当前位置:文档之家› 基于有限元法的波导主模特性分析

基于有限元法的波导主模特性分析

基于有限元法的波导主模特性分析
基于有限元法的波导主模特性分析

基于有限元法的波导主模特性分析

兰州交通大学自动化与电气工程学院 赵 霞

[摘 要]本文使用M A TLAB中的偏微分方程工具箱,用有限元法分析了单脊波导及平行四边形波导的主模截止波长及单模工作带宽,给出了单脊波导不同尺寸下及平行四边形波导不同倾斜角度时的截止波长曲线及单模带宽曲线,这些数据将为微波器件及系统分析提供参考。

[关键词]有限元 脊波导 平行四边形波导 截止波长 单模带宽

(上接第5页)和市场渠道。在选择特殊的专业化设计和与竞争车队开诚布公地分享技术和信息而实现技术的统一上,往往前者更加受到青睐。尽管车队为了维持自己的特殊优势会千方百计的避免知识外流和自己特有技术被“区域化”,但是他们的优势信息和技术还是会被各种渠道所分散。比方说,在科技控制这方面就存在着巨大漏洞,一个赛车手决定离开车队的时候,他就会被终止一切的私人训练和测试。但是事实上,这个车手真正离开的时间往往要等到本赛季结束开始新的赛季和新的技术测试等等。不难想象,这个车手已经知道了所有本赛季和新赛季的相关细节,进而很难保证他不把相关细节透露给新的雇佣车队。

光电子产业这个研究充分说明了商业交叉形式:多样化终端市场;最终产品复杂技术的有效结合;和国际所有制的形成[1]。这个特点也被其他高科技产业比方说电子计算机和生物科技产业所具备。由此我们可以说,光电子产业是一个非常具有代表性的产业。H endry(2000)的研究也说明美国光电产业集群内的大公司往往更加乐意与其他集群成员进行贸易联系而不是知识分享。不管怎么说,即使是塞车产业之中企业间的相互学习是多么少,但是这种学习依然存在并没有消失。

小结

产业集群作为一种新的组织形式越来越受到研究者和政策制定者的关注。在我们认识和研究产业集群时,应该避免经验主义错误。不同的产业往往都具备自己的特殊的属性,由此导致它们在集群式发展过程中具有特殊的表现形式。这些产业集群的特殊表现形式应该为我们特别是我们相关政府部门制定产业政策时给予特别关注。

参考文献

[1]H endry,C.,B row n,J.,&D efilli pp i,R.(2000).R egi on2 al C lu stering of H igh T echno logy-based F irm s:Op to-elec2 tron ics in T h ree Coun tries.R egi onal Studies,34(2),129-144.

[2]Kevin,M.(1997).T he L earn ing R egi on:In stitu ti on s, Innovati on and R egi onal R enew al.R egi onal Studies,31(5),491 -503.

[3]L undvall,B.-A

φ,&John son,B.(1994).T he learn ing e2 conom y.Jou rnal of indu stry su tides1(2),24-42.

[4]P inch,S.,&H en ry,N.(1999).Pau l K rugm an’s Geo2 graph ical Econom ics,Indu strial C lu stering and the B ritish M o2 to r Spo rt Indu stry.R egi onal Studies,33(9),815-827.

有限元非线性计算特点

有限元非线性计算特点 文章通过几个典型的工程计算模型,分析比较有限元线性与非线性计算结果,阐释了有限元非线性计算的特点及优点。 标签:工程计算;线性;非线性 1 引言 有限元单元法已成为强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题,有限元的线性分析已被广泛采用。但对于许多航空工程中遇到的问题,如进气道等,仅仅采用线性求解是不真实的,而采用非线性计算将更符号实际情况。本文借助MSC/NASTRAN有限元分析程序,对于典型的工程计算模型分析比较线性与非线性计算结果,从而给出非线性计算相对于线性计算的优点及特点。 2 有限元非线性计算的特点及优点 为了明确有限元非线性计算结果与线性计算结果的差异,更好的展现有限元非线性计算的特点,本节将借助于有限元分析软件MSC/NASTRAN,对一受外载的矩形薄板根据不同的边界条件,进行非线性及线性静力分析,通过分析比较计算结果,说明有限元非线性静力计算中的一些特点。 2.1 非线性与线性计算结果随载荷的变化 首先,给出薄板尺寸、载荷。 模型尺寸:薄板尺寸为500×500×1.5mm。 载荷:受法向气动压力(pressure),气动压力由小到大变化依次为0.01MPa、0.02MPa、0.04MPa、0.08MPa、0.16MPa。 取薄板中央节点位移、应力及薄板边缘中部节点位移,比较线性计算结果和非线性计算结果。在分别进行有限元线性及非线性分析后,给出位移、应力及支反力结果随载荷的变化曲线。图1、图3、图5分别为采用限元线性计算得到的参考点的位移、应力及支反力变化曲线;图2、图4、图6分别为采用有限元非线性计算得到的参考点的位移、应力及支反力变化曲线。 由圖1、3、5可见,采用线性静力分析后,参考点位移、应力、支反力均随载荷增加而线性增大,位移、应力、支反力与载荷呈明显的线性关系,这是线性静力分析的特点。对于本例,可以预言,在其它条件不变的情况下,计算出一套载荷下的结果,就可以按照线性关系求出压力载荷下的位移、应力及支反力结果。

