 7何谓膜状凝结过程,不凝结气体是如何影响凝结换热过程的? 蒸汽与低于饱和温度的壁面接触时,如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。 不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。因此,不凝结气体层的存在增加了传递过程的阻力。 8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内

部温度变化的情况,着重指出几个典型阶段。 首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,经历了一段时间后,平壁的其他部分的温度也缓慢上升。 主要分为两个阶段:非正规状况阶段和正规状况阶段 9灰体有什么主要特征?灰体的吸收率与哪些因素有关? 灰体的主要特征是光谱吸收比与波长无关。灰体的吸收率恒等于同温度下的发射率,影响因素有:物体种类、表面温度和表面状况。 10气体与一般固体比较其辐射特性有什么主要差别? 气体辐射的主要特点是:(1)气体辐射对波长有选择性(2)气体辐射和吸收是在整个容积中进行的 11说明平均传热温压得意义,在纯逆流或顺流时计算方法上有什么差别? 平均传热温压就是在利用传热传热方程式来计算整个传热面上的热流量时,需要用到的整个传热面积上的平均温差。 纯顺流和纯逆流时都可按对数平均温差计算式计算,只是取值有所不同。 12边界层,边界层理论 边界层理论:(1)流场可划分为主流区和边界层区。只有在边界层区考虑粘性对流动的影响,在主流区可视作理想流体流动。(2)边界层厚度远小于壁面尺寸(3)边界层内流动状态分为层流与湍流,湍流边界层内紧靠壁面处仍有层流底层。

传热学知识点总结

§ 1-1 “三个W § 1-2热量传递得三种基本方式 § 1-3传热过程与传热系数 要求通过本章得学习,读者应对热量传递得三种基本方式、传热过程及热阻得概念有所了解并育缱行简单得计算,能寸工程实际中简单得传热问题进行分析(有哪些热量传递方式与环节)。作为绪论,本章对全书得主要内容作了初步概括但没有深化,具体更深入得讨论在随后得章节中体现。 本章重点: 1、传热学研究得基本问题物体内部温度分布得计算方法 热量得传递速率 增强或削弱热传递速率得方法 2、热量传递得三种基本方式 (1) 、导热:依靠微观粒子得热运动而产生得热量传递。传热学重点研究得就是在宏观温差作用下所发生得热量传递。 傅立叶导热公式: (2) 、对流换热:当流体流过物体表面时所发生得热量传递过程。 牛顿冷却公式: ⑶、辐射换热:任何一个处于绝对零度以上得物体都具有发射热辐射与吸收热辐射得能力,辐射换热就就是这两个过程共同作用得结果。由于电磁波只育請线传播所以只有两个物体相互瞧得见得部分才能发生辐射换热。 黑体热辐射公式:实际物体热辐射: 3、传热过程及传热系数:热量从固壁一则得流体通过固壁传向另一侧流体得过程。最简单得传热过程由三个环节串联组成。 4、传热学研究得基础 傅立叶定律 能量守恒定律+牛顿冷却公式+质量动量守恒定律 四次方定律 本章难点 1、对三种传热形式关系得理解 各种方式热量传递得机理不同,但却可以(串联或并联)同时存在于一个传热现象中。 2、热阻概念得理解 严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式得损耗。思考题: 1、冬天经太阳晒过得棉被盖起来很暖与,经过拍打以后,效果更加明显。为什么? 2、试分析室内暖气片得散热过程。 3、冬天住在新建得居民楼比住旧楼房感觉更冷。试用传热学观点解释原因。 4、从教材表1-1给出得几种h数值,您可以得到什么结论? 5、夏天,有两个完全相同得液氮贮存容器放在一起,一个表面已结霜,另一个则没有。请问哪个容器得隔热性能更好为什么? 第一章导热基本定律及稳态导热

传热学知识点总结

第一章 § 1-1 “三个W § 1-2热量传递的三种基本方式 § 1-3传热过程和传热系数 要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析(有哪些热量传递方式和环节)。作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。 本章重点: 1. 传热学研究的基本问题 物体内部温度分布的计算方法 热量的传递速率 增强或削弱热传递速率的方法 2. 热量传递的三种基本方式 (1) .导热:依靠微观粒子的热运动而产生的热量传递。传热学重点研究的是在宏观温差作用下所发生的热量传递。 傅立叶导热公式: (2) .对流换热:当流体流过物体表面时所发生的热量传递过程。 牛顿冷却公式: (3) .辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。由于电磁波只育請线传播,所以只有两个物体相互看得见的咅盼才能发生辐射换热。 黑体热辐射公式: 实际物体热辐射: 3. 传热过程及传热系数:热量从固壁一则的流体通过固壁传向另一侧流体的过程。最简单的传热过程由三个环节串联组成。 4. 传热学研究的基础 傅立叶定律 能量守恒定律+牛顿冷却公式+质量动量守恒定律 四次方定律 本章难点 1. 对三种传热形式关系的理解 各种方式热量传递的机理不同,但却可以(串联或并联)同时存在于一个传热现象中。 2. 热阻概念的理解 严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。思考题: 1. 冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。为什么? 2. 试分析室内暖气片的散热过程。 3. 冬天住在新建的居民楼比住旧楼房感觉更冷。试用传热学观点解释原因。 4. 从教材表1-1给出的几种h数值,你可以得到什么结论? 5. 夏天,有两个完全相同的液氮贮存容器放在一起,一个表面已结霜,另一个则没有。请问哪个容器

传热学知识点总结

第一章 §1-1 “三个W” §1-2 热量传递的三种基本方式 §1-3 传热过程和传热系数 要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析(有哪些热量传递方式和环节)。作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。 本章重点: 1.传热学研究的基本问题 物体内部温度分布的计算方法 热量的传递速率 增强或削弱热传递速率的方法 2.热量传递的三种基本方式 (1).导热:依靠微观粒子的热运动而产生的热量传递。传热学重点研究的是在宏观温差作用下所发生的热量传递。 傅立叶导热公式: (2).对流换热:当流体流过物体表面时所发生的热量传递过程。 牛顿冷却公式: (3).辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。由于电磁波只能直线传播,所以只有两个物体相互看得见的部分才能发生辐射换热。 黑体热辐射公式: 实际物体热辐射: 3.传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程。 最简单的传热过程由三个环节串联组成。 4.传热学研究的基础 傅立叶定律 能量守恒定律+ 牛顿冷却公式+ 质量动量守恒定律 四次方定律 本章难点 1.对三种传热形式关系的理解 各种方式热量传递的机理不同,但却可以(串联或并联)同时存在于一个传热现象中。2.热阻概念的理解 严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。 思考题: 1.冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。为什么? 2.试分析室内暖气片的散热过程。 3.冬天住在新建的居民楼比住旧楼房感觉更冷。试用传热学观点解释原因。 4.从教材表1-1给出的几种h数值,你可以得到什么结论?

相关主题
文本预览
相关文档 最新文档