当前位置:文档之家› 制冷系统匹配中的数据拟合

制冷系统匹配中的数据拟合

制冷系统匹配中的数据拟合
制冷系统匹配中的数据拟合

Technology

技术

制冷系统匹配中的数据拟合

珠海格力电器股份有限公司

吴杰强扬文聪

摘要:通过试验,采用数据拟合方式,得到空调制冷系统性能随毛细管长度和冷媒灌注量变化的规律、变化曲线及方程,为制冷系统匹配提供有益的参考。关键词:制冷系统;毛细管长度;灌注量;数据拟合;优化曲面设计

目前,家用冰箱、空调器等制冷设备中广泛采用毛细管作为节流元件,这不仅简化了设备的结构,降低了成本,而且还提高了设备的工作可靠性。当制冷设备的结构尺寸和工作条件一定时,优化灌注量和毛细管长度,能更有效提高制冷系统的性能。由于这种匹配大都是通过系统运行时的反复调试得到,工作量巨大,开发成本高。因此,通过对有限数据的拟合,研究空调器性能参数随毛细管和冷媒灌注量的变化,对缩短开发周期降低开发成本具有重大的实践意义。

本文采用一款窗式空调器,系统匹配的目标值为能力5500Btu/h,能效12.0。根据试验取得的原始数据,采用Minitab进行数据处理,拟合出能力、能效与毛细管长度和冷媒灌注量之间的函数关系,并通过数学求解得出能力、能效的最优值。

1选定模型

1.1空调器结构(如图1所示)

76家电科技

1.2筛选因子

图1反映了制冷循环的构成。压缩机从蒸发器吸入饱和蒸汽,并经压缩机压缩后进入冷凝器中冷凝,冷凝液体经毛细管节流后进入蒸发器中吸热气化,气化后的饱和蒸汽再由压缩

机吸入并重复循环。内外侧风叶在电机的带动

下,实现蒸发器、冷凝器与环境空气的不间断强制换热。

由此可得出空调能力是压缩机、冷凝器、毛细管、蒸发器、电机的函数。

Cap2f-p(Y1,Y2,Y3,Y4,Y5)EER=ffm(Y-,Y2,Y3,Y4,Y5)

式中:Y,一压缩机:Y2一冷凝器;Y,一

毛细管;Y。一蒸发器;Y,一电机。

Y.压缩机:根据压缩机性能曲线可以知道,压缩机能力是冷凝温度、蒸发温度、吸气压力的函数。在系统匹配过程中,主要是

通过调节毛细管长度和冷媒灌注量来调节压

缩机吸排气温度、压力,因此压缩机的能力可表示为毛细管长度和冷媒灌注量的函数。

可得:

Yl=fl(Len,Ref)

式中:Len一毛细管长度;Re卜冷媒灌

注量。

Y:冷凝器:在冷凝器尺寸、材料确定后,

其换热效率仅与风量、冷媒进出口温度及进出

口压力有关,而进出口温度及压力的改变最终是由毛细管长度和冷媒灌注量决定,因此可以认为:

Y2=f2(AifoD,Len,Ref)式中:Air0D一空调室外侧风量。

Y,毛细管:毛细管的截流效应仅与毛细

管内径和长度有关,且由于内径与长度存在转换关系,故把截流效应表示为毛细管长度的函数:

Y3=f3(Len)

Y4蒸发器:同冷凝器,

Y4=f4(AirⅢ,Len,Ref)

式中:A迅。一空调室内侧风量。

Y,电机:对确定的空调壳体,采用同一型

号电机、风叶,电机的功率和内外侧风量均为

定植。此处定义为:Y。=Const

因此只有Len和Refff;j独立变量,空调能力函数可表示为:

Cap=f.p(Len,Ret)EER=fF.eg(Len,Ref)

2拟合模型

采用Minitab的反应曲面设计分析拟合完全二次项方程,共两个因子(Len,Ref),因子水平数均为3个(.1,o,1)。

将全部备选项列入模型,这里包含Len,

万方数据

Ref,及它们的平方项,LenXLen,Ref×Ref

以及它们的交互项kn×Ref。模型可表达为

Cap=aXLen2+b

XRela+c×LenXRef

+dX

Len+e×Ref+f

EER=i×Len2+j

XRef2+kXLenXRef

+1×Len+mxRef+n

按经验范围选取毛细管长度Len低水平及

高水平取值500mm及1200mm,灌注量Ref的低水平及高水平取值40吧及70眙。

在【响应曲面】下选取中心复合设计,取Alpha=1.4142,并随机化运行顺序,得出13个候选设计点。

由于每个回归方程含6个系数,故最少需

要7个试验点才能拟合一个完整的响应曲面模

型。在【响应曲面】下选择最优设计,根据D最优性选择响应曲面设计,最优设计点数取7,得到优化后的设计点并根据设计点进行整

机系统性能测试,结果如表1。

拟合选定模型,计算所得结果如图2、图3。观察ANOVA表中的总效果,对应回归线的P—value<0.05,表明应拒绝原假设,即可以判定模型总的说来是有效的。

观察拟合的总效果多元全相关系数R—Sq及修正的多元相关系数R—Sq(adj),两者已经相当接近。

观察各项效应及检验结果,都是显著的。利用自动输出的残差图可以很容易进行残差诊断,没有发现任何不正常情况,最终可以确认上述模型为我们最终选定的模型。

最终的回归方程:

Cap=1020.39+71.589XLen+74.9593

XRef-

3.79335XIen25.95388XReF

Technology

技术

StdOrder

RunOrder

PtTypeBlocks

67

—1

……

3…

j2…

………r

……

LenRefCap

EER1345550

531

334

5007∞

15193.2885033815393475004001490330850550158734612007001564324355

550

1456

322

78-1116119

10144'15

11

—1

Len

Ref实测值拟台值偏差

㈨s

a,s

……}……

]凳0………j纛}……

苦。8。4%96…

Ref-I.98791+0.19776XLen+o.25727XRef-0.00731×Len2-O.01884XRef2.

O.01125xLenXRef

3验证模型

3.1数理求解

根据等高线及曲面图(图4及图5),在原试验范围内确实有个最大值。利用‘响应变量优化器’直接获得最佳点的设置及最佳值,计算结果如图6,显示当Len=1015mm,

Ref=4189时,获得最优解,EER=3.51及

Cap=1565.6W。

3.2试验验证

取Len=1015mm,Ref=4189进行性能测试,结果表2。

通过对比实测值和拟合值,我们认为拟合得出的曲面方程能有效反映制冷系统的特征。在现有压缩机、两器及风道系统配置下的系统最优性能是EER=3.51及Cap=1565,6W。

4结果分析

由于Cap及EER无法同时达到最大值,这迫使我们必须进行取舍或重新选定压缩机、

风机、两器进行重新设计。鉴于世界各国对

节能环保提出了越来越高的要求,故优先保ia正EER的最大化,设定空调的标称值为Cap=5300Btu/h,EER=12.0。如针对个别客户对能

力有较高要求,必须进行重新设计。

5结论-

把DOE试验设计应用在制冷系统匹配,可以用较小的试验规模(试验次数)得出理想的试

验结果以及科学的结论,大大缩短试验周期和

降低试验成本。在多变量同时作用的情况下,效果尤为显著。通过评估变量对目标性能的影响,确定最有影响的设计变量,剔除对目标不

起作用的设计变量,同时找出变量之间的重要

交互作用,为下一步的制冷系统设计提供指

导。譬

参考文献

[1]马林,何桢.六西格玛管理,中国人民大学出版社,2007:296—402.