杜邦公司案例分析

杜邦公司案例分析 杜邦公司的组织结构是为不断适应企业的经营特点和市场情况的变化而变化的。 随着公司规模的扩大、经营产品的种类增多、竞争对手增多、市场变化复杂的问题的出现,杜邦公司单人经营的模式被集团式的经营模式所取代。由于杜邦公司在一战中大幅度扩展并逐步走向多角化经营,而集团式的组织结构没有弹性,公司的原有组织对企业成长缺乏适应力,给公司带来了很大的亏损,为了适应大生产的销售系统,多分部的组织结构便应运而生。60年代初,为了适应日益严峻的企业竞争需要并保证实施新的经营战略而产生了“三头马车式”的组织体制,又一次挽救了危难中的杜邦公司。 杜邦公司各发展阶段组织结构的演变 1.19世纪中期,单人决策式经营,属于直线式结构,优点是董事长一人决定公司 的决策,权利集中统一,有利于对公司全方位的了解与统一管理;缺点是董事 长工作任务相当繁重,需要有非凡的精力。 2.集团式经营,属于智能式结构,它建立了“执行委员会”,隶属于最高决策机构董 事会之下,是公司的最高管理机构。在董事会闭会期间,大部分权力由执行委 员会行使,董事长兼任执行委员会主席。优点是权力高度集中,实行统一指挥、 垂直领导和专业分工的原则,所以秩序井然,职责清楚,效率显著提高,大大 促进了杜邦公司的发展,缺点是没有弹性,高层管理人员陷入日常经营、不去 预测需求和适应市场变化。 3.多分部的组织结构,属于事业部的组织结构。在执行委员会下,除了设立由副 董事长领导的财力和咨询两个总部外,还按各产品种类设立分部,而不是采取 通常的职能式组织如生产、销售、采购等等。在各分部之下,则有会计、供应、 生产、销售、运输等职能处。其优点是策制定与行政管理分开,从而使公司的最 高管理层摆脱了日常性经营事务,把精力集中在考虑全局性的战略发展问题上, 研究与制定公司的各项政策,使公司经营极具效率;缺点是各部门的经理过于独 立,以致有些情况连执行委员会都不了解,不能适应企业日益严峻的竞争。 4.“三头马车式”的组织体制,类似于矩阵制结构,最高领导层分别设立了办公室 和委员会,其优点是这种集体领导有利于解决企业结构日益庞大,业务活动非常 复杂,最高领导层工作十分繁重,环境的变化速度越来越快,管理所需的知识 越来越高深的问题,其缺点是打破了传统的家族任职,可能导致家族财产外溢, 并且引发一些家族内部矛盾。 杜邦公司60年代组织变革的意义在于:一、改革了公司家族式任职的惯例,使管理人员更加专业;二、实行集体领导,有利于解决企业结构日益庞大、业务活动日益复杂、最高领导层工作十分繁重,环境的变化速度越来越快,管理所需的知识越来越高深等问题。但这次组织变革也不是一帆风顺的,它的阻力在于:杜邦公司是美国典型的家族公司,公司几乎有一条不成文的法律,即非杜邦家族的人不能担任最高管理职务。甚至实行同族通婚,以防止家族财产外溢。现在这些惯例却被大刀阔斧地砍去,必然受到很多家庭成员的反对与不满。 、结合杜邦公司的实例我不禁联想到我国私营企业、乡镇企业,它们应建立类似于“三头马车式”的组织体制,实行集体领导,权利相互制约,以便打破家族化领导模式,同时,它们还应该多学习外国知名企业的管理经验,取长补短,避免简单的直线制结构,为各层次的领导者配备职能机构或人员,充当同级领导者的参谋和助手,分担部分管理工作,使企业的运行更具有效率,避免长期简单的合伙制。

matlab有限元分析实例

MATLAB: MATLAB是美国MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室),软件主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。 MATLAB有限元分析与应用:

《MATLAB有限元分析与应用》是2004年4月清华大学出版社出版的图书,作者是卡坦,译者是韩来彬。 内容简介: 《MATLAB有限元分析与应用》特别强调对MATLAB的交互应用,书中的每个示例都以交互的方式求解,使读者很容易就能把MATLAB用于有限分析和应用。另外,《MATLAB有限元分析与应用》还提供了大量免费资源。 《MATLAB有限元分析与应用》采用当今在工程和工程教育方面非常流行的数学软件MATLAB来进行有限元的分析和应用。《MATLAB有限元分析与应用》由简单到复杂,循序渐进地介绍了各种有限元及其分析与应用方法。书中提供了大量取自机械工程、土木工程、航空航天工程和材料科学的示例和习题,具有很高的工程应用价值。

