当前位置:文档之家› 某1000MW凝汽式汽轮机机组热力系统设计毕业设计(论文)

某1000MW凝汽式汽轮机机组热力系统设计毕业设计(论文)

某1000MW凝汽式汽轮机机组热力系统设计毕业设计(论文)
某1000MW凝汽式汽轮机机组热力系统设计毕业设计(论文)

毕业设计(论文)原创性声明和使用授权说明

原创性声明

本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:

指导教师签名:日期:

使用授权说明

本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:

学位论文原创性声明

本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日

学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日

导师签名:日期:年月日

注意事项

1.设计(论文)的内容包括:

1)封面(按教务处制定的标准封面格式制作)

2)原创性声明

3)中文摘要(300字左右)、关键词

4)外文摘要、关键词

5)目次页(附件不统一编入)

6)论文主体部分:引言(或绪论)、正文、结论

7)参考文献

8)致谢

9)附录(对论文支持必要时)

2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。

4.文字、图表要求:

1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写

2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画

3)毕业论文须用A4单面打印,论文50页以上的双面打印

4)图表应绘制于无格子的页面上

5)软件工程类课题应有程序清单,并提供电子文档

5.装订顺序

1)设计(论文)

2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订

指导教师评价:

一、撰写(设计)过程

1、学生在论文(设计)过程中的治学态度、工作精神

□优□良□中□及格□不及格

2、学生掌握专业知识、技能的扎实程度

□优□良□中□及格□不及格

3、学生综合运用所学知识和专业技能分析和解决问题的能力

□优□良□中□及格□不及格

4、研究方法的科学性;技术线路的可行性;设计方案的合理性

□优□良□中□及格□不及格

5、完成毕业论文(设计)期间的出勤情况

□优□良□中□及格□不及格

二、论文(设计)质量

1、论文(设计)的整体结构是否符合撰写规范?

□优□良□中□及格□不及格

2、是否完成指定的论文(设计)任务(包括装订及附件)?

□优□良□中□及格□不及格

三、论文(设计)水平

1、论文(设计)的理论意义或对解决实际问题的指导意义

□优□良□中□及格□不及格

2、论文的观念是否有新意?设计是否有创意?

□优□良□中□及格□不及格

3、论文(设计说明书)所体现的整体水平

□优□良□中□及格□不及格建议成绩:□优□良□中□及格□不及格(在所选等级前的□内画“√”)

指导教师:(签名)单位:(盖章)

年月日

评阅教师评价:

一、论文(设计)质量

1、论文(设计)的整体结构是否符合撰写规范?

□优□良□中□及格□不及格

2、是否完成指定的论文(设计)任务(包括装订及附件)?

□优□良□中□及格□不及格

二、论文(设计)水平

1、论文(设计)的理论意义或对解决实际问题的指导意义

□优□良□中□及格□不及格

2、论文的观念是否有新意?设计是否有创意?

□优□良□中□及格□不及格

3、论文(设计说明书)所体现的整体水平

□优□良□中□及格□不及格

建议成绩:□优□良□中□及格□不及格(在所选等级前的□内画“√”)

评阅教师:(签名)单位:(盖章)

年月日

教研室(或答辩小组)及教学系意见

教研室(或答辩小组)评价:

一、答辩过程

1、毕业论文(设计)的基本要点和见解的叙述情况

□优□良□中□及格□不及格

2、对答辩问题的反应、理解、表达情况

□优□良□中□及格□不及格

3、学生答辩过程中的精神状态

□优□良□中□及格□不及格

二、论文(设计)质量

1、论文(设计)的整体结构是否符合撰写规范?

□优□良□中□及格□不及格

2、是否完成指定的论文(设计)任务(包括装订及附件)?

□优□良□中□及格□不及格

三、论文(设计)水平

1、论文(设计)的理论意义或对解决实际问题的指导意义

□优□良□中□及格□不及格

2、论文的观念是否有新意?设计是否有创意?

□优□良□中□及格□不及格

3、论文(设计说明书)所体现的整体水平

□优□良□中□及格□不及格

评定成绩:□优□良□中□及格□不及格教研室主任(或答辩小组组长):(签名)

年月日

教学系意见:

系主任:(签名)

年月日

目录

第1章绪论 (1)

1.1 热力系统简介 (1)

1.2 本设计热力系统简介 (3)

第2章基本热力系统确定 (5)

2.1 锅炉选型 (6)

2.2 汽轮机型号确定 (7)

2.3 原则性热力系统计算原始资料以及数据选取 (8)

2.4 全面性热力系统计算 (8)

第3章主蒸汽系统确定 (18)

3.1 主蒸汽系统的选择 (18)

3.2 主蒸汽系统设计时应注意的问题 (20)

3.3 本设计主蒸汽系统选择 (20)

第4章给水系统确定 (22)

4.1 给水系统概述 (22)

4.2 给水泵的选型 (22)

4.3 本设计选型 (25)

第5章凝结系统确定 (27)

5.1 凝结系统概述 (27)

5.2 凝结水系统组成 (27)

5.3 凝汽器结构与系统 (30)

5.4 抽汽设备确定 (30)

5.5 凝结水泵确定 (30)

第6章.回热加热系统确定 (32)

6.1 回热加热器型式 (32)

6.2 本设计回热加热系统确定 (37)

第7章.旁路系统的确定 (39)

7.1 旁路系统的型式及作用 (39)

7.2 本设计采用的旁路系统 (42)

第8章.辅助热力系统确定 (43)

8.1 工质损失简介 (43)

8.2 补充水引入系统 (43)

8.3 本设计补充水系统确定 (44)

8.4 轴封系统 (44)

第9章.疏放水系统确定 (45)

9.1 疏放水系统简介 (45)

9.2 本设计疏放水系统的确定 (45)

参考文献 (47)

致谢 (48)

第1章绪论

1.1热力系统简介

发电厂的原则性热力系统就是以规定的符号表明工质在完成某种热力循环时所必须流经的各种热力设备之间的系统图。原则性热力系统具有以下特点:(1)只表示工质流过时状态参数发生变化的各种必须的热力设备,同类型同参数的设备再图上只表示1个;

(2)仅表明设备之间的主要联系,备用设备、管路和附属机构都不画出;

(3)除额定工况时所必须的附件(如定压运行除氧器进气管上的调节阀)外,一般附件均不表示。

原则性热力系统主要由下列各局部热力系统组成: 锅炉、汽轮机、主蒸汽及再热蒸汽管道和凝汽设备的链接系统,给水回热系统,除氧器系统,补充水系统,辅助设备系统及“废热”回收系统。凝汽式发电厂内若有多种单元机组,其原则性热力系统即为多个单元的组合。对于热电厂,无论是同种类型的供热机组还是不同类型的供热机组,全厂的对外供热的管道和设备是连在一起的,原则性热力系统较为复杂。

原则性热力系统实质上表明了工质的能量转换及热能利用的过程,反映了发电厂热功能量转换过程的技术完善程度和热经济性。拟定合理的原则性热力系统,是电厂设计和电厂节能工作的重要环节。

1.2本设计热力系统简介

某电厂拟建1000MW燃煤机组。其中锅炉为国外引进的1025t/h“W”火焰煤粉炉;汽轮机为上海汽轮机厂设计的一次中间再热、单轴、四缸四排气凝汽式汽轮机(型号:N1000-26.25/600/600(TC4F)。额定功率1000MW,主蒸汽额定温度600oC,主汽压力26.25MPa,再热汽温600oC,再热汽压力5.746MPa。机组采用一炉一机的单元制配置。

根据汽轮机制造厂推荐的机组的原则性热力系统,考虑与锅炉和全厂其它系统的配置要求,设计拟定了全厂的原则性热力系统。该系统共有八级不调节抽汽。其中第一、二、三级抽汽分别供三台高压加热器,第五、六、七、八级抽分别供四台低压加热器,第四级抽汽作为 0.803MPa压力除氧器的加热汽源。

八级回热加热器 (除除氧器外)均装设了疏水冷却器。以充分利用本级疏水热量来加热本级主凝结水。三级高压加热器均安装了内置式蒸汽冷却器,将三台高压加热器上端差分别减小为- 1.67℃、0℃、0℃。从而提高了系统的热经济性。

汽轮机的主凝结水由凝结水泵送出,依次流过轴封加热器、4台低压加热器,进入除氧器。然后由汽动给水泵升压,经三级高压加热器加热,最终给水温度达到272.8℃,进入锅炉。

三台高压加热器的疏水逐级自流至除氧器;四台低压加热器的疏水逐级自流至凝汽器。凝汽器为单轴双缸排汽反动凝汽。

汽轮机为超临界压力、一次中间在热、单轴四缸四排汽反动凝汽式汽轮机。高中压缸为双层合缸反流结构,即由高中压外缸、高压内缸和中压内缸组成。低压缸则是3层缸结构,由钢板焊接、对称分流布置。本机组有8级非调整抽汽,在第1~3级抽汽供3台高压加热器,第4级抽汽供除氧器及辅助蒸汽用汽,第5~8级抽汽供4台低压加热器用汽。此外,中压联合汽门阀杆漏气接入第3级抽汽管道上,锅炉连续排污扩容器的扩容蒸汽和高压轴封漏气接入除氧器。除氧器为滑压运行,滑压范围是0.147~0.883MPa。