[2]洪楠,侯军.M|NITAB统计分析教程。电子工

业出版社。2007:226—266.

[3]吴业正。韩宝琦.制冷原理及没备,西安交通

大学出版社,1997:26—44.

万方数据

制冷系统匹配中的数据拟合

作者:吴杰强, 杨文聪

作者单位:珠海格力电器股份有限公司

刊名:

家电科技

英文刊名:Household Appliance Technology

年,卷(期):2011(7)

本文链接:https://www.doczj.com/doc/891769581.html,/Periodical_jydqkj201107034.aspx

空调用冷水机组部分负荷性能与空调系统的匹配分析

空调用冷水机组部分负荷性能与空调系统的匹配分析 龚毅 摘要:本文分析研究了反映空调用冷水机组在部分负荷运行时的综合性能相关参数,讨论了不同部分负荷性能冷水机组的能耗评价方法和节能潜力,划分了冷水机组在不同负荷段的部分负荷性能与全负荷性能的关系,指出美国空调与制冷学会标准(ARI-550/590-98)中提出的综合部分负荷性能系数IPLV的技术意义及其变化,提示了制冷系统的设计与运行能耗与空调动态负荷的相关性,给出了空调用冷水机组部分负荷性能与空调系统匹配的基本思路。 关键词:冷水机组部分负荷性能空调系统匹配 在空调工程中,制冷系统的设计、安装和运行对整个空调系统的能耗影响很大。随着我国经济的快速发展,空调的使用日趋广泛,空调面积数量大幅度上升,各类风冷式、水冷式甚至蒸发式的冷水机组已经成为空调用冷源的主力军,冷水机组的能耗也越来越大,采用合理、科学和经济的设计、选型和运行方案,就成为降低冷水机组消耗的关键问题。 空调用冷水机组的全年运行能耗与冷水机组的性能有关,而冷水机组的性能主要包括全负荷性能和部分负荷性能,两者在选择和匹配冷水机组时均起着重要的作用。由于空调系统的冷负荷总是随室外气象参数扰动和室内状态的改变而变化的,在供冷期间空调系统在部分负荷下运行的时间较多,所以冷水机组的实际运行过程中大部分时间都是处于部分负荷运行状态,因此冷水机组部分负荷时的性能对其运行能耗的影响是很大的。研究冷水机组、空调系统的部分负荷特性及其相互之间的匹配关系,对于挖掘空调制冷总能系统的节能潜力无疑是十分重要的。 1冷水机组部分负荷综合性能参数 在规定的名义工况条件下,冷水机组的制冷量与能耗之比称为冷水机组的能效比EER(Energy Efficiency Ratio),它是标志冷水机组能耗的重要指标。在上个世纪的八十年代,节能研究的重点一直集中在如何提高冷水机组的EER。但是,EER所表示的仅仅是名义工况条件下的能耗。随着系统负荷的减少,它会大幅度的下降。例如某机组,在100%负荷(满负荷)时,它的EER是3.0左右的话,当系统调节为40%附近的负荷率时,EER已经降为1.4了。事实上,系统负荷与冷水机组的制冷量完全匹配的情况几乎是没有的。为此,必须考虑冷水机组在各种负荷下综合能耗。季节能效比 SEER(Seasonal Energy Efficiency Rate)和由美国空调与制冷学会标准(ARI—550/590–98)中提出的综合部分负荷性能系数IPLV(Integrate Partial Load Value)来评价不同类型冷水机组在整个空调季节中的综合性能,可以更准确的反映冷水机组的能耗。这里重点分析综合部分负荷性能系数IPLV。 冷水机组的部分负荷性能一般是以名义工况输入功率百分数和名义工况制冷量的百分数来表示。一般来说,冷水机组的部分负荷性能大致可以有在整个负荷段冷水机组的全负荷性能好于、差于部分负荷性能和部分负荷段好于、部分负荷段差于部分负荷性能这三种情况。由于冷水机组的实际运行情况(串、并联台数;负荷调节方法;地理位置和建筑特点;室内外参数条件和机组运行方案)是有较大差异的,难以准确作出冷水机组的负荷特性曲线,需要寻求一个能描述不同类型冷水机组共同的部分负荷性能评价指标。综合部分负荷性能系数的概念是最早于1986年首先提出来的,后来经过多次修改完善,形成了美国空调与制冷学会ARI550-92《离心式和回转式螺杆式冷水机组》以及ARI590-92《容积式冷水机组》两个标准中规定的综合部分负荷性能系数IPLV(Integrate Partial Load Value),在部分负荷下求得制冷性能系数,再按加权系数公式计算出冷水机组部分负荷性能值,主要反映冷水机组的部分负荷调节功能。这一方程是对于提供冷水机组平均负荷性能的一种进展,使得这一指标能够准确地描述在一个标准年周期内冷水机组运转的实际过程,这样就可以通过扩展的计算机数据分析

螺杆机制冷基础知识

第一章基础知识 目的:通过本章的学习: 1,了解温度、压力、湿度、温差等概念; 2,学习查阅制冷剂(工质)热力性质表; 3,运用这些知识,判断制冷压缩机、制冷系统运行是否正常。 第一节几个概念 1,温度:温度是表示物质冷热程度的量度。 常用的温度单位(温标)有三种:摄氏温度、华氏温度、绝对温度。 1)摄氏温度(t ,℃):我们经常用的温度。用摄氏温度计测得的温度。 2)华氏温度(F ,℉):欧美国家常用的温度。 温度换算: F (℉) = 9/5 * t(℃) +32 (已知摄氏温度求华氏温度) t (℃)= [F(℉)-32] * 5/9(已知华氏温度求摄氏温度) 例: F (℉) t (℃) 212 100 32 0 5 -15

0 -17.8 3)绝对温标(T,oK):一般在理论计算中使用。 绝对温标与摄氏温度换算: T(oK)= t (℃) +273 (已知摄氏温度求绝对温度) 例:t (℃) T(oK) -30 243 -10 263 0 273 30 303 2,压力(P):在制冷中,压力是单位面积上所受的垂直作用力,即压强。 通常用压力表、压力计测得。 压力的常用单位有:Mpa(兆帕),Kpa(千帕),bar (巴),kgf/cm2(平方厘米公斤力),B0 (标准大气压),(一般看作是:1bar、0.1MPa)、mmHg(毫米汞柱)。 换算关系:1 Mpa = 10 bar = 1000 Kpa = 7500.6 mmHg = 10.197 kgf/cm2 1 B0= 760 mmHg = 1.01326 bar = 0.101326 Mpa 工程上一般用:1bar = 0.1Mpa ≈1 kgf/cm2 ≈ 1 B0 = 760 mmHg