非线性有限元分析

轨道结构的非线性有限元分析 姜建华 练松良 摘 要 实际轨道结构受载时的力学行为,属于典型的非线性力学问题。钢轨垫层刚度、钢轨抗扭刚度和扣件扣压力的大小是影响轨距扩大的主要因素。根据非线性有限元接触理论,建立了能准确反映扣件、钢轨与垫层的拧紧接触,以及受载车轮与钢轨侧向滑动接触的力学计算模型;并研究计算了不同扣件压力下,由于受载车轮与钢轨侧向滑动接触引起的轨距扩大问题。 关键词 轮轨关系,扣件压力,非线性弹性力学,有限元分析 1 引言 实际工程中常见的非线性问题一般可以归纳为三类:材料非线性、几何非线性以及边界条件非线性。材料非线性问题是由于材料的非线性本构关系所引起的,例如材料的弹塑性变形,材料的屈服和硬化等;几何非线性问题是由于结构的位移或变形相当大,以至必须按照变形后的几何位置来建立平衡方程;边界条件非线性问题是指边界条件随位移变化所引起的非线性问题。通常情况下,我们所遇到的非线性问题多数是上述三类非线性问题的组合[1,2]。 实际轨道结构受载时的力学行为,属于典型的非线性力学问题。比如基于轮轨接触的材料非线性、几何非线性及边界条件非线性问题,以及扣件、钢轨、垫层三者间相互作用时所表现的边界条件非线性行为等。所以,机车车辆在轨道结构上行驶时引起的力学现象是相当复杂的。以往在研究轨道各部分应力应变分布规律时,通常采用连续弹性基础梁理论或连续点支承,偶尔简单考虑扣件的作用和弹性垫层的使用。不管用哪一种支承方式建立模型,都由于这样那样的假设而带有一定程度的近似性。所以,如何利用现代力学理论的最新成果以及日益发展的计算机技术,根据轨道结构的具体情况,建立更为完整更为准确的轨道结构计算模型,为轨道设计部门提供更加可靠的设计依据或研究思路,已十分必要。 本文提出了用非线性有限元理论研究轮轨系统和轨道结构的思路。作为算例之一,本文将根据非线性有限元理论,建立能准确反映扣件、钢轨与垫层的拧紧接触,以及受载车轮与钢轨侧向滑动接触的力学计算模型。 2 轨道结构的有限元接触模型 对于非线性问题,不管是材料非线性、几何非线性,还是边界条件非线性,总是最终归结为求解一组非线性平衡方程及其控制方程。例如用位移作为未知数进行有限元分析时,最后可得到一组平衡方程及其控制方程为 : 图1 轮轨系统的对称性模型简图 [K(u)]{u}={R}(1) (u)= (u)(2)其中:{u}为节点位移列阵;{R}为节点载荷列阵; [K(u)]为总体刚度矩阵; (u)为边界条件。它们 36 姜建华:同济大学工程力学系,副教授、博士,上海200092

有限单元法与有限元分析

有限单元法与有限元分析 1.有限单元法 在数学中,有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。求解时对整个问题区域进行分解,每个子区域都成为简单的部分,这种简单部分就称作有限元。它通过变分方法,使得误差函数达到最小值并产生稳定解。类比于连接多段微小直线逼近圆的思想,有限元法包含了一切可能的方法,这些方法将许多被称为有限元的小区域上的简单方程联系起来,并用其去估计更大区域上的复杂方程。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 随着电子计算机的发展,有限单元法是迅速发展成一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 1.1.有限元法分析本质 有限元法分析计算的本质是将物体离散化。即将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算精度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。 1.2.特性分析 1)选择位移模式: 在有限单元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。位移法易于实现计算自动化,所以,在有限单元法中位移法应用范围最广。 当采用位移法时,物体或结构物离散化之后,就可把单元总的一些物理量如

管理学案例分析(杜邦公司为例)

管理学期末考查作业 学院:文学院 班级:文秘111班 组员:刘会文,孙俊,王芳彦李缠宏,康硕,戴珊珊

结合杜邦公司的实例谈谈我国民营企业乡镇企业如何打破家族化和简单合伙制: 一,我国民营企业乡镇企业遇到困境的视频见附件1 二,民营企业家族化管理模式和简单合伙制遇到的问题1)家族化或简单合伙制管理模式遇到的问题 a , 缺乏人力资源 b, 管理控制薄弱 c, 企业文化的排他性 d,企业产权界限不清 e,面临新的转型方向不明确 案例(家族化的案例) 杜邦公司发展的视频见附件2 三,杜邦公司的成功案例 a,人力资源管理特色 行业交流和人材培训。杜邦积极参与国内主要的行业与技术发展交流活动,包括各种研讨会、报告会、展览会等,把杜邦最先进的技术、产品与工艺介绍给国内工业界和学术界,以促进国内工业水平的提高。 首先,杜邦的公平是指员工不分种族、年龄、性别,只要有能力,就能在杜邦获得发展,杜邦对员工一视同仁。