高低压加热器均设有内置式疏水冷却器,且高压加热器还没有内置式蒸汽冷器。加热器疏水采用逐级自流方式,最后流入凝汽器热井。凝结水系统设置有轴封加热器SG和除盐设备DE。凝结水精处理装置采用低压系统,凝结水经凝结水泵CP、除盐设备DE和凝升泵BP,流经轴封加热器SG、4个低压加热器进入除氧器。给水从给水箱经前置泵TP、主给水泵FP及3台高压加热器进入锅炉。压力最低的H7、H8低压加

D从凝汽器补入。

热器位于凝汽器喉部化学补充水

ma

该机组在额定进汽参数、额定排汽压力、补水率为0%、回热系统正常投运的条件下,能发出额定功率1000MW,进汽量为1000t/h,热耗率7993KW/(KW h)当阀门全开、超压5%(即VWO+5%OP)工况下,机组最大进汽量为1025 t/h,最大功率为1250MW。

热力系统的汽水损失计有:全厂汽水损失10354kg/h锅炉排污损失1035kg/h (因排污率较小,未设计排污利用系统) 。

高压缸门杆漏气A 和 B分别引人再热冷段管道和轴封加热器SG,中压缸门杆漏汽 K引人 3 号高压加热器,高压缸的轴封漏汽按压力不同,分别进人除氧器(L1、L)、均压箱(M1、M)和轴封加热器 (N1、N.)。中压缸的轴封漏汽也按压力不同,分别引进均压箱(P)和轴封加热器 (R)。低压缸的轴封用汽S来自均压箱,轴封排汽 T也引人轴封加热器。从高压缸的排汽管路抽出一股气流J,不经再热器而直接进中压缸,用于冷却中压缸转子叶根。

第2章基本热力系统确定

2.1锅炉选型

2.1.1锅炉的简介

锅炉是火力发电厂的三大主机中最基本的能量转换装备。其作用是使燃料在炉内燃烧放热,并将锅炉内工质由水加热成具有足够数量和一定品质(气温和气压)的过热蒸汽,供汽轮机使用。

表征锅炉设备基本特征的有:锅炉容量、蒸汽参数、燃烧方式、汽水流动方式和锅炉整体布置等方面。主要是锅炉容量和蒸汽参数。

锅炉容量:锅炉的容量用蒸发量表示,一般是指锅炉在额定蒸汽参数(压力、温度)、额定给水温度和使用设计燃料时,每小时的最大连续蒸发量。常用符号D

e 表示,单位为t/h(或kg/s)。习惯上,电厂锅炉容量也用与之配套的汽轮发电机组的电功率表示。

蒸汽参数:锅炉的蒸汽参数是指锅炉出口处的蒸汽温度和蒸汽压力。蒸汽温度常用符号t表示,单位为℃或K;蒸汽压力常用符号p表示,单位为MPa。锅炉设计时所规定的蒸汽温度和压力称为额定蒸汽温度和额定蒸汽压力。

2.1.2电厂锅炉特性

表征锅炉设备基本特征的有:锅炉容量、蒸汽参数、燃烧方式、汽水流动方式和锅炉整体不知等方面。

电厂锅炉存在这样几个明显特点:电厂锅炉一般都是在蒸发量在400t/h以上、超高压以上压力的锅炉,且大都进行中间再热,即锅炉容量大、蒸汽参数高。大容量、高参数电厂锅炉热效率都很高,多稳定在90%以上。大型电厂锅炉为实现安全、经济运行、大都设置一套高度可靠的自动化控制装置—自动化程度高。

2.1.3一般电厂锅炉分类

可以从不同角度出发对锅炉进行分类:按烟气在锅炉流动的状况分:水管锅炉、锅壳锅炉、水火管组合式锅炉;按锅筒放置的方式分:立式锅炉、卧式锅炉;按用途分:生活锅炉、工业锅炉、电站锅炉、车船用锅炉;按介质分:蒸汽锅炉、热水锅炉、汽水两用锅炉、有机热载体锅炉;按安装方式分:快装锅炉、组装锅炉、散装锅炉;按燃料分:燃煤锅炉、燃油锅炉、燃气锅炉、余热锅炉、电加热锅炉、生物质锅炉;按水循环分:自然循环、强制循环、混合循环;按压力分:常压锅炉、低压锅炉、中压锅炉、高压锅炉、超高压锅炉;按锅炉数量分:单锅筒锅炉、双锅筒锅炉;按燃烧定在锅炉内部或外部分:内燃式锅炉、外燃式锅炉;按工质在蒸发系统的流动方式可分为自然循环锅炉、强制循环锅炉、直流锅炉等;按制造级别分类:A级、B级、C级、D级、E级(按制造锅炉的压力分);按出口蒸汽压力分为:

11

12

低压锅炉(P 〈2.5MPa )、中压锅炉(2.5〈P 〈4.0MPa )、高压锅炉(4.0〈P=10MPa )、超高压锅炉(10〈P=13.7MPa )、亚临界锅炉(13.7〈P=16.7MPa )、超临界锅炉(P=22MPa )。 2.1.4电厂锅炉的安全经济指标

1.连续运行小时数=两次检修之间运行小时数

2.事故率=+事故停用小时数

总运行小时数事故停运小时数×100%

3.可用率=

运行总小时数+备用总小时数

统计期间总小时数

×100%

4.锅炉效率:锅炉每小时的有效利用热量(即水和蒸汽所吸收的热量)占输入锅炉全部热量的百分数,常用符号η表示,即η=

锅炉有效利用热量

输入锅炉总热量

×100%

事故率和可用率按一适当的周期来计算。我国通常以一年为一统计周期。连续运行小时数越长,事故率越低,可用率越高,锅炉的安全可靠性就越高。 2.1.5本设计锅炉机组选用

锅炉类型 HG2953/27.46YM1 型变压运行直流燃煤锅炉 最大连续蒸发量为2996.3t/h ,额定蒸发量为2909.03t/h 过热蒸汽出口参数:0p =27.56MPa, 0t =605℃

再热蒸汽出口参数:out

rh p =5.81Mpa ,rh t out =603℃ 再热蒸汽进口参数:in rh p =6.12MPa, in rh t =372℃

锅炉效率ηb=93.8%

2.2汽轮机型号确定

2.2.1汽轮机原理

汽轮机是以蒸汽为工质的将热能转变为机械能的旋转式原动机。汽轮机设备是火电厂的三大主要设备之一。在火力发电厂,锅炉将燃料的化学能转变为蒸汽的热能,汽轮机将蒸汽的热能转变为机械能,发电机将转轴的机械能转变为电能。 2.2.2汽轮机分类 1.按工作原理分

级是汽轮机中最基本的作功单元,它是由喷管叶栅和与它相配合的动叶栅组成的。蒸汽在汽轮机级中以不同方式进行能量转换,便形成不同的工作原理的汽轮机。

(1)冲动式汽轮机:主要由冲动级组成,蒸汽主要在喷管叶栅(或静叶栅)中膨胀,在动叶栅中只有少量膨胀。

(2)反动式汽轮机:主要由反动级组成,蒸汽在喷管叶栅(或静叶栅)和动叶栅中都进行膨胀,且膨胀程度大致相同。

13

2.按热力特性分

(1)凝汽式汽轮机:蒸汽在汽轮机内膨胀做功以后,除小部分轴封漏气外,全部进入凝汽器凝结成水的汽轮机。实际上为了提高汽轮机的热效率,减少汽轮机排汽缸的直径尺寸,将做过功的蒸汽从汽轮机内抽出来,送入回热加热器,用以加热锅炉给水,这种不调整抽汽式汽轮机,也统称为凝汽式汽轮机。

(2)背压式汽轮机:蒸汽进入汽轮机内部做功以后,以高于大气压力排除汽轮机,用于工业生产或民用采暖的汽轮机。

(3)抽汽背压式汽轮机:为了满足不同用户和生产过程的需要,从背压式汽轮机内部抽出部分压力较高的蒸汽用于工业生产,其余蒸汽继续做功后以较低的压力排除,供工业生产和居民采暖的汽轮机。

(4)抽汽凝汽式汽轮机:蒸汽进入汽轮机内部做过功以后,从中间某一级抽出来一部分,用于工业生产或民用采暖,其余排入凝汽器凝结成水的汽轮机,称为一次抽汽式或单抽式汽轮机。从不同的级间抽出两种不同压力的蒸汽,分别供给不同的用户或生产过程的汽轮机称为双抽式(二次抽汽式)汽轮机。

(5)多压式汽轮机:汽轮机进汽不止一个参数,在汽轮机的某中间级前又引入其他来源的蒸汽,与原来的蒸汽混合共同膨胀做功。

3.按汽轮机的进汽压力分

(1)低压汽轮机:主蒸汽压力为1.2~1.5MPa (2)中压汽轮机:主蒸汽压力为2.0~4.0MPa (3)高压汽轮机:主蒸汽压力为6.0~10.0MPa (4)超高压汽轮机:主蒸汽压力为12.0~14.0MPa (5)亚临界汽轮机:主蒸汽压力为16.0~18.0MPa (6)超临界汽轮机:主蒸汽压力大于22.17MPa (7)超超临界压力汽轮机:主蒸汽压力大于32MPa 2.2.3本设计选用汽轮机

(1)汽轮机形式:上海汽轮机厂设计型号:N1000-26.25/600/600(TC4F ) (2)蒸汽初参数:0p =26.25MPa, 0t =600℃

(3)再热蒸汽参数:高压缸进汽2p =in rh p =6.393MPa,t 2=in

rh t =377.8℃,中压缸进汽out

rh p =5.746Mpa ,rh t out =600℃;

(5)排汽压力:2p =0.0049MPa ,给水温度t fw =297.3℃。

(6)抽汽及轴封参数见表2.2.给水泵出口压力pu p =20.81MPa,凝结水泵出口压力为1.78MPa.