空调系统匹配

空调系统匹配 一、制冷基本原理 1、定义 制冷:从低于环境的物体中吸取热量,并将其转移给环境介质的过程。 制冷机:完成制冷循环所必需的机器和设备的总称。 制冷装置:将制冷机同使用冷量的设施结合在一起的装置。如冰箱,空调机等。 制冷剂:除半导体制冷以外,制冷机都是依靠内部循环流动的工作介质来实现制冷过程,完成这种功能的工作介质,称为制冷剂,也称制冷工质,俗称雪种。 2、制冷的基本原理 由于热量只能自动地从高温物体传给低温物体,因此实现制冷必须包括消耗能量的补偿过程。制冷机的基本原理:利用某种工质的状态变化,从较低温度的热源吸取一定的热量Q0,通过一个消耗功W的补偿过程,向较高温度的热源放出热量Qk,。在这一过程中,由能量守恒得 Qk= Q0 + W。 3、制冷的基本方法 相变制冷:利用液体在低温下的蒸发过程或固体在低温下的熔化或升华过程向被冷却物体吸取热量。普通空调器都是这种制冷方法。 气体膨胀制冷:高压气体经绝热膨胀后可达到较低的温度,令低压气体复热即可制冷。 气体涡流制冷:高压气体经过涡流管膨胀后即可分离为热、冷两股气流,利用冷气流的复热过程即可制冷。 热电制冷:令直流电通过半导体热电堆,即可在一端产生冷效应,在另一端产生热效应。4、单级压缩蒸气制冷循环 蒸气压缩式制冷机是目前应用最广泛的一种制冷机,有单级、多级和复叠式之分。 单级压缩蒸气制冷机是指将制冷剂经过一级压缩从蒸发压力压缩到冷凝压力的制冷机。单级制冷机一般可用来制取-40℃以上的低温。 普通的空调器都是利用单级压缩蒸气制冷机的原理制造的。 单级压缩蒸气制冷机的由以下几个基本组成部份: 压缩机 冷凝器 节流机构(毛细管) 蒸发器 制冷剂

制冷基础知识

第一章制冷基础知识 一、制冷原理 1.基本概念 a.制冷:从某一物体或区域内移走热量,其反向过程即为制热。 b.能效比:单位时间内移走的热量与所耗的功之比。 一般来说,常规制冷机的能效比约为2.2-4.0,这就是说,耗费1W的输入功率,制冷机可以移走2.2-4.0W单位热量(即制冷量为2.2-4.0W),它并没有“制造”或“消灭”能量。这也是机械压缩式制冷(制热)比其它方式如热电式、吸收式制冷能量利用率高的原因。 2.基本制冷循环及其在压焓图上的表示 蒸气压缩式制冷的工作原理是使制冷剂在压缩机、冷凝器、膨胀阀和蒸发器等热力设备中进行压缩、放热、节流和吸热四个主要热力过程以完成制冷循环,如下图所示。 冷凝器:放 热 压缩机:压 在制冷工程计算中,常用压焓图来表示各个过程的状态变化,并可从其上直接查出制冷剂的各种状态参数,大大简化计算。纵坐标是绝对压力P的对数值,横坐标是焓值,所谓焓值即是制冷剂的内能与推动功之和,是系统中的总能量。焓的变化意味着制冷剂从外界吸收或向外界放出热量。图中焓差△h=h2-h1,即为制冷量。 二、制冷系统中主要部件简介 1.压缩机:将制冷剂由低温低压的气体压缩成为高温高压的气体,是制冷系统的心脏。压缩

机的形式如下所示: 按开启方式分类 按压缩形式分类 ●全封闭式压缩机 ●往复式(活塞式)压缩机 (天加风冷式冷热水机组、风冷管道式分体空调机组采用) ●滚动转子式压缩机 ●半封闭式压缩机 ●涡旋式压缩机 ●开启式压缩机 ●螺杆式压缩机 ●离心式压缩机 2. 冷凝器:将高温高压的制冷剂气体冷凝成为液体,冷凝器的热交换形式如下: (1)风冷式冷凝器:其结构为翅片管利用风机冷却 (2)水冷式冷凝器结构有板式、套管式、壳管式三种形式 ●板式冷凝器 ●套管式冷凝器 ●壳管式冷凝器 3.膨胀阀:使高温高压的制冷剂液体降压膨胀成为低温低压的液体。膨胀阀有内平衡和外平衡两种,内平衡式适于较小阻力的蒸发器, 外平衡型可抵消蒸发器中的过大压力降。小型机组也可采用毛细管节流。 4.蒸发器:使低温低压的液体制冷剂吸热蒸发成为气体,蒸发器的热交换形式如下: ●翅片盘管式蒸发器 ●板式蒸发器 制冷剂进气 制冷剂出液 制冷剂出液 制冷剂进气 冷却水 出水冷却水 进水 制冷剂出制冷剂进冷却水出冷却水冷却水出 冷却水制冷剂进制冷剂出

空调制冷系统匹配计算书

目录 1 空调制冷系统匹配计算的目的 (3) 2 制冷循环热力计算 (3) 2.1 设计工况的确定 (3) 2.2 各状态点参数的确定 (3) 2.3 制冷剂质量流量和体积流量 (4) 3 压缩机选型校核 (4) 3.1 所需压缩机排量 (4) 3.2 所选压缩机与汽车的动力匹配计算 (4) 3.2.1 汽车行驶速度及传动比 (4) 3.2.2 与汽车的动力匹配计算 (4) 3.3 设计工况下的压缩机性能 (6) 3.4 怠速工况下的制冷量校核 (6) 3.5 压缩机允许最高转速校核 (6) 4 冷凝器能力计算 (6) 5 蒸发器能力计算 (6) 6 送风量的确定 (6)

CP08空调制冷系统匹配计算书 1 空调制冷系统匹配计算的目的 制冷系统匹配计算的目的有三个: a)所选压缩机的能力是否合理; b)压缩机与汽车的动力匹配是否合理; c)确定所需配置多大的冷凝器和蒸发器。 2 制冷循环热力计算 2.1 设计工况的确定 空调系统的工作压焓图如图1所示: 图1 空调系统工作压焓图 冷凝压力P k=1.5MPa(表压);对应的冷凝温度t k=55.2℃; 蒸发压力P0=0.3MPa(表压);对应的蒸发温度t0=0.67℃; 蒸发器过热度S h=10℃;冷凝器过冷度S c=5℃;2.2 各状态点参数的确定 点1(蒸发器出口): 压力P1=0.3MPa;温度t1=10℃; 焓值h1=407kJ/kg;比容v1=0.073m3/kg 点2(压缩机出口): 压力P2=1.5MPa;温度t1≈75℃; 点3(膨胀阀前): 压力P3=1.5MPa;温度t3=55.2-5=50.2℃; 焓值h3=200kJ/kg; 点4(蒸发器进口): 压力P1=0.3MPa;温度t4=0.67℃; 焓值h4=h3=200kJ/kg;

电动汽车空调系统参数匹配与计算研究.