其次,杜邦坚持公平对待员工。杜邦设立了"零目标",其中从公平对待员工的角度来说,如果一个员工觉得他受到了不公平对待,杜邦内部有热线电话,HR部门有汇报体系,供他进行反映情况。随后,针对投诉设立正式的调查小组,严肃调查员工受到了哪些不公平对待,比如性别歧视、骚扰、工作安排不当等。 b,管理模式的转型 单人决策——集团式经营——多分部体制——到“三马车式体制”。 单人决策式经营 19世纪中叶时,由于公司规模不大,产品单一,产品质量优势突显,产品市场较为简单,公司采取经验化管理方式,加上亨利拥有的绝对旺盛的精力,一个人的决策管理足够维持整个公司的运作。在亨利的时代,这种单人决策式的经营基本上是成功的。这主要是因为:(1)公司规模不大,直到1902年合资时才2400万美元的资产;(2)经营产品比较单一,基本上是火药;(3)公司产品质量占据绝对优势,竞争对手难以超越;(4)市场变化不甚复杂。优点是董事长一人决定公司的决策,权利集中统一,有利于对公司全方位的了解与统一管理,而且纪律严明,秩序井然但是董事长工作任务相当繁重,需要有非凡的精力。而且一个人的目光毕竟有限,看不到多方位的市场信息与需求,做决策的时候难免

有限元模态分析报告实例

ANSYS模态分析实例 5.2ANSYS建模 该课题研究的弹性联轴器造型如下图5.2: 在ANSYS中建立模型,先通过建立如5.2所式二分之一的剖面图,通过绕中轴线旋转建立模拟模型如下图5.3

5.3单元选择和网格划分 由于模型是三给实体模型,故考虑选择三维单元,模型中没有圆弧结构,用六面体单元划分网格不会产生不规则或者畸变的单元,使分析不能进行下去,所以采用六面体单元。经比较分析,决定采用六面体八结点单元SOLID185,用自由划分的方式划分模型实体。课题主要研究对象是联轴器中橡胶元件,在自由划分的时候,中间件2网格选择最小的网格,smart size设置为1,两端铁圈的smart size设置为6,网格划分后模型如图5.4。 5.4边界约束 建立柱坐标系R-θ-Z,如5-5所示,R为径间,Z为轴向

选择联轴器两个铁圈的端面,对其面上的节点进行坐标变换,变换到如图5.5所示的柱坐标系,约束节点R,Z方向的自由度,即节点只能绕Z轴线转 5.5联轴器模态分析 模态分析用于确定设计中的结构或者机器部件振动特性(固有频率和振型),也是瞬态变动力学分析和谐响应分析和谱分析的起点。 在模态分析中要注意:ANSYS模态分析是线性分析,任何非线性因素都会被忽略。因此在设置中间件2的材料属性时,选用elastic材料。 5.5.1联轴器材料的设置 材料参数设置如下表5-1: 表5.1材料参数设置 表5.1材料参数设置 铁圈1 中间件2 铁圈3 泊松比0.3 0.4997 0.3 弹性模量Mpa 2E5 1.274E3 2E5 密度kg/m 7900 1000 7900 5.5.2联轴器振动特性的有限元计算结果及说明 求解方法选择Damped方法,频率计算结果如表5-2,振型结果为图5.6: 表5.2固有频率 SET TEME/FREQ LOAO STEP SUBSTEP CUMULATIVE 1 40.199 1 1 1 1 73.63 2 1 2 2 3 132.42 1 3 3 4 197.34 1 4 4

基于有限元法和极限平衡法的边坡稳定性分析

目录 摘要 (1) 1引言 (1) 2 简要介绍有限元和极限平衡方法 (1) 3影响边坡稳定性的因素 (2) 3.1水位下降速度的影响 (2) 3.2 不排水粘性土对边坡失稳的影响 (5) 3.3 裂缝位置的影响 (9) 4 总结和结论 (12)