14

(7)机械效率、发电机效率分别取为m η=0.99、g η=0.985 (8)汽动给水泵用汽数pu α为0.038

本设计选用N1000-26.25/600/600型号汽轮机。全机有四个缸:高中压部分采用高中压合缸反流结构,对头布置,为双层缸;低压缸分为流结构,进汽部分为三层,通流部分为双层缸。高压缸内有一级冲动级(调节级)和12级反动式压力级,中压缸内有9列反动式压力级,低压缸内分流布置着14列反动式压力级.全机共有29个热力级,36个结构级。新蒸汽从汽轮机下部由主蒸汽管道进入2个高压主汽调节联合阀,由6个调节气阀经导汽管按一定的顺序从高压外缸的上半和下半分别进入高压缸的6个喷管室,通过各自的喷管组流向顺向布置的调节级,然后返流经过高压通流部分反向布置的12级反动级,经由高中压外缸下半排出后进入再热器。经过再热的蒸汽从汽轮机前部由再热主汽管进入2个中压再热调节联合阀,再经过2根中压导汽管将蒸汽从下部导入高中压外缸的中压缸,再经过中压通流部分后,经过一根连通管进入低压缸,蒸汽从中央流入,再从2个排汽口排入凝汽器。初步拟定原则性热力系统图见附录1。

2.3原则性热力系统计算原始资料以及常用数据选取

2.3.1回热加热系统参数

(1)机组各级回热抽汽参数见表2-1

表2-1 N1000-26.25/600/600型双缸双排汽机组回热抽汽及轴封汽参数

项目 加热器编号 抽汽压力 抽汽温度

轴封汽量 轴封汽比焓

单位 MPa ℃ — kJ/kg 回热抽汽点、轴封来汽点及轴封汽参数 H1 8.391 417.3 — — H2 6.393 377.8 — — H3 2.419 464.8 — — H4 1.190

364.2 高压汽门来0.013 3361 H5

0.659 285.1 — — H6 0.258 184.5 — — H7 0.067 95.0 — — H8 0.025 64.97 — — SG

中压缸来0.013 3284 C 0.0049 34

— —

2.3.2整理原始资料

(1)根据已知参数p 、t 在h-s 图上画出汽轮机蒸汽膨胀过程线(见图2-4),得到新汽焓0h 、各级抽汽焓j h 及排汽焓c h ,以及再热器蒸汽比焓升rh q 。也可以根

15

据p 、t 、查水蒸汽表得出上述焓

0h =3394.1kJ/kg,in rh

h =3015.8kJ/kg,out rh h =3534.8kJ/kg,rh q =3534.8-3015.8=519kJ/k g

根据水蒸气表查得各加热器出口水焓wj h 及有关疏水焓'j h 或d

wj h ,将机组回热系统计

算点参数列于表2-2

图2-1 1000MW 四缸四排汽凝气式机组蒸汽膨胀过程线

2.4全面性热系统计算

2.4.1回热抽汽系数与凝气系数的计算 采用相对量方法进行计算。 (1)1号高压加热器(H1) 由H1的热平衡时求1α

1α(1h -1d

w h )h η=1w h -2w h

1α =12h 11

(-)/-w w d w h h h h η

=

=0.074925

16

H1的疏水系数1d α=1α=0.074952

(2)2号高压加热器(H2)

[2α(2h -2d w h )+1d α(1d w h -2d

w h )]h η=2w h - 3w h

2α=23h 11222

( - )/-(-) - d d

w w d w w d

w h h h h h h ηα ==0.082307

表2-2 N1000-26.25/600/600(TC4F)型双缸双排汽机组回热系统计算点参数 项目 单位 H1 H2 H3 H4 H5 H6 H7 H8 SG C 加热蒸汽 抽汽压力 MPa 8.391 6.393 2.419 0.80

3 1.190 0.659 0.067 0.025 — 0.0049 抽汽压损

% 6 6 6

6

6 6 6 6 — — 加热器汽侧压力 MPa

5.597 3.39 1.53 0.75

5 0.321

0.126 0.0688 0.0241 0.095 —

抽汽焓

kJ/k

g

3142.8 3015.8 3332.2 3134.4 2939.2 2763.5 2669.2 2517.6 — — 轴封汽焓 kJ/k g — — — 3361 — — —

3284

饱和水温度

℃ 271.1 240.8 199.3 168.1 135.9

106.2

89.5 64.2 98.2 34.7

饱和水焓 kJ/k g 1190.2 1040.8 849 710.7 571.5 445.3 374.8 268.5 411.5 145.5 被加热水 加热器端差

℃ -1.67 0 0 0 2.78 2.78 2.78 2.78 — 0 加热器出口水

℃ 272.8 240.8 199.3 168.1 133.1

103.4

86.7 61.4

加热器水侧压力

MPa 20.81 20.81 20.81 0.803 1.78 1.78 1.78 1.78 1.78 —

加热器出口水焓 kJ/k g 1195.2 1043.7 857.7 710.7 560.7 434.7 364.4 258.5 —

145.5 疏水 疏水冷却器端

℃ 8

8

8

17

疏水冷却器 出口水温

248.8

207.3 179.5

疏水冷却 器 疏水焓 kJ/k

g 1079.5

886

761.3

— — — — — — —

H2的疏水系数

再热蒸汽系数rh α

(3)3号高压加热器 (H3)

先计算给水泵的焓升?pu

w h 。设除氧器的水位高度为20m ,则给水泵的进口压力

为in p ==200.0098 + 0.8030.940.98508 in p ??= MPa ,取给水的平均比容为

av υ=0.0011 3m /kg 、给水泵效率pu η=0.83,则

3pu

10(-)

pu

av out in w

p p h

υη?=

=3100.0011(20.81-0.98508)

0.83

?=26.3(kJ/kg )

由H3的热平衡式得

333223h 34[(-)+(-)][-(+)d d d pu

w d w w w w w h h h h h h h ααη=? 3α=34h 22333

[-(+)]/-(-)-pu d d

w w w d w w d

w h h h h h h h ηα? =

()

[857.7-(710.7+26.3)]/0.98-0.157232886-761.33332.2-761.3

?

=0.040280 H3的疏水系数

323+0.157232+0.040280=0.197512d d ααα== (2)除氧器HD

18

第4段抽汽4α由除氧器加热蒸汽'

4α和汽动给水泵用汽pu α2部分组成,即

'

44+pu ααα=

由除氧器的物质平衡可知除氧器的进水系数为

'

43sg141---d αααα=

由于除氧器的进出口水量不等,4c α时未知数。为避免在最终的热平衡式中出现2各未知数,可先不考虑加热器的效率h η,写出除氧器的热平衡式:∑吸热量=∑放热量,即

'444113345+++d w sg sg d w c w h h h h h αααα=

将4c α的关系代入,整理成以进水焓5w h 为基准,并考虑h η的热平衡式:吸热量/h η=∑放热量,可得

'45h 445335115(-)/(-)+(-)+(-)d w w w d w w sg sg w h h h h h h h h ηααα=

45h 335115'

4

45

(-)/-(-)-(-)

-d

w w d w w sg sg w w h h h h h h h h ηααα=

(710.7-560.7)/0.98-0.197512(761.3-560.7)-0.013(3361-560.7)

3134.4-560.7

??=

0.029932=

'

4314

1---c d sg αααα==1-0.197512-0.013-0.029932=0.759556 '

44+0.029932+0.038=0.067932pu ααα==

(5)5号低压加热器(H5) 直接由H5的热平衡式可得5α

'555h 456(-)(-)c w w h h h h αηα=

456h

5'

55(-)/0.759556(560.7-434.7)/0.98

0.041246-2939.2-517.5

c w w h h h h αηα?==

=

H5的疏水系数

550.041246d αα== (6)6号低压加热器(H6) 同理,有

'''

666556h 467[(-)+(-)]=(-) d c w w h h h h h h ααηα

19

''467h 5566'66

(-h )/-(-)

-c w w d h h h h h

αηαα=

0.759556(434.7-364.4)/0.98-0.041246(571.5-445.5)

2763.5-445.3

??=

0.021258=

(7)7号低压加热器(H7)

'''

777667h 478[(-)+(-)]=(h -)d c w w h h h h h ααηα

7α''478h 667'

77

(h -)/-(-)

-c w w d h h h h h

αηα=

0.759556(364.4-258.5)/0.98-0.062504(445.3-374.8)

2669.2-374.8

??=

0.033853=

(8)8号低压加热器(H8)与轴封加热(SG )

为了计算方便,将H8与SG 作为一个整体考虑,采用2.39所示的热平衡范围来列出物质平衡和热平衡式。由热井的物质平衡式,可得

4728+---c pu c d sg αααααα=根据∑吸热量=∑放热量写出平衡式

'

'48882277+++(+)c sg sg d c pu c h h h h h αααααα=

将+c pu αα消去,并整理成以4c α吸热为基础以进水焓'c h 为基准的热平衡式,得

'''''887722h 48[(-)+(-)+(-)]=(-)c d c sg sg c c w c h h h h h h h h αααηα

''''48h 77228'

8(-)/-(-)-(-)

-c w c d c sg sg c c

h h h h h h h h αηααα=

0.759556(2585-1455)/0.980.096357(3748-1455)-0.0014(3284-1455)

2517.6-1445

???=

0.025755=

(9)凝汽系数c α的计算与物质平衡校核 由热井的物质平衡计算c α 4728----c c d sg pu αααααα=

0.759556-0.096257-0.0014-0.025755-0.038=0.598044= 由汽轮机流通部分物质平衡来计算c α,以校核计算的准确性

8

1211-(++)c j sg sg αααα=∑

=1-(0.079425+0.082037+0.040820+0.067392+0.041426+0.022158+0.033583+0.027555+0.013+0.0014)=0.598044

20

2.4.2新汽量0D 计算及校核

根据抽汽做功不足多耗汽的公式来计算0D 8

2

0001

1

D /(1--)c c j j sgj sgj D D Y Y βαα==∑∑

(1)

计算0c D

凝汽的比内功ic w 为

0-3394.1519-2357.6=1555.5ic rh c w h q h =+=+ 33036003600300000

1010712.0038/h 1555.50.990.985

e c ic m g p D t w ηη--?=?=?=??