2009年第6期 电动汽车空调系统参数匹配与计算研究* 闵海涛1 王晓丹1,2 曾小华1 李 颂3 (1. 吉林大学;2. 中国第一汽车集团公司技术中心;3. 空军航空大学) 【摘要】对电动汽车空调系统结构与布置方案进行了分析, 总结出了空调系统制冷负荷与参数匹配计算流 程。以某型号纯电动中型客车为例, 给出了完整的空调系统计算参数。对不同行驶工况下电动客车性能进行的仿真 分析结果表明,采用所匹配的空调系统,该客车在提供足够制冷负荷前提下能够满足动力性能设计要求,但空调系 统的使用将显著降低整车续驶里程。 主题词:电动汽车空调系统参数设计 中图分类号:U469.72+2文献标识码:A 文章编号:1000-3703(2009)06-0019-04 Parameter Design and Computation Study for Air Conditioning System of Electric Vehicle

Min Haitao 1,Wang Xiaodan 1,2,Zeng Xiaohua 1,Li Song 3 (1.Jilin University ;2.China FAW Group Corporation R&DCenter ;3.Aviation University of Air Force ) 【Abstract 】The structure and layout of air -conditioning system (A/C)for electric vehicles were analyzed,the computation flow of cooling load and parameter design for air-conditioning system were summarized in this paper.Taking a medium-duty electric bus as an example,the whole computation parameters of the air-conditioning system were given.The simulation results of the electric bus performance at variable driving conditions indicate that the vehicle ’s dynamic performance could meet the design requirements with A/Cworking,but the vehicle ’s cruising range will reduce definitely with the use of A/Csystem. Key words :Electric vehicle,Air-conditioning system,Parameter design 1前言 对电动汽车空调系统研究结果[1~5]表明,电动空 调通过实现变频控制可有效减少能量消耗,提高系统效率,如在城市循环工况下使用电动空调后整车续驶里程降低了21.3%。本文以某型号纯电动中型客车为例,对电动空调系统进行计算分析,在保证空调系统制冷能力的前提下计算得出所需压缩机轴功率,并应用ADVISOR 和MATLAB 联合仿真方法分析了不同行驶工况下空调系统对整车动力性能和续驶里程的影响。 2空调系统方案设计 纯电动客车的空调系统构成和布置方案如图1

(完整版)汽车空调系统匹配计算

摘要 汽车空调的普及,是提高汽车竞争能力的重要手段之一。随着汽车工业的发展和人们物质生活水平的提高,人们对舒适性,可靠性,安全性的要求愈来愈高。国内近年来,汽车生产厂家越来越多,产量越来越大,大量中高档车需要安装空调。因此,对汽车空调的研究开发特别重要。 本论文针对吉利LG—1空调系统匹配设计,对普通轿车空调系统的设计开发原理和特点进行了比较系统的阐述. 第一章概论 1.1 汽车空调的作用及其发展 汽车工业是我国的支柱产业之一,其发展必然会带动汽车空调产业的发展。汽车空调作为空调技术在汽车上的应用,它能创造车室内热微环境的舒适性,保持车室内空气温度、湿度、流速、洁净度、噪声和余压等在热舒适的标准范围内,不仅有利于保护司乘人员的身心健康,提高其工作效率和生活质量,而且还对增加汽车行始安全性具有积极作用。 就世界上汽车空调技术发展的历史来看,其发展的速度也是惊人的。1927年就诞生了较为简单的汽车空调装置,它只承担冬季向乘员供暖和为挡风玻璃除霜的任务。直到1940年,由美国Packard公司生产出第一台装有制冷机的轿车。1954年才真正将第一台冷暖一体化整体式设备安装在美国Nash牌小汽车上。1964年,在Cadillac轿车中出现了第一台自动控温的汽车空调。1979年,美国和日本共同推出了用微机控制的空调系统,实现了数字显示和最佳控制,标志着汽车空调已进入生产第四代产品的阶段。汽车空调技术发展至今,其功能已日趋完善,能对车室进行制冷,采暖,通风换气,除霜(雾),空气净化等。我国空调产业发长速度虽然较快,但是目前国内车用空调系统生产基本上仍是处于引进技术与开发、研究并举的阶段。 1.2 汽车空调的特点 汽车空调使用的特殊性,决定了它在结构、材料、安装、布置、设计、技术要求等方面与普通空调,如建筑物空调,有着较大的差别: 1)在动力源处理上,车用空调压缩机只能采用开启式的结构型式,这就带来空调系统轴封要求高,制冷剂容易泄漏的问题。 2)作为空调的对象,汽车车室容积狭小,人员密集,其热、湿负荷大,气流分布难以均匀,要求所选配的车用空调机组制冷量要大,能降温迅速。 3)当车用空调装置消耗汽车主发动机的动力时,必须考虑其对汽车动力也操纵性能的影响,也必须考虑车速变化幅度大或变化频繁,给空调系统制冷剂流量控制、制冷量控制、系统设计带来的影响。 4)汽车本身结构非常紧凑,可供安装空调设备觉得空间极为有限,不仅对车用空调装置的外形、体积和质量要求较高,而且对其性能和选型也会带来影响。 5)汽车是运动中的物体,对汽车空调系统各组成部件的振动、噪声、安全、可靠等方面的技术要求严格。6)车用空调装置的结构、外形和布置,必须考虑其对汽车底盘、车身结构件及汽车行驶稳定性、安全性的影响。 第二章课题的目的及现实意义 2.1 课题主要目的 本空调系统的国产化开发是按照浙江吉利轿车的要求进行系统仿制,本着通用性和互换性的原则而进行的。本系统参照于日本威驰轿车空调系统,适用于小型轿车空调系统的研发。 压缩机总成的装配位置与原装系统相同,重新设计压缩机支架及涨紧机构,仍采用V型皮带轮。 风机、干燥器、电磁阀及各部件,位置和型号与威驰轿车原装系统选配相同。 管路走向及固定方式与原装基本相同,对接口尺寸按我公司标准做相应的修改。

制冷剂 基础知识

碳氢制冷剂基础知识 (一)制冷剂概述制冷剂概述制冷剂概述制冷剂概述 1、什么是制冷剂? 答:制冷剂又称制冷工质,它是在制冷系统中不断循环并通过其本身的状态变化以实现制冷的工作物质。空调制冷中主要是采用卤代烃制冷剂,其中不含氢原子的称为氯氟烃(CFC),含氢原子的称为氢氯氟烃(HCFC),不含氯原子的称为氢氟烃(HFC)。 制冷剂在蒸发器内吸收被冷却介质(水或空气等)的热量而汽化,在冷凝器中将热量传递给周围空气或水而冷凝。它的性质直接关系到制冷装置的制冷效果、经济性、安全性及运行管理,因而对制冷剂性质要求的了解是不容忽视的。 2、对制冷剂性质有哪些要求? (1)环保性 要求工质的臭氧消耗潜能值(ODP)与全球变暖潜能值(GWP)尽可能小,以减小对大气臭氧层的破坏及引起全球气候变暖。 (2)具有优良的热力学特性 具有优良的热力学特性以便能在给定的温度区域内运行时有较高的循环效率。具体要求为:临界温度高于冷凝温度、与冷凝温度对应的饱和压力不要太高、标准沸点较低、流体比热容小、绝热指数低、单位容积制热量较大等。 (3)具有优良的热物理性能 具体要求为:较高的传热系数、较低的粘度及较小的密度。 (4)具有良好的化学稳定性 要求工质在高温下具有良好的化学稳定性,保证在最高工作温度下工质不发生分解。 (5)与润滑油有良好互溶性。 (6)安全性。工质应无毒、无刺激性、无燃烧性及爆炸性。 (7)有良好的电气绝缘性。 (8)经济性。要求工质低廉,易于获得。