基于有限元法和极限平衡法的边坡稳定性分析 摘要:相较于有限元分析法,极限平衡法是一种常用的更为简单的边坡稳定性分析方法。这两种方法都可用于分析均质和不均质的边坡,同时考虑了水位骤降,饱和粘土和存在张力裂缝的条件。使用PLAXIS8.0(有限元法)和SAS-MCT4.0(极限平衡方法)进行了分析,并对两种方法获得的临界滑动面的安全系数和位置进行了比较。 关键词:边坡稳定;极限平衡法;有限元法;PLAXIS;SAS-MCT 1.引言 近年来,计算方法,软件设计和高速低耗硬件领域都得到快速发展,特别是相关的边坡稳定性分析的极限平衡法和有限元方法。但是,使用极限平衡方法来分析边坡,可能会在定位临界滑动面(取决于地质)时出现几个计算困难和前后数值不一致,因此要建立一个安全系数。尽管极限平衡法存在这些固有的局限性,但由于其简单,它仍然是最常用的方法。然而,由于个人电脑变得更容易获得,有限元方法已越来越多地应用于边坡稳定性分析。有限元法的优势之一是,不需要假设临界破坏面的形状或位置。此外,该方法可以很容易地用于计算压力,位移,路堤空隙压力,渗水引起的故障,以及监测渐进破坏。 邓肯(1996年)介绍了一个综合观点,用极限平衡和有限元两种方法对边坡进行分析。他比较了实地测量和有限元分析的结果,并且发现一种倾向,即计算变形大于实测变形。Yu 等人(1998年)比较了极限平衡法和严格的上、下界限法对于简单土质边坡的稳定性分析的结果,同时,他们也将采用毕肖普法和利用塑性力学上、下限原理的界限法得到的结果进行了比较。Kim等人(1999年)同时使用极限平衡法和极限分析法对边坡进行分析,发现对于均质土边坡,得自两种方法的结果大体是一致的,但是对于非均质土边坡还需要进行进一步分析工作。Zaki(1999年)认为有限元相对于极限平衡法更显优势。Lane和Griffiths (2000年) 提出一个看法,用有限元方法在水位骤降条件下评价边坡的稳定性,应绘制出适用于实际结构的操作图表。Rocscience有限公司(2001年)提出了一个文件,概述了有限元分析方法的能力,并通过与各种极限平衡方法的结果比较,提出了有限元方法更为实用。Kim等人(2002年)用上、下界限法和极限平衡法分析了几处非均质土体且几何不规则边坡的剖面。这两种方法给出了类似有限元分析法产生的安全系数,临界滑动面位置。 2.简要介绍有限元和极限平衡方法 有限元法(FEM)是一个应用于科学和工程中,求解微分方程和边值问题的数值方法。进一步的细节,读者可参考Clough和Woodward(1967年),Strang和Fix(1973年),Hughes(1987年),Zienkiewicz和Taylor(1989年)所做的研究工作。 PLAXIS 8版(Brinkgreve 2002年)是一个有限元软件包,应用于岩土工程二维的变形和 折稳定性分析。该程序可以分析自然成型或人为制造的斜坡问题。安全系数的确定使用c

非线性有限元方法及实例分析

非线性有限元方法及实例分析 梁军 河海大学水利水电工程学院,南京(210098) 摘 要:对在地下工程稳定性分析中常用的非线性方程组的求解方法进行研究,讨论了非线性计算的迭代收敛准则,并利用非线性有限元方法分析了一个钢棒单轴拉伸的实例。 关键词:非线性有限元,方程组求解,实例分析 1引 言 有限单元法已成为一种强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题。有限元的线性分析已经设计工具被广泛采用。但对于绝大多数水利工程中遇到的实际问题如地下洞室等,将其作为非线性问题加以考虑更符合实际情况。根据产生非线性的原因,非线性问题主要有3种类型[1]: 1.材料非线性问题(简称材料非线性或物理非线性) 2.几何非线性问题 3.接触非线性问题(简称接触非线性或边界非线性) 2 非线性方程组的求解 在非线性力学中,无论是哪一类非线性问题,经过有限元离散后,它们都归结为求解一个非线性代数方程组[2]: ()()()00 021212211=… …==n n n n δδδψδδδψδδδψΛΛΛ (1.1) 其中n δδδ,,,21Λ是未知量,n ψψψ,,,21Λ是n δδδ,,,21Λ的非线性函数,引用矢量记 号 []T n δδδδΛ21= (1.2) []T n ψψψψΛ21= (1.3) 上述方程组(1.1)可表示为 ()0=δψ (1.4) 可以将它改写为 ()()()0=?≡?≡R K R F δδδδψ (1.5) 其中()δK 是一个的矩阵,其元素 是矢量的函数,n n ×ij k R 为已知矢量。在位移有限 元中,δ代表未知的结点位移,()δF 是等效结点力,R 为等效结点荷载,方程()0=δψ表示结点平衡方程。 在线弹性有限元中,线性方程组

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

有限元实例分析

作业一:有限元分析实例 实例:请对一个盘轴配合机构进行接触分析。轴为一等直径空心轴,盘为等厚度圆盘,其结构及尺寸如图所示。盘和轴为一种材料,材料参数为:弹性模量Ex=2.5E5,泊松比NUXY=0.3,摩擦系数MU=0.25,试采用有限元计算方法分析轴和盘在过盈配合时的应力应变分布以及将轴从盘心拔出时轴和盘的接触情况。 问题分析说明 (1)本题主要分析装配过程中结构的静态响应,所以分析步选择通用静态分析步。由于为过盈配合,属于大变形,故应考虑几何 非线性的影响。 (2)模型具有轴对称性,所以可以采取轴对称模型来进行分析,先建立二维模型计算,再转换为三维模型计算,这样可以节省计

算时间。分析过程由两个载荷步组成, 第一个载荷步为过盈分 析, 求解过盈安装时的情况。第二个载荷步为将轴从盘心拔出 时的接触分析, 分析在这个过程中盘心面和轴的外表面之间的 接触应力。它们都属于大变形问题, 属于非线性问题。在分析 时需要定义一些非线性选项来帮助问题的收敛。 (3)接触面之间有很大的相对滑动,所以模型要使用有限滑移。 模型建立的分析说明 (1)进定义单元类型此项实例分析的问题中涉及到大变形, 故选用So li d185 单元类型来建立本实例入部件模块,的模型。盘 轴接触问题属于面面接触, 目标面和接触面都是柔性的, 将使用接触单元T ARGET 170 和CO NTAT17 4来模拟接 触面。分别创建名为为part1、part2的部件。 (2)定义材料属性,在线性各向同性材料属性对话框中的EX (弹性模量) 文本框中输入 2 . 5E5,PRX Y (泊松比) 文本框中输入 0 . 3,并将定义的材料属性赋予给part1和part2。如下图所示。 (3)进入装配模块,创建两者间的装配关系。