(2)计算0D

各级抽汽做功不足系数j Y 如下: 11-3142.8519-2357.6

0.8384441555.5

rh c ic h q h Y w ++=== 22+-3015.8+519-2357.6===0.7567991555.5rh c ic h q h Y w 33-3332.2-2357.6===0.6265511555.5

c ic h h Y w 44-3134.4-2357.6

=

==0.4993891555.5c ic h h Y w 55-2939.2-2357.6

===0.3738991555.5

c ic h h Y w 66-2763.5-2357.6

==0.2609451555.5c ic h h Y w = 77-2669.2-2357.6

=

=0.2003211555.5c ic h h Y w = 88-2517.6-2357.6

=

=0.1028611555.5

c ic h h Y w = 1-3361-2357.6

==0.6450661555.5

c sg ic h h Y w =sg1

21-3284-2357.6

=

=

0.5955641555.5

sg c sg ic

h h Y w =

张吉培300MW汽轮机热力系统方案

N300MW汽轮机组热力系统分析- TMCR 专科生毕业设计开题报告 2011 年 09 月 24 日

摘要 节能是我国能源战略和政策的核心。火电厂既是能源供应的中心也是资源消耗及环境污染和温室气体排放的大户,提高电厂设备运行的经济性和可靠性,减少污染物的排放,已经成为世人关注的重大课题。 热经济性代表了火电厂的能量利用、热功能转换技术的先进性和运行的经济性,是火电厂经济性评价的基础。合理的计算和分析火电厂的热经济性是在保证机组安全运行的基础上,提高运行操作及科学管理水平的有效手段。火电厂的设计、技术改造、运行优化以及目前国外对大型火电厂性能监测的研究、运行偏差的分析等均需对火电厂的热力系统作详细的热平衡计算,求出热经济指标作为决策的依据。因此电厂的热力系统计算是实现上述任务的重要技术基础,直接反映出全厂的经济效益,对电厂的节能具有重要意义。 本文主要设计的是300MW凝汽式汽轮机。先了解了汽轮机及其各部件的工作原理。再设计了该汽轮机的各热力系统,并用手绘了各系统图。最后对所设计的热力系统进行

经济性指标计算,分析温度压力等参数如何影响效率。本设计采用了三种计算方法—— 常规计算方法、简捷计算、等效热降法。 关键词:节能、热经济性分析、热力系统 目录 N300MW汽轮机组热力系统分析- TMCR (1) 专科生毕业设计开题报告 (1) 摘要 (4) 关键词 (4) 第一章绪论 (9) 1.1 毕业设计的目的 (9) 1.2国外研究综述 (9) 第二章 300MW汽轮机组的结构与性能 (11) 2.1汽轮机工作的基本原理 (11) 第三章热力系统的设计 (14) 3.1主、再热蒸汽系统 (14) 3.1.1主蒸汽系统 (15) 3.1.2再热蒸汽系统 (15) 3.2主给水系统 (16) 3.2.1除氧器 (16) 3.2.2高压加热器 (16) 3.2.3其他 (17) 3.3凝结水系统 (17) 3.3.1凝结水用户 (17) 3.3.2凝结水泵及轴封加热器 (18) 3.4抽汽及加热器疏水系统 (18) 3.5轴封系统 (19) 3.6高压抗燃油系统 (20) 3.6.1磁性过滤器 (20) 3.6.2自循环滤油系统 (21) 3.7润滑油系统 (21) 3.8本体疏水系统 (21) 3.9发电机水冷系统 (22)

汽轮机毕业设计

汽轮机毕业设计 篇一:汽轮机毕业设计(论文) 摘要 汽轮机是发电厂三大主要设备,汽轮机的启动是指汽轮机转 子从静止状态升速至额定转速,并将负荷加到额定负荷的过程。在启动过程中,汽轮机各部件的金属温度将发生十分剧烈的变化,从冷态或温度较低的状态加热到对应负荷下运行的高温工作状态。因而汽轮机启动中零部件的热应力和热疲劳、转子和汽缸的胀差、机组振动都变化很大,将严重威胁汽轮机的安全,并使整个电厂发电负荷降低,经济损失严重。分析汽轮机启动中的特点,并及时采取相应对策和正确的运行方式对保证设备健康水平和安全、经济运行有深刻的意义。 本文以哈汽600MW汽轮机的启动过程为研究对象,分析与探 讨了启动过程中蒸汽温升率的计算方法,并在此基础上研究了蒸汽初温与转子金属温度的匹配问题,使得汽轮机启动过程优化。同时对启动过程中的换热系数进行了计算与比较。 关键词:启动;寿命分配;安全性; 目录

摘要 ................................................ ................................................... ........ I 1绪论 ................................................ ................................................... . (1) 1.1 课题背景和意义 ................................................ (1) 1.2 高压加热器的作用介绍及分类 ...................... 错误!未定义书签。 1.3本课程研究的主要内容和任务 ....................... 错误!未定义书签。 2 高压加热器停运的热经济性分析 ................................................ .. (3) 2.1概述 ................................................ ................................................... . (3)

汽轮发电机结构及原理

第四节汽轮发电机 汽轮发电机是同步发电机的一种,它是由汽轮机作原动机拖动转子旋转,利用电磁感应原理把机械能转换成电能的设备。 汽轮发电机包括发电机本体、励磁系统及其冷却系统等。 一、汽轮发电机的工作原理 按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。汽轮发电机转子与汽轮机转子高速旋转时,发电机转子随着转动。发电机转子绕组内通入直流电流后,便建立一个磁场,这个磁场称主磁极,它随着汽轮发电机转子旋转。其磁通自转子的一个极出来,经过空气隙、定子铁芯、空气隙、进入转子另一个极构成回路。 根据电磁感应定律,发电机磁极旋转一周,主磁极的磁力线北装在定子铁芯内的U、V、W三相绕组(导线)依次切割,在定子绕组内感应的电动势正好变化一次,亦即感应电动势每秒钟变化的次数,恰好等于磁极每秒钟的旋转次数。 汽轮发电机转子具有一对磁极(即1个N极、一个S极),转子旋转一周,定子绕组中的感应电动势正好交变一次(假如发电机转子为P对磁极时,转子旋转一周,定子绕组中感应电动势交变P次)。当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次,这样发电机转子以每秒钟50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。 这时若将发电机定子三相绕组引出线的末端(即中性点)连在一起。绕组的首端引出线与用电设备连接,就会有电流流过,这个过程即为汽轮机转子输入的机械能转换为电能的过程。 二、汽轮发电机的结构 火力发电厂的汽轮机发电机皆采用二极、转速为3000r/min的卧式结构。发电机与汽轮机、励磁机等配套组成同轴运转的汽轮发电机组。

汽轮机课程设计(中压缸)

题目:600MW超临界汽轮机通流部分设计 (中压缸) 学生姓名:丁艳平 院(系)名称:能源与动力工程 班级: 热能与动力工程03-03班 指导教师:谭欣星 2006 年11 月

能源与动力工程学院 课程设计任务书 热能动力工程专业036503班 课程名称汽轮机原理 题目600MW超临界汽轮机通流部分设计(中压缸)任务起止日期:2006年11 月13 日~ 2006年12 月4 日 学生姓名丁艳平2006年12月4日指导教师谭欣星2006年11月5日教研室主任年月日院长年月日

能源与动力工程学院 2. 此任务书最迟必须在课程设计开始前三天下达给学生。

600MW超临界汽轮机通流部分设计(中压缸) 摘要 本文根是根据给定的设计条件,确定通流部分的几何尺寸,以求获得较高的相对内效率。 设计原则是保证运行时具有较高的经济性;在不同的工况下工作均有高的可靠性;同时在满足经济性和可靠性要求的同时,考虑了汽轮机的结构紧凑,系统简单,布置合理,成本低廉,安装与维修方便,心以及零件的通用化和系列化等因素。 主要设计过程是:分析与确定汽轮机热力设计的基本参数,选择汽轮机的型式,配汽机构形式,通流部分及有关参数;拟定汽轮机近似热力过程曲线,并进行热经济性的初步计算;根据通流部分形状和回热抽汽点的要求,确定中压级组的级数并进行各级比焓降的分配,对各级进行详细的热力计算,确定汽轮机实际热力过程曲线,根据热力计算结果,修正各回热汽点压力以符合热力过程曲线的要求,并修正回热系统的热平衡计算,汽轮机热力计算结果。