3、制冷剂是怎样分类的? 在压缩式制冷剂中广泛使用的是氨、氟里昂和烃类。 一、按照化学成分,制冷剂可分为五类:无机化合物制冷剂、氟里昂、饱 和碳氢化合物制冷剂、不饱和碳氢化合物制冷剂和共沸混合物制冷剂。 (1)无机化合物制冷剂:这类制冷剂使用得比较早,如氨(NH3)、水(H2O)、空气、二氧化碳(CO2)和二氧化硫(SO2)等。对于无机化合物制冷剂,国际上规定的代号为R及后面的三位数字,其中第一位为“7”后两位数字为分子量。如水R718...等。 (2)氟里昂(卤碳化合物制冷剂):氟里昂是饱和碳氢化合物中全部或部分氢元素(CL)、氟(F)和溴(Br)代替后衍生物的总称。国际规定用“R”作为这类制冷剂的代号,如R22...等。又有人称之为氟利昂的。 (3)饱和碳氢化合物制冷剂:这类制冷剂中主要有甲烷、乙烷、丙烷、丁烷和环状有机化合物等。代号与氟里昂一样采用“R”,这类制冷剂易燃易爆。如R50、R170、R290...等。 (4)不饱和碳氢化合物制冷剂:这类制冷剂中主要是乙烯(C2H4) 、丙烯(C3H6)和它们的卤族元素衍生物,它们的R后的数字多为“1”,如R113、R1150...等。 (5)共沸混合物制冷剂:这类制冷剂是由两种以上不同制冷剂以一定比例 混合而成的共沸混合物,这类制冷剂在一定压力下能保持一定的蒸发温度,其气相或液相始终保持组成比例不变,但它们的热力性质却不同于混合前的物质,利用共沸混合物可以改善制冷剂的特性。如R500、R502...等。 二、根据冷凝压力,制冷剂可分为三类:高温(低压)制冷剂、中温(中 压)制冷剂和低温(高压)制冷剂。高温、中温及低温制冷剂:根据制冷剂常温下在冷凝器中冷凝时饱和压力Pk和正常蒸发温度T0的高低,一般分为三大类:(1)低压高温制冷剂。适用于空调系统的离心式制冷压缩机中。 (2)中压中温制冷剂。如R717、R12、R22等,这类制冷剂一般用于普通单级压缩和双级压缩的活塞式制冷压缩机中。 (3)高压低温制冷剂。如R13(CF3Cl)、R14(CF4)、二氧化碳、乙烷、乙烯等,这类制冷剂适用于复迭式制冷装置的低温部分或-70℃以下的低温装置中。

汽车空调系统匹配计算11

吉利LG—1空调系统设计计算 3.1 汽车空调的工作原理 图3.1 汽车空调系统工作原理 1—压缩机 2—排气管 3—冷凝器 4—风扇 5、7——高压液管 6—干燥储液器8—膨胀阀 9—低压液管 10—蒸发 器 11—鼓风机 12—感温包 13—吸气管 3.2对微弛空调系统进行数据采集 本系统为仿制系统,外形尺寸于原装系统基本相当。 散热板及翅片示意图,由于为仿制所以测量尺寸不够精准,所以其各部分数据均需要验算。 1、蒸发器设计 散热板: 宽Wt=58mm,高Ht=2.5mm,铝板厚δt=0.5mm。可得: 内部流道尺 寸 hH=Ht—2δt=1mm Wh=Wt—2δt=57mm 翅片:宽度Wf=58mm,高度Hf=8mm,厚δt=0.1mm。翅片角度αl=36o,间距Lf=2mm。 2、冷凝器设计 冷凝器选用平行流式,散热层多孔扁管和翅片结构尺寸: 翅片宽度16mm,高度8mm,厚度0.135mm,翅片间距1.5mm,百叶窗角度27℃,扁管外壁面高度2mm,宽度16mm,分4个流层,扁管数目依次是14-9-7-5。取迎面风速4.5m/s。

3.其他部分由于本身没采用进口件,而且对于本公司来说主要是选配。所以没有仿制微弛。 空调系统设计计算 3.3 空调系统热负荷计算 1.空调系统冷负荷计算 本系统设计主要是估算冷负荷,以便压缩机的选配和两器的设计,本设计中主要是针对压缩机的选配,我们采用较容易确定的太阳辐射热QS和玻璃渗入热QG,他们的总合占系统的70%。即可得总负荷,为了安全再取k=1.05的修正系数。轿车一般的工况条件: 冷凝温度tc=63°,蒸发温度te=0°, 膨胀阀前制冷剂过冷温度△tsc =5°, 蒸发器出口制冷剂气体过热度△tsh=5,压缩机吸气温度ts=10°, 室外温度ti=35°, 室内温度t0=27°,轿车正常行驶速度ve=40km/h ,压缩机正常转速n=1800r/min. 太阳辐射热的确定 故而,机组制冷量取Q0=4000W。即可 压缩机的选配 大部分汽车空调压缩机由发动机驱动,压缩机的转速与发动机呈一定的比例,在很大的范围内同步变化,再加上其固定是通过支架与发动机刚性的连接,工作条件非常的差,因此对汽车空调压缩机有比家用空调压缩机更高的要求。

制冷基础知识

制冷基础知识 一、制冷术语: 什么叫工质? 凡是用来实现热能与机械能的转换或用来传递热能的工作物质统称为工质。在制冷装置中,不断循环流动以实现能量转换的工作物质称为工质。也是制冷系统中完成制冷循环的工作介质。例如:氟利昂、氨、水等。 什么叫制冷剂? 制冷剂即制冷工质,是制冷系统中完成制冷循环的工作介质。制冷剂在蒸发器内吸取被冷却对象的热量而蒸发,在冷凝器内将热量传递给周围空气或水而被冷凝成液体。制冷机借助于制冷剂的状态变化,达到制冷的目的。 什么叫载冷剂? 载冷剂也称冷媒是指在间接制冷系统中用以传送冷量的中间介质。载冷剂在蒸发器中被制冷剂冷却后,送到冷却设备中,吸收被冷却物体或环境的热量,再返回蒸发器被制冷剂重新冷却,如此不断的循环,以达到连续制冷的目的。载冷剂传递冷量是依靠显热作用,而不象别的制冷剂那样依靠蒸发潜热来实现制冷。例如:空气、水、盐水、有机化合物及其水溶液等。 二、制冷系统中的工作参数的概念 1、温度:温度是表示物质冷热程度的量度。 常用的温度单位(温标)有三种:摄氏温度、华氏温度、绝对温度。