杜邦公司案例分析

杜邦公司案例分析 杜邦公司为什么要开展多元化经营? 答:在早期,迫于政府对其进行反托拉斯诉讼,并取消杜邦的订单而建造自己的军火库,打破了杜邦公司的垄断地位。而杜邦在失去了军火这一产品大头后,不得不将自己的经营多元化。而随后又被战事所击毁,第一次多元化失败。而杜邦的第二次的多元化开展是在于战事结束后,军火产业在占据了杜邦公司很大一部分的情况下,军火已经不再被大量需要,而杜邦又无法回到战前的平稳状态,剩余很多军火原料及半成品无法处理,杜邦无法靠军火维持公司的日常经营,所以杜邦被迫第二次开展多元化经营。 实施多元化战略对于杜邦公司有何意义? 答:在战后实施多元化战略,有利于杜邦公司重新调整产业结构,把流水线上的大量军火原料通过不同的渠道以不同的产品形式售出,在最大程度减少公司亏损的同时,杜邦改变了其行业的性质,为其以后的壮大打下了基础。 从杜邦公司的案例中可以看出战略与组织结构是怎样的关系? 答:有什么样的企业战略目标就有什么样的组织结构,同时,企业的组织结构又在很大程度上对企业的发展目标和政策产生很大的影响,并决定着企业各类资源的合理配置。企业战略目标与组织结构之间是作用与反作用的关系。所以,企业组织机构的设计和调整,要寻求和选择与企业经营战略目标相匹配的结构模式。像杜邦这样的公司在决定将多元化作为企业战略目标的时候忽略了对其组织结构进行调整,从而导致了公司的大规模亏损及各部门的压力剧增。企业组织结构的调整是企业战略实施的重要环节,同时也决定着企业资源的配置。不合理的分配资源就会导致企业发展不均衡,会导致像杜邦一样,只着重于战前的生产问题,而不考虑那时的销售问题而导致巨额亏损。 事业部制有何特点? 答:按企业的产出将业务活动详细分类并组合起来,成立专业化的生产经营管理部门,管理每一个细小的产品,适用于产品多元化的公司。按照"集中政策,分散经营"的原则,处理企业高层领导与事业部之间的关系。实行事业部制,企业最高领导层要摆脱日常的行政事务,集中力量研究和制定企业发展的各种经营战略和经营方针,而把最大限度的管理权限下放到各事业部,使他们能够依据企业的经营目标、政策和制度,完全自主经营,充分发挥各自的积极性和主动性。各事业部门之间可以有比较、有竞争.由此而增强企业活力,促进企业的全面发展。

有限元实例分析1

有限元实例练习分析 学号: 姓名: 专业:材料成型及控制工程 201年5月2日

引言 有限元方法发展到今天。已经成为一门相当复杂的实用工程技术。有限元分析的最终目的是还原一个实际工程系统的数学行为特征。即分析必须针对一个物理原型准确的数学模型。模型包括所有节点、单元、材料属性、实常数、边界条件以及其他用来表现这个物理系统的特征。Marc是一种融结构、热、流体、电磁和声学于一体的非线型有限元分析软件,可广泛应用于航空航天、汽车、造船、石油化工、铁道、能源、电子元件、机械制造、材料工程、土木工程、医疗器材、冶金工艺和家用电器等。该软件功能特色具体包括:多种物理场的分析能力、复合场的耦合分析能力、强大的非线性分析能力、最先进的接触分析功能、并行计算功能、丰富的单元库、开放的用户环境、强大的网格自适应功能和全自动三维网格重划分;Marc的学习、应用是一个系统、复杂的工程。由于它涉及到多方面的知识,所以在学Marc的过程中一定要对Marc所涉及到的一些理论知识有一个大概的了解,以加深对Marc的理解。

目录 引言 一、目的 (4) 二、软件应用介绍 (4) 三、实例内容 (6) 四、求解步骤 (6) 1. 建立有限元模型 (6) 2. 加载求解 (11) 3、后处理 (12) 五、总结 (16) 参考文献

有限元实例练习分析 一、目的 1、熟悉有限元建模、求解及结果分析步骤和方法。 2、能利Marc软件对实例结构进行静力有限元分析。 3、加深有限元理论关于网格划分概念、划分原则等的理解。 二、软件应用介绍 有限元分析是对于结构力学分析迅速发展起来的一种现在计算方法。它是50年代首先在连续体力学领域—飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应于求解热传导、电磁场、流体力学等连连续行问题。想要解答,必须先简化结构,采用数值模拟方法分析。 (一)有限元软件发展特点 1. 单一场计算向多物理耦合场问题的求解发展 2. 由求解线性问题发展到求解非线性问题 3. 与CAD/CAM等软件的集成 4. 提高自动化的网格处理能力 5.软件面向专业用户的开放性 6. 软件开发强强联合 (二)、分析研究过程 1、前处理 (1)建模 有限元分析的最终目的是还原一个实际工程系统的数学行为特