目录 摘要 (1) 第一章:汽轮机热力计算的基本参数 (2) 第二章:汽轮机蒸汽流量的初步计算 (3) 第三章:通流部分选型 (9) 第四章::压力级比焓降分配及级数确定 (10) 第五章:汽轮机级的热力计算 (14) 第六章;高中压缸结构概述 (17) 第七章:600MW汽轮机热力系统 (19) 第八章:总结 (20) 参考文献 (23)

毕业设计--某电厂660MW机组的初步设计-精品

毕业设计说明书(论文) 系部:能源与动力工程学院 专业:热能与动力工程 题目:芜湖某电厂660MW机组的初步设计 (神华烟煤) 2011年05月南京

目 录 前 言 ........................................................... 1 第一章 绪 论 . (2) 1.1中国电力工业的背景 ............................................ 2 1.2中国电力行业的现状 ............................................ 2 1.3中国电力行业的发展趋势 ........................................ 2 1.4研究内容 ...................................................... 3 第二章 汽轮机原则性热力系统计算 (4) 2.1汽轮机类型和参数 .............................................. 4 2.2原则性热力系统计算 .. (6) 2.2.1全厂物质平衡 ........................................... 6 2.3计算汽轮机各段抽汽量D J 和凝汽流量D C ............................ 6 2.3.1由高压加热器H1热平衡计算D 1 ........................... 6 2.3.2由高压加热器H2热平衡计算D 2 ........................... 7 2.3.3由高压加热器H3热平衡计算D 3 ........................... 7 2.3.4由除氧器H4热平衡计算D4 .............................. 8 2.3.由低压加热器H5热平衡计算D 5 ............................ 8 2.3.6由低压加热器H6热平衡计算D 6 ........................... 9 2.3.7由低压加热器H7热平衡计算D 7 ........................... 9 2.3.8由低压加热器H8热平衡计算D 8等 ....................... 10 2.3.9凝汽器热井 ............................................ 10 2.4汽轮机汽耗及功率计算 ......................................... 11 2.4.1计算汽轮机内功率 .. (11) 2.4.2由功率方程式求0D ..................................... 11 2.4.3各级抽汽量及功率校核 ................................. 11 2.5热经济指标计算 .. (13) 2.5.1机组热耗0Q 、热耗率q 、绝对电效率e (13) 第三 章锅炉初步设计 (14) 3.1锅炉介绍 ..................................................... 14 3.1.1锅炉主要设计参数 ...................................... 14 3.1.2设计煤种 ............................................... 14 3.2锅炉整体介绍 ................................................. 15 3.3锅炉制粉系统设计及相关计算 .. (16)

热电厂热力系统计算

热力发电厂课程设计 1.1 设计目的 1. 学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2. 学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3. 提高计算机绘图、制表、数据处理的能力 1.2 原始资料 西安 某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安 地区采暖期 101 天,室外采暖计算温度 –5℃,采暖期室外平均温度 1.0℃,工业用汽 和采暖用汽热负荷参数均为 0.8MPa 、230℃。通过调查统计得到的近期工业热负荷和采暖热 负荷如下表所示: 1.3 计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别 链条炉 煤粉炉 沸腾炉 旋风炉 循环流化床锅炉 锅炉效率 0.72~0.85 0.85~0.90 0.65~ 0.70 0.85 0.85~ 0.90 (2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率 750~ 6000 12000 ~ 25000 5000 汽轮机相对内效率 0.7~0.8 0.75~ 0.85 0.85~0.87 汽轮机机械效率 0.95~0.98 0.97~ 0.99 ~ 0.99 发电机效率 0.93~0.96 0.96~ 0.97 0.98~0.985 3)热电厂内管道效率,取为 0.96。 4)各种热交换器效率,包括高、低压加热器、除氧器,一般取 0.96~0.98。

5)热交换器端温差,取3~7℃。 2%

6)锅炉排污率,一般不超过下列数值: 以化学除盐水或蒸馏水为补给水的供热式电厂 以化学软化水为补给水的供热式电厂5% 7)厂内汽水损失,取锅炉蒸发量的3%。 8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。 9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。 10)生水水温,一般取5~20℃。 11)进入凝汽器的蒸汽干度,取0.88~0.95。 12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。 2、原则性热力系统 2.1 设计热负荷和年持续热负荷曲线 根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见 表2-1 。用户处工业用汽符合总量:采暖期最大为175 t/h, 折算汇总到电厂出口处为166.65 t/h 。 2-1 折算到热电厂出口的工业热负荷,再乘以0.9 的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8 kJ/kg)计算出供热量,见表2-2。根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1 、图2-2。 表2-2 热电厂设计热负荷

汽轮机组热力系统..

第二节汽轮机组热力系统 汽轮机组热力系统主要是由新蒸汽管道及其疏水系统、汽轮机本体疏水系统、汽封系统、主凝结水系统、回热加热系统、真空抽气系统、循环水系统等组成。 一、新蒸汽管道及其疏水系统 由锅炉到汽轮机的全部新蒸汽管道,称为发电厂的新蒸汽管道,其中从隔离汽门到汽轮机的这一段管道成为汽轮机的进汽管道。在汽轮机的进汽管道上通常还连接有供给汽动油泵、抽气器和汽轮机端部轴封等处新蒸汽的管道,汽轮机的进汽管道和这些分支管道以及它们的疏水管构成了汽轮机的新蒸汽管道及其疏水系统。3)在机组启动和低负荷运行时,为了保证除氧器的用汽,必须装设有饱和蒸汽或新蒸汽经减压后供除氧器用的备用汽源。 5)在机组启动、停止和正常运行中,要及时地迅速地把新蒸汽管道及其分支管路中的疏水排走,否则将会引起用汽设备和管道发生故障。这些疏水是: ①隔离汽门前、后的疏水和汽轮机进汽管道疏水。这两处疏水在机组启动暖管和停机时,都是排向地沟的,正常运行中经疏水器可疏至疏水扩容器或疏水箱。 ②汽动油泵用汽排汽管路的凝结水。由于废汽是排入大气的,它的凝结水接触了大气,水质较差,且在机组启、停时才用,运行时间不长,故一般都排入地沟。 ③汽轮机本体疏水。我们通常把汽轮机高压缸疏水、抽汽口疏水、低压缸疏水、抽汽管路上逆止门前后疏水以及轴封管路疏水等,统称为汽轮机本体疏水。这些疏水,由于压力的不同,而引向不同的容器中。高压疏水一般都是汇集在疏水膨胀箱内,在疏水膨胀箱内进行扩容,扩容后的蒸汽由导汽管送至凝汽器的喉部,而凝结水则由注水器(水力喷射器)送入凝汽器的热水井中。低压疏水可直接排入凝汽器。 6)一般中、低压汽轮机的自动主汽门前必须装设汽水分离器。汽水分离器的作用是分离蒸汽中所含的水分,提高进入汽轮机的蒸汽品质。21-1.5型机组的汽水分离器是与隔离汽门装置在一起的,N3-24型机组的汽水分离器是和自动主汽门装置在一起的。 二、凝结水管道系统 蒸汽器热水井中的凝结水,由凝结水泵升压,经过抽气器的冷却器、轴封加热器、低压加热器,然后进入除氧器,其间的所有设备和管道组成了凝结水系统。 凝结水系统的任务是不间断地把凝汽器内的凝结水排出和使主抽气器能够正常地工作,从而保证凝汽器所必须的真空,并尽量收回凝结水,以减少工质损失。 2)汽轮机组在启动和低负荷运行时,为了保证有足够的凝结水量通过抽器冷却器,以保证抽气器的冷却和维持凝汽器热水井水位,在抽气器后的主凝结水管道上装设了一根在循环管,使一部分凝结水可以在凝汽器到抽气器这一段管路内循环。再循环水量的多少,由再循环管上的再循环门来调节。 3)汽轮机在第一次启动及大修后启动时,凝汽器内还无水,这时首先应通过专设的补充水管向凝汽器充水,一般电厂都补充化学软水。机组启动运转正常后,应化验凝结水水质是否合格,若不合格则应通过放水管将凝结水

汽轮机课程设计---23MW凝汽式汽轮机热力设计.