1)摄氏温度(t ,℃):我们经常用的温度。用摄氏温度计测得的温度。 2)华氏温度(F ,℉):欧美国家常用的温度。 3)绝对温标(T,oK):一般在理论计算中使用。 三种温度单位之间换算: A、华氏温度F (℉) = 9/5×摄氏温度t(℃) +32 (已知摄氏温度求华氏温度) B、摄氏温度t (℃)= [华氏温度F(℉)-32]×5/9 (已知华氏温度求摄氏温度) 例: F (℉) t (℃) 212 100 32 0 5 -15 0 -17.8 C、绝对温标T(oK)= 摄氏温度t (℃) +273 (已知摄氏温度求绝对温度) 例: t (℃) T(oK) -30 243 -10 263 0 273

制冷基本知识知识点归纳

制冷原理及设备期末复习 有不全的大家相互补充 题型:填空20分;选择10分;判断10分;简答45分(5道);计算1道,带计算器。 绪论 ?实现人工制冷的方法(4大类,简单了解原理) 1.利用物质的相变来吸热制冷; 融化(固体—液体),气化(液体—气体),升华(固体—气体) 气化制冷(蒸气制冷): 包括蒸气压缩式制冷、吸收式制冷、蒸汽喷射式制冷、吸附式制冷。 2.利用气体膨胀产生低温 气体等熵膨胀时温度总是降低的,产生冷效应。 3.气体涡流制冷 高压气体经涡流管膨胀后,可分为冷热两股气流; 4.热电制冷(半导体制冷) 利用半导体的温差电效应实现的制冷。 ?根据制冷温度的不同,制冷技术可大体上划分三大类: ?普通冷冻:>120K【我们只考普冷】 ?深度冷冻:120K~20K ?低温和超低温:<20K。 t=T-273.15 (t, ℃; T, Kelvin 开)T=273+t 常用制冷的方法有:液体蒸发制冷循环必须具备以下四个基本过程:液体气化制冷制冷剂液体在低压下汽化产生低压蒸气, 气体膨胀制冷将低压蒸气抽出并提高压力变成高压气, 涡流管制冷将高压气冷凝成高压液体, 热电制冷高压液体再降低压力回到初始的低压状态。 按照实现循环所采用的方式之不同,液体蒸发制冷有 蒸气压缩式制冷蒸气吸收式制冷蒸气喷射式制冷吸附式制冷等 蒸气压缩式制冷 系统组成: 1-压缩机2-冷凝器3-膨胀阀4-蒸发器组成的密闭系统。 工作原理:制冷剂在蒸发器中吸收被冷却对象的热量而蒸发,产生的低压蒸气被压缩机吸入,经压缩机压缩后制冷剂压力升高,压缩机排出的高压蒸气在冷凝器中被常温冷却介质冷却,凝结成高压液体。高压液体经膨胀阀节流,变成低压、低温湿蒸气,进入蒸发器,低压液体在蒸发器中再次汽化蒸发。如此周而复始。

制冷系统主要部件的工作原理及特点_

制冷系统主要部件的工作原理及特点 (1)制冷压缩机 制冷压缩机是用以压缩和输送制冷剂的设备。在消耗外界补偿功的条件下,它以机械方法吸入来自蒸发器的低温低压制冷剂蒸汽,将该蒸汽压缩成高温高压的过热蒸汽,并排放到冷凝器中去,使制冷剂能在制冷系统中实现制冷循环。 ①开启式压缩机。 这种压缩机与电动机没有共同外壳。根据曲轴箱形式,又可分为开式曲轴箱压缩机和闭式曲轴箱压缩机。前者因曲轴箱与大气相通,气缸里漏出的制冷剂直接进人大气,泄漏量大,目前已很少应用。后者曲轴箱的曲轴用轴封加以密闭,使曲轴箱封闭,以减少制冷剂的泄漏量。 ②半封闭式压缩机。 这种压缩机与电动机直接连接;一起装在以螺栓连接的密封壳体内,并共用同一主轴,机壳为可拆卸式,便于维修。根据电动机的冷却形式可分为进气冷却式、进气与空气混合冷却式等形式。目前半封闭式压缩机多为高速多缸式。 ③全封闭式压缩机: 这种压缩机和电动机直接连接,并一起装在一个焊接的密封壳体内。这种压缩机结构紧凑、密封性极好。使用方便、振动小、噪音低,适用于小型制冷设备。全封式压缩机有活塞式、旋转式、涡旋式三种。 A、旋转式压缩机 是一种特殊的小型回转式压缩机,如图1-l-2所示。其转子偏心地装在定子内,排气时间长(比往复活塞式长30%左右),流过气阀的流动阻力损失小,缸径行程比大,排气容积和吸气管管径大,吸气过热小,电动机工作温度低,效率高,成本低以及寿命长。 B、活塞式压缩机 外形如图1-l-3所示 C、涡旋式压缩机 是通过涡旋定子和涡旋转子组成涡卷以及构成这个涡卷的端板所形成的空间来压缩气体的回转式压缩机。工作时,随着曲轴的回转,涡旋转子以其中心始终绕涡旋定子中心作一偏心量为半径的圆周运动。它与往复活塞式压缩机相比,其主要特点是:压缩气体几乎不泄漏、不需吸排气阀、绝热效率可提高10%、震动小、扭矩变化小、噪音可降低5dB(A)、体积减小40%、重量减轻15%。它适用于热泵式、吊顶型等空调机上。 系列柔性涡旋压缩机: 超高能效比

制冷系统设计经验

近期论坛高质量文章不多,人气下降明显,版主积极性明显下降。本人正在进行硕士毕设论文阶段, 目前随着写作的进展,特分享一些里面的经验内容供各位看官评论,希望能尽一份力,为我们的论坛。由于之后本人不再从事本行业,7年来本人经验由论坛来,如今经过思索提炼正在草拟论文,想尽量 把相关精彩之处都借助论文这个方式写出来,写到精彩之处不由得想与论坛各位坛友分享。 (1)知识和经验二者之间的关系。本人毕业后从事制冷设计工作7年,校内时书本上学的各个关键理论好比一个个知识点,而实践经验相当于线。随着毕业后时间的推移,往往各个知 识点会逐渐遗忘,相信记忆再好的人,如果毕业2年内不搞相关工作,最后也仅剩下印象, 甚至忘的精光,因为没有实践经验支撑的理论早晚是会被遗忘的。而随着相关工作的进行, 在实践中,你会发现在研发设计,试验甚至失败中印证了课本上所学的一个个内容,于是 重新捡起来,回归课本、经过思考,才能真正被消化。久而久之,各个关键参数和公式算 法通过实践这条线连成串,经过自己大脑的联想、列举、归纳又横向交织成网,相互验证, 也就形成自己的一套理论体系,很难遗忘了。 (2)(2)蒸发、冷凝温度的确定。有很多人在论坛上问过我蒸发温度和冷凝温度是如何限定的,与环温的关系又是怎样的。很多从事了多年维修的师傅由经验反推理论,常常关注蒸 发、冷凝温度,根据表测得的参数去反推进行系统设计,这其实是错误的。制冷系统的蒸 发温度和冷凝温度是根据热源和热汇温度确定的,而不是相反。而热源、热汇的温度并不 是人为规定的,热源是由被冷却物质所需要的温度决定的,热汇是由放热端所处的环境温 度(冷却水温度)决定的。而我们所能做的,就是根据以上条件设计制冷系统,即根据允 许的换热面积和氟、水、空气侧状况匹配经济性温差进而求得蒸发、冷凝温度。由于很多 种热源、热汇温度下又存在关联或相似性区间,所以我们又把各个热源热汇划分出区间进 行归纳,方便不同区间相关配件的选配,如T1、T2、T3等工况。这里举个例子就是由卡 诺定理,理论上制冷系统的制冷系数为: Snap1.jpg(2.37 KB, 下载次数: 112) 可以看出低温热源温度越高,高温热汇和低温热源温差越小,制冷系数越大。某些厂家为 了提高制冷系数,随意改变工况或为了使蒸发、冷凝温度更接近热源、热汇温度,不惜成 本的成倍加大换热面积从而减小换热温差,这也就是目前小压缩机配大换热器的例子比比 皆是的原因。需要说明的是,确定热源、热汇温度后综合考虑经济性温差进而合理的匹配 换热面积才符合我们科学设计的原则。 (3)压缩机汽缸容积与系统制冷量的关系。在给定的制冷系统里,很多参数都是随着工况变化的,很多人问我设计的根源是什么,从哪出发。这就要首先找到一个不变量。对于一台已有的制冷压缩机来说,在制冷系统中,理论输气量Vh为定值,它也是我们确定工况后进行系统设计的出发点。 Snap1.jpg(2.58 KB, 下载次数: 36) 其中n为压缩机电机转速,对于50Hz的两极电动机来说,转数在2830rpm,i指压缩机汽缸数,Vp为 汽缸容积。具个例子,已知某汽缸标称容积为7.4cc的转子压缩机在T1工况下(To=7.2℃、过热11K;