非线性有限元分析

非线性有限元分析 1 概述 在科学技术领域,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。 已经发展的数值分析方法可以分为两大类。一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。 另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。 1960年,R.W.CLOUGH发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。有限单元法的基本思想是将连续的求解区域离散为一组有限个,且按一定方式相互联接在一起的单元的组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。并且可以利用在每一个单元假设的近似函数来分片地表示全求解域上待求的未知场函数,从而使一个连续的无限自由度问题变成离散的有限自由度问题。 现已证明,有限单元法是基于变分原理的里兹法的另一种形式,从而使里兹法分析的所有理论基础都适用于有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法。利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,而且事先不要求满足任何边界条件,因此可以用来处理很复杂的连续介质问题。 在短短四十余年的时间里,有限单元的分析方法已经迅速地发展为适合于使用各种类型计算机解决复杂工程问题的一种相当普及的方法。如今,有限元广泛地应用于各个学科门类,已经成为工程师和科研人员用于解决实际工程问题,进行科学研究不可或缺的有力工具。有限单元法的应用围已由弹性力学平面问题扩展到空间问题,板壳问题,由静力平衡问题扩展到稳定问题,动力问题和波动问题。分析的对象从弹性材料扩展到塑性,粘弹性,粘塑性和复合材料等,从固体

有限元分析案例

有限元分析案例 图1 钢铸件及其砂模的横截面尺寸 砂模的热物理性能如下表所示: 铸钢的热物理性能如下表所示: 一、初始条件:铸钢的温度为2875o F,砂模的温度为80o F;砂模外边界的对流边界条件:对流系数0.014Btu/hr.in2.o F,空气温度80o F;求3个小时后铸钢及砂模的温度分布。 二、菜单操作: 1.Utility Menu>File>Change Title, 输入Casting Solidification; 2.定义单元类型:Main Menu>Preprocessor>Element Type>Add/Edit/Delete, Add, Quad 4node 55; 3.定义砂模热性能:Main Menu>Preprocessor>Material Props>Isotropic,默认材料编号1, 在Density(DENS)框中输入0.054,在Thermal conductivity (KXX)框中输入0.025,在S pecific heat(C)框中输入0.28; 4.定义铸钢热性能温度表:Main Menu>Preprocessor>Material Props>-Temp Dependent->Temp Table,输入T1=0,T2=2643, T3=2750, T4=2875; 5.定义铸钢热性能:Main Menu>Preprocessor>Material Props>-Temp Dependent ->Prop Table, 选择Th Conductivity,选择KXX, 输入材料编号2,输入C1=1.44, C2=1.54, C3=1.22, C4=1.22,选择Apply,选择Enthalpy,输入C1=0, C2=128.1, C3=163.8, C4=174.2; 6.创建关键点:Main Menu>Preprocessor>-Modeling->Create>Keypoints>In Active

杜邦财务分析法及福田案例分析

摘要:杜邦分析法是一种财务比率分解的方法,能有效反映影响企业获利能力的各指标间的相互联系,对企业的财务状况和经营成果做出合理的分析。 关键词:杜邦分析法;获利能力;财务状况 获利能力是企业的一项重要的财务指标,对所有者、债权人、投资者及政府来说,分析评价企业的获利能力对其决策都是至关重要的,获利能力分析也是财务管理人员所进行的企业财务分析的重要组成部分。 传统的评价企业获利能力的比率主要有:资产报酬率,边际利润率(或净利润率),所有者权益报酬率等;对股份制企业还有每股利润,市盈率,股利发放率,股利报酬率等。这些单个指标分别用来衡量影响和决定企业获利能力的不同因素,包括销售业绩,资产管理水平,成本控制水平等。 这些指标从某一特定的角度对企业的财务状况以及经营成果进行分析,它们都不足以全面地评价企业的总体财务状况以及经营成果。为了弥补这一不足,就必须有一种方法,它能够进行相互关联的分析,将有关的指标和报表结合起来,采用适当的标准进行综合性的分析评价,既全面体现企业整体财务状况,又指出指标与指标之间和指标与报表之间的内在联系,杜邦分析法就是其中的一种。 杜邦财务分析体系(TheDuPontSystem)是一种比较实用的财务比率分析体系。这种分析方法首先由美国杜邦公司的经理创造出来,故称之为杜邦财务分析体系。这种财务分析方法从评价企业绩效最具综合性和代表性的指标-权益净利率出发,层层分解至企业最基本生产要素的使用,成本与费用的构成和企业风险,从而满足通过财务分析进行绩效评价的需要,在经营目标发生异动时经营者能及时查明原因并加以修正,同时为投资者、债权人及政府评价企业提供依据。 一、杜邦分析法和杜邦分析图 杜邦模型最显著的特点是将若干个用以评价企业经营效率和财务状况的比率按其内在联系有机地结合起来,形成一个完整的指标体系,并最终通过权益收益率来综合反映。采用这一方法,可使财务比率分析的层次更清晰、条理更突出,为报表分析者全面仔细地了解企业的经营和盈利状况提供方便。 杜邦分析法有助于企业管理层更加清晰地看到权益资本收益率的决定因素,以及销售净利润率与总资产周转率、债务比率之间的相互关联关系,给管理层提供了一张明晰的考察公司资产管理效率和是否最大化股东投资回报的路线图。 杜邦分析法利用各个主要财务比率之间的内在联系,建立财务比率分析的综合模型,来综合地分析和评价企业财务状况和经营业绩的方法。采用杜邦分析图将有关分析指标按内在联系加以排列,从而直观地反映出企业的财务状况和经营成果的总体面貌。 杜邦财务分析体系如图所示:

ansys有限元建模与分析实例-详细步骤

《有限元法及其应用》课程作业ANSYS应用分析 学号: 姓名: 专业:建筑与土木工程

角托架的有限元建模与分析 一 、模型介绍 本模型是关于一个角托架的简单加载,线性静态结构分析问题,托架的具体形状和尺寸如图所示。托架左上方的销孔被焊接完全固定,其右下角的销孔受到锥形压力载荷,角托架材料为Q235A 优质钢。角托架材料参数为:弹性模量366E e psi =;泊松比0.27ν= 托架图(厚度:0.5) 二、问题分析 因为角托架在Z 方向尺寸相对于其在X,Y 方向的尺寸来说很小,并且压力荷载仅作用在X,Y 平面上,因此可以认为这个分析为平面应力状态。 三、模型建立 3.1 指定工作文件名和分析标题 (1)选择菜单栏Utility Menu → 命令.系统将弹出Jobname(修改文件名)对话框,输入bracket (2)定义分析标题 GUI :Utility Menu>Preprocess>Element Type>Add/Edit/Delete 执行命令后,弹出对话框,输入stress in a bracket 作为ANSYS 图形显示时的标题。 3.2设置计算类型 Main Menu: Preferences … →select Structural → OK 3.3定义单元类型 PLANE82 GUI :Main Menu →Preprocessor →Element Type →Add/Edit/Delete 命令,系统将弹出Element Types 对话框。单击Add 按钮,在对话框左边的下拉列表中单击Structural Solid →Quad 8node 82,选择8节点平面单元PLANE82。单击ok ,Element Types 对话框,单击Option ,在Element behavior 后面窗口中选取Plane strs w/thk 后单击ok 完成定义单元类型。 3.4定义单元实常数 GUI :Main Menu: Preprocessor →Real Constants →Add/Edit/Delete ,弹出定义实常数对话框,单击Add ,弹出要定义实常数单元对话框,选中PLANE82单元后,单击OK →定义单元厚度对话框,在THK 中输入0.5.

ansys有限元案例分析实施报告

ANSYS有限元案例分析报告

ANSYS 分析报告 一、 ANSYS 简介: ANSYS 软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS 开发,它能与多数CAD 软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, AutoCAD 等, 是现代产品设计中的高级CAE 工具之一。 本实验我们用的是ANSYS14.0软件。 二、 分析模型: 具体如下: 如图所示,L/B=10,a= 0.2B , b= (0.5-2)a ,比较 b 的变化对 最大应力 x 的影响。 三、 模型分析: 该问题是平板受力后的应力分析问题。我们通过使用ANSYS 软件求解,首先要建立上图所示的平面模型,然后在平板一段施加位移约束,另一端施加载荷,最后求解模型,用图形显示,即可得到实验结果。 L

四、ANSYS求解: 求解过程以b=0.5a=0.02为例: 1.建立工作平面,X-Y平面画长方形,L=1,B=0.1,a=0.02,b=0.5a=0.01;(操作流程:preprocessor→modeling→create→areas→rectangle) 2.根据椭圆方程,利用描点法画椭圆曲线,为了方便的获得更多的椭圆上的点,我们利用C++程序进行编程。程序语句如下: 运行结果如下:

本问题(b=0.5a=0.01)中,x在[0,0.02]上每隔0.002取一个点,y值对应于第一行结果。由点坐标可以画出这11个点,用reflect 命令关于y轴对称,然后一次光滑连接这21个点,再用直线连接两个端点,便得到封闭的半椭圆曲线。(操作流程:create→keypoints →on active CS→依次输入椭圆上各点坐标位置→reflect→create →splines through keypoints→creat→lines→得到封闭曲线)。3.由所得半椭圆曲线,生成半椭圆面。用reflect命令关于x轴对称(操作流程:create→areas by lines→reflect→得到两个对称的半椭圆面)。 4.用substract命令,将两个半椭圆面从长方形板上剪去(操作流程:preprocessor→modeling→create→Booleans→substract→areas.)。 5.定义单元类型和材料属性(preprocessor→element type→add→选solid Quad 4nodes 42,material props→material models→structural→liner→Elastic→isotropic→E=200GPa,μ=0.3)。

相关主题
文本预览
相关文档 最新文档