第一章 23MW凝汽式汽轮机设计任务书 1.1 设计题目: 23MW凝汽式汽轮机热力设计 1.2 设计任务及内容 根据给定条件完成汽轮机各级尺寸的确定及级效率和内功率的计算。在保证运行安全的基础上,力求达到结构紧凑、系统简单、布置合理、使用经济性高。 汽轮机设计的主要内容: 1.确定汽轮机型式及配汽方式; 2.拟定热力过程及原则性热力系统,进行汽耗量于热经济性的初步计算; 3.确定调节级型式、比焓降、叶型及尺寸等; 4.确定压力级级数,进行比焓降分配; 5.各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与 整机实际热力过程曲线; 6.整机校核,汇总计算表格。 1.3 设计原始资料 额定功率:23MW 设计功率:18.4MW 新汽压力:3.43MP a 新汽温度:435℃ 排汽压力:0.005MP a 冷却水温:22℃ 机组转速:3000r/min 回热抽汽级数:5 给水温度:168℃ 1.4 设计要求 1.严格遵守作息时间,在规定地点认真完成设计,设计共计两周; 2.完成设计说明书一份,要求过程完整,数据准确; 3.完成通流部分纵剖面图一张(A0图) 4.计算结果以表格汇总。

第二章多极汽轮机热力计算 2.1 近似热力过程曲线的拟定 一、进排汽机构及连接管道的各项损失 蒸汽流过个阀门及连接管道时,会产生节流损失和压力损失。表2-1列出了这些损失通常选取范围。 表2-1 汽轮机各阀门及连接管道中节流损失和压力估取范围 图2-1 进排汽机构损失的热力过程曲线

二、汽轮机近似热力过程曲线的拟定 根据经验,对一般非中间再热凝汽式汽轮机可近似地按图2-2所示方法拟定近似 热力过程曲线。 由已知的新汽参数p 0、t 0,可得汽轮机进汽状态点0,并查得初比焓h 0=3304.2kj/kg 。由前所得,设进汽机构的节流损失ΔP 0=0.04 P 0=0.1372 MPa 得到调节级前压力P 0'= P 0 - ΔP 0=3.2928MPa ,并确定调节级前蒸汽状态点1。过1点作等比熵线向下交于P x 线于2点,查得h 2t =2152.1kj/kg ,整机的理想比焓降 ()'0 23304.221201184.2mac t t h h h ?=-=-=3304.2-2128=1176 kj/kg 。由上估计进汽量后得到的相对内效率 ηri =83.1%,有效比焓降Δht mac =(Δht mac )' ηri =1176×0.831=977.3kj/kg ,排汽比 焓03304.2986.3282317.872mac z t h h h =-?=-=3304.2-977.3=2326.9 kj/kg ,在h-s 图上得排汽点Z 。用直线连接1、Z 两点,在中间'3点处沿等压线下移21~25 kj/kg 得3点,用光滑连接1、3、Z 点,得该机设计工况下的近似热力过程曲线,如图2-2所示。 图2-2 12MW 凝汽式汽轮机近似热力过程曲线

3000 KW凝汽式汽轮机发电机组技术方案

3000 KW凝汽式汽轮发电机组技术方案 一技术要求 1.1 汽轮机本体技术参数 汽轮机型号:N3-2.35 进汽压力:2.35±0.1Mpa (绝压) ℃ 进汽温度:390+10 -20 额定功率:3000 KW 最大功率:3000 KW 额定转速:5600-3000 r/min(暂定,如频率60HZ,输出3600r/min)临界转速:3690 r/min 额定进汽量:17 t/h 排汽压力:0.0103 Mpa (绝) 1.2汽轮机结构参数 布置形式:单层布置 转子结构:1个复速级+8个压力级叶轮 主汽门进/出口通径:125×2 mm 抽汽口通径:80 mm 排汽口通径:850 mm 汽轮机转子重(t):1.1 最大起吊件重(检修):3.5 t 运行层标高:0 m 汽机中心距运行层高度:1050mm

汽轮机盘车装置:手动盘车 汽轮机与减速箱联接形式:平面齿式联轴器减速箱与发电机联接形式:刚性联轴器 1.3调节保安系统技术数据 调节方式:全液压 调节汽阀数量:5个 转速不等率:5% 迟缓率:≤0.5% 同步器在空负荷时转速变化范围%:-4~+6 危急遮断器动作转速r/min:6104~6216 转子轴向位移许可值:0.7 mm 主油泵进口油压:0.1 Mpa 主油泵出口油压:0.7 Mpa 脉冲油压:0.4 Mpa 1.4辅机技术数据 1.4.1冷凝器 数量:1台 式样:双流程表面式 冷却水温度:正常27℃最高33℃ 冷却面积:280㎡ 无水重量:6.1t 1.4.2油系统

底盘油箱:1个 容量:2000 L 无油重量:3.348 t 冷油器数量:1台 冷却水侧面积:20㎡ 冷却水量:57.4t/h 无油无水重量:402 kg 主油泵:钻孔离心式 电动油泵:1个 手摇油泵:1个 二产品执行标准 JB/T7025-1993 25MW以下转子体和主轴锻件技术条件 JB/T7028-1993 25MW以下汽轮机轮盘及叶轮锻件技术条件JB/T9628-1993 汽轮机叶片磁粉探伤方法 JB/T9629-1999 汽轮机承压件、水压实验技术条件 JB/T9631-1999 汽轮机铸铁件技术条件 JB/T9637-1999 汽轮机总装技术条件 JB/T9638-1999 汽轮机用联轴器等重要锻件技术条件 JB/T2901-1992 汽轮机防锈技术条件 JB/T4058-1999 汽轮机清洁度 三供应项目清单

330MW汽轮机主要热力系统

2. 热力系统 2.1 330MW汽轮机本体抽汽及疏水系统 2.1.1 抽汽系统的作用 汽轮机有七级非调节抽汽,一、二、三、四级抽汽分别供四台低压加热器,五级抽汽供汽至除氧器及辅助蒸汽用汽系统,六、七级抽汽供两台高压加热器及一台外置式蒸汽冷却器(六级抽汽经蒸汽冷却器至六号高加)。 抽汽系统具有以下作用: a)加热给水、凝结水以提高循环热效率。 b)提高给水、凝结水温度,降低给水和锅炉管壁之间金属的温度差,减少热冲击。 c)在除氧器内通过加热除氧,除去给水中的氧气和其它不凝结气体。 d)提供辅助蒸汽汽源。 2.1.2 抽汽系统介绍 一段抽汽是从低压缸第4级后引出,穿经凝汽器至#1低压加热器的抽汽管道; 二段抽汽是从低压缸第3级后引出,穿经凝汽器至#2低压加热器的抽汽管道; 三段抽汽是从低压缸第2级后引出,穿经凝汽器至#3低压加热器的抽汽管道; 四段抽汽是从中压缸排汽口引出,至#4低压加热器的抽汽管道; 二、三、四级抽汽管道各装设一个电动隔离阀和一个气动逆止阀。气动逆止阀布置在电动隔离阀之后。电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 五段抽汽是从中压缸第9级后引出,至五级抽汽总管,然后再由总管上引出两路,分别接至除氧器和辅助蒸汽系统; 在五段抽汽至除氧器管道上装设一个电动隔离阀和两个串联的气动逆止阀。装设两个逆止阀是因为除氧器还接有其他汽源,在机组启动、低负荷运行、甩负荷或停机时,其它汽源的蒸汽有可能窜入五段抽汽管道,造成汽机超速的危险性较大。串联装设两个气动逆止阀可起到双重保护作用。

五段抽汽至辅助蒸汽联箱管道上装设一个电动隔离阀和一个气动逆止阀,气动逆止阀亦布置在电动隔离阀之后。电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 正常运行时,除氧器加热蒸汽来自于五段抽汽。辅助蒸汽系统来汽作为启动和备用加热蒸汽。 六段抽汽是从中压缸第5级后引出,先经#6高加外置式蒸汽冷却器(副#6高加)冷却后再至#6高压加热器;六级抽汽管道上各装设一个电动闸阀和两个气动逆止阀。 七段抽汽是从再热冷段引出一路至#7高压加热器的抽汽管道,装设一个电动闸阀和一个气动逆止阀,电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 电动隔离阀和气动逆止阀的布置位置一般尽量靠近汽机抽汽口,以减少在汽机甩负荷时阀前抽汽管道上贮存的蒸汽能量,有利于防止汽机超速。 本系统四台低加、两台高加及六号高加外置式蒸汽冷却器均为立式加热器。七台立式加热器从扩建端至固定端按编号从1号至7号再至蒸汽冷却器顺列布置。七台加热器均布置在A—B框架内,其水室中心线距B排柱中心线6.9米。 除氧器及给水箱布置在运转层12.00米层。 汽轮机各抽汽管道连接储有大量饱和水的各级加热器和除氧器。汽轮机一旦跳闸,其内部压力将衰减,各加热器和除氧器内饱和水将闪蒸,使蒸汽返回汽轮机;此外,五级抽汽管道支管上还接有备用汽源——辅助蒸汽,遇到工况变化或误操作,外来蒸汽将通过五级抽汽管道进入汽轮机;还有,各抽汽管道内滞留的蒸汽也可能因汽轮机内部压力降低返回汽轮机;各种返回汽轮机的蒸汽有可能造成汽轮机超速。 为防止上述蒸汽的返回,除一级抽汽外,其它各级抽汽管道上均串联安装有电动隔离阀和气动逆止阀。一旦汽机跳闸,气动逆止阀和电动隔离阀都关闭。 由于汽轮机上有许多抽汽口,而有可能有水的地方离各抽汽口又很近,各抽汽管道上还接有储水容器——高、低压加热器和除氧器,汽轮机负荷突然变化、给水或凝结水管束破裂以及其他设备故障,误操作等因素,可组合

汽轮机课程设计说明书

课程设计说明书 题目:12M W凝汽式汽轮机热力设计 2014年6月28 日

一、题目 12MW凝汽式汽轮机热力设计 二、目的与意义 汽轮机原理课程设计是培养学生综合运用所学的汽轮机知识,训练学生的实际应用能力、理论和实践相结合能力的一个重要环节。通过该课程设计的训练,学生应该能够全面掌握汽轮机的热力设计方法、汽轮机基本结构和零部件组成,系统地总结、巩固并应用《汽轮机原理》课程中已学过的理论知识,达到理论和实际相结合的目的。 重点掌握汽轮机热力设计的方法、步骤。 三、要求(包括原始数据、技术参数、设计要求、图纸量、工作量要求等) 主要技术参数: 额定功率:12MW ;设计功率:10.5MW ; ;新汽温度:435℃; 新汽压力:3.43MP a ;冷却水温:20℃; 排汽压力:0.0060MP a 给水温度:160℃;机组转速:3000r/min ; 主要内容: 1、确定汽轮机型式及配汽方式 2、拟定热力过程及原则性热力系统,进行汽耗量与热经济性的初步计算 3、确定调节级形式、比焓降、叶型及尺寸等 4、确定压力级级数,进行比焓降分配 5、各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与整机实 际热力过程曲线 6、整机校核,汇总计算表格 要求: 1、严格遵守作息时间,在规定地点认真完成设计;设计共计二周。 2、按照统一格式要求,完成设计说明书一份,要求过程完整,数据准确。 3、完成通流部分纵剖面图一张(一号图) 4、计算结果以表格汇总