制冷系统设计规范

系统设计规范 1范围 本设计规范规定了空调性能总体设计规范、整机功能设计规范和压缩机选型规范三部分 本设计规范适用于内销和外销的空调器产品,其他产品可参考使用 2相关标准 QJ/MK02.001-2001a 房间空气调节器 3空调性能总体设计规范 3.1性能设计是空调器设计的核心 空调器作为一个在市场销售的产品,其设计主要包括结构设计、性能(制冷系统设计)、平面设计、电控、电器设计,但就其基本功能来讲,空调器的作用就是实现制冷或制热的温度调节,制冷系统的性能是否发挥良好是空调器品质的最重要指标;另一方面,就空调器材料成本的构成来讲,普通空调器中,制冷系统的材料成本占总成本的50%左右,因此性能设计的重要性是不言而喻的,可以说性能设计是空调器设计的核心。 正因如此,性能设计是否规范,对整个空调器设计的成本、质量、开发速度均有很大影响。3.2性能设计要立足本厂实际 设计过程中,要敢于创新,应用新的技术,设计的产品才有竞争力。但同时也要注意工厂毕竟不同于科研单位,设计时要充分考虑工厂目前的生产设备情况、工艺水平、实验条件、计划进度等实际情况。特别是换热器的设计,就要考虑换热器的设备情况。 3.3性能设计要符合相关标准 性能设计执行的标准有:内销机型执行国家标准GB/T 7725-2004《房间空气调节器》,外销机型执行相应出口国家或地区的标准,以及执行美的企业标准中相关机型的内控标准。主要控制指标有:制冷量、制热量、功率消耗、能效比(EER)、性能系数(COP)、噪音;各项型式实验必须通过相应国家标准:最大运行制冷、最小运行制冷、凝露、最大运行制热、最小运行制热、自动除霜、运输跌落等。 试验之外必须追加如下实验:20047725GB——除(1)长配管试验 分体机15m,柜机20m,天花机30m,定制机另算,在此试验下,做7725—2004要求的可靠性试验,主要观察压缩机在各种工况下面的油位、温度、压力等参数,确保压缩机运行在压缩机厂允许范围内。 (2)高落差试验 落差:分体机5m,柜机10m,天花机15m 有试验资源的情况下,在长配管下做落差可靠性试验。长期运行时,需作此试验观察压缩机油位。 极限温度试验)3(. 确保机器柜机天花机—15℃~50℃,部分机型要在格栅中作高温试验,℃,分体机—15℃~50 正常运转。(4)任何一个新产品都要用视液镜压缩机,在厂家的指导下作初步试验和确认试验。任何一个产品都必须有下列数据:能力A 10个关键温度点:温度和蒸发器,冷凝器出口各分流管温度。B 10个关键点指,排气,回气,蒸入、中、出,冷入、口、出,压机底部,壳体中部。同时必须记录排回气压力数据。压缩机油面变化图,在压机视液镜上标上刻度。记录此刻度,尤其在低温除霜时记录油面。C D个小时后启动观察油面变化状况,并记下缺油时间。启动试验,—15℃冻8 室外机的转速和风量。E 实验报告必须装订成册,并注明日期和更改出。 3.4性能设计必须重视实验验证结果制性能设计的理论计算目前还没有哪种方法可以满足实际要求,只能作为

空调器制冷系统匹配方法-c1701a80e53a580216fcfe6a(1)

空调制冷系统匹配基础知识培训提纲 1.制冷循环、热泵循环的工作原理 2.毛细管、注气量变化对制冷系统各点温度的影响 3.风量变化对制冷系统的影响 4.制冷系统中制冷剂的分布 5.制冷系统设计匹配的类比法 从设计机型与母本机型的差异来确定样机的方案,估计设计样机的水平。6.空调器系统设计匹配的一般要求和对策 1.制冷循环、热泵循环的工作原理(红色为高温高压区,兰色为低温低压区)

2.毛细管、注气量变化对制冷系统各点温度的影响 加长毛细管,吸气、排气上升、冷凝器中部上升、蒸发器出口上升;冷凝器出口下降、蒸发器进口下降。减短毛细管,吸气、排气下降、冷凝器中部下降、蒸发器出口下降;冷凝器出口上升、蒸发器进口上升。增加注气量,吸气、排气下降,冷凝器出口下降,蒸发器出口下降;冷凝器中部上升,蒸发器进口上升。减少注气量,吸气、排气上升,冷凝器出口上升,蒸发器出口上升;冷凝器中部下降,蒸发器进口下降。3.风量变化对制冷系统的影响 蒸发器侧风量增加,冷量增大,功率升高,蒸发器出口,吸气、排气温度上升 冷凝器侧风量增加,冷量增大,功率降低,冷凝器出口,吸气、排气温度降低 4.制冷系统中制冷剂的分布 典型的系统,室内换热器约为室外的一半。 制冷状态制冷剂约70%在室外换热器,室内换热器约10%,压缩机、管道15%; 制热状态室内约50%,室外换热器约35%,压缩机、管道约15% 5.制冷系统设计匹配的类比法 从设计机型与母本机型的差异来确定样机的方案,估计设计样机的水平。 与母本机换热器的对比可以用来确定初始注气量,毛细管长度直径,变频压缩机的频率