四、工作内容、进度安排 1、通流部分热力设计计算(9天) (1)熟悉主要参数及设计内容、过程等 (2)熟悉机组型式,选择配汽方式 (3)蒸汽流量的估算 (4)原则性热力系统、整机热力过程拟定及热经济性的初步计算 (5)调节级选型及详细热力计算 (6)压力级级数的确定及焓降分配 (7)压力级的详细热力计算 (8)整机的效率、功率校核 2、结构设计(1天) 进行通流部分和进出口结构的设计 3、绘制汽轮机通流部分纵剖面图一张(一号图)(2天) 4、编写课程设计说明书(2天) 五、主要参考文献 《汽轮机课程设计参考资料》.冯慧雯 .水利电力出版社.1992 《汽轮机原理》(第一版).康松、杨建明编.中国电力出版社.2000.9 《汽轮机原理》(第一版).康松、申士一、庞立云、庄贺庆合编.水利电力出版社.1992.6 《300MW火力发电机组丛书——汽轮机设备及系统》(第一版).吴季兰主编.中国电力出版社.1998.8 指导教师下达时间 2014 年6月 15 日 指导教师签字:_______________ 审核意见 系(教研室)主任(签字)

汽轮机课设心得总结

汽轮机课设心得总结 经过两个星期的汽轮机课设,对我们而言收获颇丰。整个过程我们都认真完成,其中不免遇到很多问题,经过大家的齐心协力共同克服了它们,不仅从中熟悉了汽轮机的工作原理及流程,而且还获得了许多心得体会。 汽轮机是将蒸汽的热能转换为机械能的回转式原动机,是火电和核电的主要设备之一,用于拖动发电机发电。在大型火电机组中还用于拖动锅炉给水泵。 就凝汽式汽轮机而言,从锅炉产生的新蒸汽经由主阀门进入高压缸,再进入中压缸,再进入低压缸,最终进入凝汽器。蒸汽的热能在汽轮机内消耗,变为蒸汽的动能,然后推动装有叶片的汽轮机转子,最终转化为机械能。 除了凝汽式汽轮机,还有背压式汽轮机和抽汽式汽轮机,背压式汽轮机可以理解为没有低压缸和凝汽器的凝汽式汽轮机,它的出口压力较大,可以提供给供热系统或其它热交换系统。抽汽式汽轮机则是指在蒸汽流通过程中抽取一部分用于供热和或再热的汽轮机。 在设计刚进行时,我们也参考了从研究生那里借来的《设计宝典Xp》,但在使用过程中发现此软件只适用于单列级的计算而不适用于双列级,虽然如此,但我们在计算时也参考了其中的部分步骤。我们这次在设计之前又重新温习了《汽轮机原理》中所学的知识,因为汽轮机的热工转换是在各个级内进行的,所以研究级的工作原理是掌握整个汽轮机工作原理的基础,而级的定义是有一列喷嘴叶栅和紧邻其

后的一列动叶栅构成的工作单元。在第一章第七节介绍了级的热力计算示例,书上是以国产N200-12.75/535/535型汽轮机某高压级为例,说明等截面直叶片级的热力计算程序,主要参考了喷嘴部分计算、动叶部分计算、级内损失计算和级效率与内功率的计算。为了保证汽轮机的高效率和增大汽轮机的单机功率就必须把汽轮机设计成多级汽轮机,使很大的蒸汽比焓降由多级汽轮机的各级分别利用,即逐级有效利用,驶各级均可在最加速比附近工作。这一章也讲解了进气阻力损失和排气阻力损失、轴封及其系统,我们也参考了其中的内容。 通过本课程设计,加深、巩固《汽轮机原理》中所学的理论知识,了解汽轮机热力设计的一般步骤,掌握每级焓降以及有关参数的选取,熟练各项损失和速度三角形的计算,通过课程设计以期达到对汽轮机的结构进一步了解,明确主要零部件的作用与位置。具体要求就是按照某机组存在的问题,根据实际情况,制定改造方案,通过理论与设计计算,解决该汽轮机本体存在的问题,达到汽轮机安全、经济运行的目的。 数据的处理 这次汽轮机课设我们负责的是数据的处理,这是一个非常庞大而繁重的工作。接下来就着重说说我们在处理数据时候遇到的一些问题。 刚开始的时候,我们和其他组一起根据课本上的计算公式和焓熵表等编了我们汽轮机课设计算所需要的excel表格,这其中将近耗了接近一周的时间,最后完成时大家觉得很有成就感。接下来我们看汽

汽轮发电机组的原理及相关计算

我单位用0.8MPa的蒸汽40T/H,就此情况,我应该选用多少吨的锅炉(考虑采用循环流化床锅炉),如果可以的话,还要考虑发电,请问,锅炉的蒸发量和汽轮机的发点量有什么关系. 可考虑用75t/h的循环流化床锅炉,蒸汽参数为温度450度、压力为3.8mpa,现在由于煤价上涨,发电亏损太厉害,当然如果自己用就另当别论了,建议采用抽凝机组一台6000KW/H,6000KW/H 的机组大约满负荷需用30t/h蒸汽(纯凝),如果带抽汽最多能进77t/h蒸汽,也就是说最大供汽量就是47t/h,供汽参数为温度298度、压力为0.8mpa,抽凝机组最大的好处就是能够随负荷的变化进行调节。锅炉蒸发量与气轮机发电量的关系,纯凝机组为1000KW/H 用汽约5t/h,抽凝机组视抽汽量的多少,不会变化太大,如果不考虑发电,就需要上减温减压设备,降低锅炉蒸汽参数。 300MW汽轮机运行1小时需要多少蒸汽? 需要16.7MPa(170公斤力)的主蒸汽额定压力,每小时主蒸汽流量为908t,这个要看你的机组带的负荷了负荷高蒸汽量就大但是也跟你的机组的调门状态有关顺序阀控制蒸汽量比单阀控制需要的蒸汽量小具体的去集控室DCS操作员站上看吧我们200MW 的机组带140MW的负荷单阀蒸汽量好象是400T/H 切换成顺序阀后蒸汽量380T/H。 应该是204吨。 通常,MW指的是电工率,要想大概计算也可以:锅炉吨位×每吨蒸汽焓×汽轮机效率×发电机效率:锅炉吨位×0.7×0.42=电功率

MW,比如204×0.7×0.42=60MW。这里的0.7是1t/h基本等同于0.7MW,(习惯会认为是0.7MW,但也要看蒸汽的参数,蒸汽的压力和过热度不同,焓值也不同,即蒸汽焓随蒸汽参数的不同是不同的,会有点出入)0.42是考虑汽轮机效率、发电机效率的系数(也决定于汽轮机那边的系统,0.42是取一个大概值。可以查汽轮机岗位那边的设计书). 锅炉产生的蒸汽是吨位计,但汽轮机发电是以热量计,其实按上面是可以转换的。算出锅炉运行参数时每吨蒸汽含的热量,系统的效率,就可以得出MW。习惯上,电厂的装机容量都以MW,而不大习惯说锅炉是多少吨。至于 60MW的发电机配置多大的锅炉,不一定是上204吨,会有个富余量。当然还得是在锅炉设计上有的系列,一般都不上非标的。

汽轮机组效率及热力系统节能降耗定量分析计算

汽轮机组主要经济技术指标的计算 为了统一汽轮机组主要经济技术指标的计算方法及过程,本章节计算公式选自中华人民国电力行业标准DL/T904—2004《火力发电厂技术经济指标计算方法》和GB/T8117—87《电站汽轮机热力性能验收规程》。 1 凝汽式汽轮机组主要经济技术指标计算 1.1 汽轮机组热耗率及功率计算 a. 非再热机组 试验热耗率: G 0H G H HR0 fw fw N t kJ/kWh 式中G ─主蒸汽流量,kg/h;G fw ─给水流量,kg/h;H ─ 主蒸汽焓值,kJ/kg ;H fw─ 给水焓值,kJ/kg; N t ─实测发电机端功率,kW。 修正后(经二类)的热耗率: HQ HR C Q kJ/kWh 式中C Q─主蒸汽压力、主蒸汽温度、汽机背压对热耗的综合修正系数。修正后的功率: N N t kW p Q 式中K Q ─主蒸汽压力、主蒸汽温度、汽机背压对功率的综合修正系数。 b. 再热机组 试验热耗率:: G 0H G fw H fw G R (H r H 1 ) G J (H r H J) HR N t kJ/kWh 式中G R─高压缸排汽流量,kg/h; G J ─再热减温水流量,kg/h; H r ─再热蒸汽焓值,kJ/kg; K

p c ?υ0 p 0?υc k H k H 1─ 高压缸排汽焓值,kJ/kg ; H J ─ 再热减温水焓值,kJ/kg 。 修正后(经二类)的热耗率: HQ HR C Q kJ/kWh 式中 C Q ─ 主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及汽 机背压对热耗的综合修正系数。 修正后的功率: N N t kW p Q 式中 K Q ─主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及 汽机背压对功率的综合修正系数。 1.2 汽轮机汽耗率计算 a. 试验汽耗率: SR G 0 N t kg/kWh b. 修正后的汽耗率: SR G c kg/kWh c p 式中G c ─修正后的主蒸汽流量,G c G 0 ,kg/h ; p c 、c ─设计主蒸汽压力、主蒸汽比容; p 0、 ─实测主蒸汽压力、主蒸汽比容。 1.3 汽轮机相对效率计算 a. 非再热机组 汽轮机相对效率: H 0 H k 100% oi 0 - H ' 式中 ' H k ─ 汽轮机等熵排汽焓,kJ/kg ; ─ 汽轮机排汽焓,kJ/kg 。 K N H