附:空调器系统设计匹配的一般要求和对策 注:文中压力是针对R22制冷剂而言,对于R410A和R407C需根据制冷剂性质相应调整,温度值对其它制冷剂也适用。 这份程序书是针对一般情况而言,因为中国国内空调公司及机种的不同,对于以下数据仅做参考。 压缩机选定标准空调能力=压缩机规格能力值×90% 空调功率=压缩机规格功率 1.制冷冷凝器=室外热交换器蒸发器=室内热交换器 吸气=压缩机的入口配管 1)性能.....GB标准条件(室内:干球温度27℃,湿球温度19℃; 室外:干球温度35℃,湿球温度24℃) 如果能接近以下”目标”值是最好的匹配. 对策中有冷媒追加的内容,但从可靠性的观点出发,此方法尽量避免(仅作为最后手段) A.排气温度目标值是[70℃-85℃] 对策:高于目标值,毛细管减短,追加冷媒 低于目标值,毛细管加长,放冷媒 B.冷凝器中部温度是45℃-50℃,冷凝器出口温度与中部温度差-5℃--10℃左右的目标值,但因室外温度是35℃,冷凝器出口温度最低为37℃-38℃ (若接近35℃,冷凝器无法进行热交换) 对策:高于目标值,毛细管减短,室外风量增加,冷凝器加大 低于目标值,毛细管加长,追加冷媒 C.蒸发器中部温度及出口温度约为7℃-12℃为目标,但是如果中部温度与出口温度差过大(如中部=8℃,出口=15℃,蒸发器没有有效使用,能力降低) 对策:高于目标值,毛细管减短,追加冷媒 低于目标值,毛细管加长,室内风量增加,蒸发器加大 D.吸气温度是与蒸发器出口温度相同,可相差1℃-2℃,若蒸发器出口温度过高(如出口=10℃,吸气=20℃)是排气温度上升的原因,反之蒸发器出口温度过低(如出口=10℃,吸气=5℃)是排气温度低的原因,这是因为冷媒在蒸发器中没有充分蒸发,能力不足. 对策:高于目标值,毛细管减短,追加冷媒 低于目标值,毛细管加长,放冷媒 2) 超负荷...GB最大运行(室内:干球温度32℃,湿球温度23℃ 室外:干球温度43℃,湿球温度26℃) A. 定额运转电压在(50HZ,220V)±10%可以运转 对策:不能运转时(IOL动作时)提高室外风量,另外冷媒增多,压缩机负荷增大, 如果有可能可减少冷媒 *各公司为了控制室外噪音,尽可能把风量设定低些。只是单纯的增加转速,噪音也会加大。因此为了达到风量大,噪音低,有必要对风扇叶片的形状,风道的形状,室外风机进行研究。 B. 压力(高压侧Pd)确保在26.5kg/cm2以下, 不局限于过负荷,任何情况下都是这样.对策:超过 26.5kg/cm2时按A对策有效. 26.5kg/cm2=冷凝器中间温度65℃左右. C. 压缩机排气温度不超过115℃,电机绕组温度(=排气温度+10℃),再提高有可能烧断.对策:超过115℃ 时,追加冷媒(从可靠性的观点出发不提倡) 另一对策是毛细管减短,但会引起制冷能力的降低. 3)低负荷…GB最小运行(室内:干球温度21℃,湿球温度15℃ 室外:干球温度21℃,湿球温度-℃) A. 蒸发器温度不能在0℃以下,到0℃以下时,蒸发器附着的除湿水分开始冻结,变的不能制冷。 对策:毛细管加长,放冷媒,但需注意过负荷时排气温度上升。 若室内噪音允许,加大风量是很好的。

制冷系统匹配中的数据拟合

Technology 技术 制冷系统匹配中的数据拟合 珠海格力电器股份有限公司 吴杰强扬文聪 摘要:通过试验,采用数据拟合方式,得到空调制冷系统性能随毛细管长度和冷媒灌注量变化的规律、变化曲线及方程,为制冷系统匹配提供有益的参考。关键词:制冷系统;毛细管长度;灌注量;数据拟合;优化曲面设计 目前,家用冰箱、空调器等制冷设备中广泛采用毛细管作为节流元件,这不仅简化了设备的结构,降低了成本,而且还提高了设备的工作可靠性。当制冷设备的结构尺寸和工作条件一定时,优化灌注量和毛细管长度,能更有效提高制冷系统的性能。由于这种匹配大都是通过系统运行时的反复调试得到,工作量巨大,开发成本高。因此,通过对有限数据的拟合,研究空调器性能参数随毛细管和冷媒灌注量的变化,对缩短开发周期降低开发成本具有重大的实践意义。 本文采用一款窗式空调器,系统匹配的目标值为能力5500Btu/h,能效12.0。根据试验取得的原始数据,采用Minitab进行数据处理,拟合出能力、能效与毛细管长度和冷媒灌注量之间的函数关系,并通过数学求解得出能力、能效的最优值。 1选定模型 1.1空调器结构(如图1所示) 76家电科技 1.2筛选因子 图1反映了制冷循环的构成。压缩机从蒸发器吸入饱和蒸汽,并经压缩机压缩后进入冷凝器中冷凝,冷凝液体经毛细管节流后进入蒸发器中吸热气化,气化后的饱和蒸汽再由压缩 机吸入并重复循环。内外侧风叶在电机的带动 下,实现蒸发器、冷凝器与环境空气的不间断强制换热。 由此可得出空调能力是压缩机、冷凝器、毛细管、蒸发器、电机的函数。 Cap2f-p(Y1,Y2,Y3,Y4,Y5)EER=ffm(Y-,Y2,Y3,Y4,Y5) 式中:Y,一压缩机:Y2一冷凝器;Y,一 毛细管;Y。一蒸发器;Y,一电机。 Y.压缩机:根据压缩机性能曲线可以知道,压缩机能力是冷凝温度、蒸发温度、吸气压力的函数。在系统匹配过程中,主要是 通过调节毛细管长度和冷媒灌注量来调节压 缩机吸排气温度、压力,因此压缩机的能力可表示为毛细管长度和冷媒灌注量的函数。 可得: Yl=fl(Len,Ref) 式中:Len一毛细管长度;Re卜冷媒灌 注量。 Y:冷凝器:在冷凝器尺寸、材料确定后, 其换热效率仅与风量、冷媒进出口温度及进出 口压力有关,而进出口温度及压力的改变最终是由毛细管长度和冷媒灌注量决定,因此可以认为: Y2=f2(AifoD,Len,Ref)式中:Air0D一空调室外侧风量。 Y,毛细管:毛细管的截流效应仅与毛细 管内径和长度有关,且由于内径与长度存在转换关系,故把截流效应表示为毛细管长度的函数: Y3=f3(Len) Y4蒸发器:同冷凝器, Y4=f4(AirⅢ,Len,Ref) 式中:A迅。一空调室内侧风量。 Y,电机:对确定的空调壳体,采用同一型 号电机、风叶,电机的功率和内外侧风量均为 定植。此处定义为:Y。=Const 因此只有Len和Refff;j独立变量,空调能力函数可表示为: Cap=f.p(Len,Ret)EER=fF.eg(Len,Ref) 2拟合模型 采用Minitab的反应曲面设计分析拟合完全二次项方程,共两个因子(Len,Ref),因子水平数均为3个(.1,o,1)。 将全部备选项列入模型,这里包含Len, 万方数据

相关主题
文本预览
相关文档 最新文档