汽轮机开题报告

南华大学本科生毕业设计(论文)开题报告 设计(论文)题目 12MW机组抽汽汽轮机总体设计 设计(论文)题目来源 自选课题 设计(论文)题目类型 工程设计类 起止时间 20150112~20150530 设计(论文)依据及研究意义: 本设计研究的依据: 1883年瑞典工程师拉法尔创造出第一台轴流式汽轮机,它是一台3.7kw的单级冲动式汽轮机,转速高达26000r/min,相应的轮轴速度为475m/s。1884到1894年,英国工程师巴森斯相机创造出了现在复速级单级汽轮机。为了满足其他工业部门对蒸汽的需要,在1903到1907年间,出现了热能、电能联合生产的汽轮机,即背压式及调节抽汽式汽轮机。1920年左右,出现了给水回热式汽轮机。到1925年,出现了第一台中间再热式汽轮机。上个世纪40年代以后,汽轮机发展特别迅速。自70年代以来,工业发达国家汽轮机的制造水平普遍进入百万级。最大单机功率达到1300MW。1980年苏联制造的1200WM单轴汽轮机投入运行。 我国自1955年制造第一台中压6MW汽轮机以来,在之后的30几年时间里,已经走完了从中压机组到亚临界600WM机组的全部过程。目前我国超高压、亚临界参数125MW以上到60MW功率等级范围内汽轮机产品的制造质量、运行性能、可靠信等综合指标已达到国际同类机组的水平。我国已具有了与国际跨国公司相当的亚临界、常规超临界参数大功率汽轮机的设计制造能力。 对于小功率汽轮机具有如下特点: 1)初参数低。小功率汽轮机一般为中低压机组,初参数在3.4MPa/435℃以下。但是也有个别次高压(4.9~5.9MPa/435~450℃)或高压(8.9MPa/500℃)机组。 2)热力系统简单。小功率汽轮机一般为1~3级回热系统,无中间过热循环,热力系统简单。 3)结构简单。小功率汽轮机通常是单缸、单轴、定转速(3000rpm或1500rpm)汽轮机,个别机组为双缸及高转速(附加变速装置)。 现在火电厂基本都是高参数大容量机组,抽汽汽轮机主要是用于发电和供暖,能源利用率高,与普通凝汽式汽轮机相比也更为节能。因此设计12MW机组抽汽汽轮机有一定研究意义。

汽轮机原则性热力系统资料

汽轮机原则性热力系统 根据热力循环的特征,以安全和经济为原则,将汽轮机与锅炉本体由管道、阀门及其辅助设备连接起来,组成发电厂的热力系统。汽轮机热力系统是指主蒸汽、再热蒸汽系统,旁路系统,轴封系统,辅助蒸汽系统和回热抽汽系统等。下面着重介绍主蒸汽系统及旁路系统。 第一节主蒸汽及再热蒸汽系统 锅炉与汽轮机之间的蒸汽管道与通往各用汽点的支管及其附件称为主、再热蒸汽系统。本机组的主蒸汽及再热蒸汽采用单元制连接方式,即一机一炉相配合的连接系统,如图3-1所示。该连接方式结构简单、阀门少、管道短而阻力小,便于自动化的集中控制。 一、主蒸汽系统 主、再热蒸汽管道均为单元双—单—双管制系统,主蒸汽管道上不装设隔断阀,主蒸汽可作为汽动给水泵及轴封在机组启动或低负荷时备用汽源。 主蒸汽从锅炉过热器的两个出口由两根蒸汽管道引出后汇合成一根主蒸汽管道送至汽轮机,再分成两根蒸汽管道进入2只高压自动主汽阀、4只调节阀,然后借助4根导汽管进入高压缸,在高压缸内做功后的蒸汽经过2只高压排汽逆止阀,再经过蒸汽管道(冷段管)回到锅炉的再热器重新加热。经过再热后的蒸汽温度由335℃升高到538℃,压力由3.483MPa 降至3.135MPa,由于主、再热蒸汽流量变化不多蒸汽比容增加将近一倍。再热后蒸汽由两根蒸汽管道引出后汇合成一根再蒸汽管道送至汽轮机,再分成两根蒸汽管道经过2只再热联合汽阀(中压自动主汽阀及中压调节阀的组合)进入中压缸。 它设有两级旁路,I级旁路从高压自动主汽阀前引出,蒸汽经减压减温后排至再热器冷段管,采用给水作为减温水。II级旁路从中压缸自动主汽阀前引出,蒸汽经减压减温后送至凝汽器,用凝结水泵出口的凝结水作为减温水。 带动给水泵的小汽轮机是利用中压缸排汽作为工作汽源(第4段抽汽,下称低压蒸汽)。由于低压蒸汽的参数随主机的负荷降低而降低,当负荷下降至额定负荷的40%时,该汽源已不能满足要求,所以需采用新蒸汽(下称高压蒸汽)作为低负荷的补充汽源或独立汽源。当低压蒸汽的调节阀开足后,高压蒸汽的调节阀才逐步开启,使功率达到新的平衡。 主蒸汽管道上还接出轴封备用及启动供汽管道。 主蒸汽管道设计有通畅的疏水系统,在主蒸汽管道主管末端最低点,去驱动给水泵的小汽轮机的新蒸汽管道的低位点,以及靠近给水泵汽轮机高压主汽阀前,均设有疏水点,每一根疏水管道分别引至凝汽器的热水井。 主蒸汽管道主管及支管的疏水管道上各安装一只疏水阀,不再装设其它隔离阀。疏水阀在机组启动时开启,排除主蒸汽管道内暖管时产生的凝结水,避免汽轮机进水,并可加速暖管时的温升。待机组负荷达到10%时,疏水阀自动关闭;当汽轮机负荷降至10%时或跳闸时,疏水阀自动开启,也可以在单元控制室手动操作。 冷再热蒸汽管道从汽轮机高压缸排汽接出,先由单管引至靠近锅炉再热器处,再分为两根支管接到再热器入口联箱的两个接口上。在再热蒸汽冷段管道上接出2号高压加热器抽汽管道。汽轮机主汽阀及调节汽阀的阀杆漏汽、高压旁路的排汽均送入本系统。

25mw凝汽式汽轮机组热力设计.

毕业设计说明书 25MW 凝汽式汽轮机组热力设计 学号: 学 院: 专 业: 指导教师: 2016年6月 1227024207 中北大学(朔州校区) 热能与动力工程 张志香

30MW凝汽式汽轮机组热力设计 摘要 本课题针对30MW凝汽式汽轮机组进行热力设计,在额定功率下确定汽轮机型式及参数,使其运行时具有较高的经济性,并考虑汽轮机的结构、系统、布置等方面的因素,以达到“节能降耗,保护环境”的目的。 本文首先对汽轮机进行了选型,对汽轮机总进汽量进行了计算、通流部分的选型、压力级比焓降分配及级数的确定、汽轮机级的热力计算、漏气量的计算与整机校核等。根据通流部分选型,确定排汽口数与末级叶片、配汽方式和调节级的选型,并进行各级比焓降分配与级数的确定;对各级进行热力计算,求出各级通流部分的几何尺寸,相对内效率,实际热力过程曲线。根据热力计算结果,修正各回热抽汽点压力达到符合实际热力过程曲线的要求,并修正回热系统的热力平衡计算,分析并确定汽轮机热力设计的基本参数。 关键词:汽轮机,凝汽式,热力系统,热力计算

Thermodynamic design of 30MW condensing steam turbine Abstract This topic for 30MW steam turbine unit for thermal design, seek appropriate turbine at rated power, to make it run with higher economic and to considered to steam turbine structure, system and arrangement and parts. So it can achieve "energy saving, environmental protection" purpose. Determination of machine, firstly, the steam turbine for the selection of the turbine total inlet were calculated through flow part of the selection pressure enthalpy drop distribution and series, steam turbine thermodynamic calculation, the leakage amount of calculation and check. According to the through flow part of selection to determine the exhaust port number and the last stage blades of steam distribution mode and regulation level selection, and for different levels of specific enthalpy drop distribution and the series of levels with a thermodynamic calculation for at all levels through flow part of the geometry and relative internal efficiency, the actual thermodynamic process curve. According to the thermodynamic calculation results, correction of regenerative extraction steam pressure to conform to the actual thermodynamic process curve, and repair Thermodynamic equilibrium calculation, analysis and determination of the basic parameters of the thermal design of the turbine. keywords:steam turbine, condensing type, thermodynamic system, thermodynamic calculation

相关主题
文本预览
相关文档 最新文档