当前位置:文档之家› 材料力学 课后练习讲课讲稿

材料力学 课后练习讲课讲稿

材料力学 课后练习讲课讲稿
材料力学 课后练习讲课讲稿

材料力学课后练习

判断

1、材料的弹性模量E 是一个常量,任何情况下都等于应力和应变的比值。( × )

2、因为材料的弹性模量A E σ

=,因而它随应力的增大而提高。( × ) 试件越粗E 越大( ×)

3、平行移轴定理的应用条件是两轴平行,并有一轴通过截面形心。( √ )

4、梁弯曲时中性轴必过截面的形心,( √ )中性轴是梁截面的对称轴。( × )

5、如图所示,沿截面n n -将梁截分为二。若以梁左段为研究对象,则截面n n -上的剪力和弯矩与q 、M 无关;若以梁右段为研究对象,则截面上的剪力和弯矩与F 无关。( × )

6、在有集中力作用处,梁的剪力图要发生突变,弯矩图的斜率要发生突变。( √ )

7、梁的最大弯矩只发生在剪力为零的横截面上。( × )

8、小挠度微分方程的使用条件是线弹性范围内的直梁。( × )

9、用高强度优质碳钢代替低碳钢,既可以提高粱的强度,又可以提高梁的刚度。( × )

10、材料、长度、截面形状和尺寸完全相同的两根梁,当受力相同,其变形和位移也相同。( × )

11、两梁的材料、长度、截面形状和尺寸完全相同,若它们的挠曲线相同,则受力相同。( √ )

12、杆件发生斜弯曲时,杆变形的总挠度方向一定与中性轴向垂直。 ( × )

13、若偏心压力位于截面核心的内部,则中性轴穿越杆件的横截面。 ( × )

14、若压力作用点离截面核心越远,则中性轴离截面越远。 ( × )

15、在弯扭组合变形圆截面杆的外边界上,各点的应力状态都处于平面应力状态。( √ )

16、在弯曲与扭转组合变形圆截面杆的外边界上,各点主应力必然是σ1> σ2 ,σ2=0,σ3<0 。 ( √ )

17、承受斜弯曲的杆件,其中性轴必然通过横截面的形心,而且中性轴上正应力必为零。( √ )

18、承受偏心拉伸(压缩)的杆件,其中性轴仍然通过横截面的形心。 ( × )

19、偏心拉压杆件中性轴的位置,取决于梁截面的几何尺寸和载荷作用点的位置,而与载荷的大小无关。 ( √ )

20、拉伸(压缩)与弯曲组合变形和偏心拉伸(压缩)组合变形的中性轴位置都与载荷的大小无关。 ( × )

选择

1、对于某个平面图形,以下结论中哪个是错误的?

A .图形的对称轴必定通过形心

B .图形如有两根对称轴,两根对称轴交点必定为形心

C .对于图形的对称轴,图形的静矩必为零

D .图形的对于某个轴的静矩为零,则该轴必为对称轴。

D

1、杆件的刚度是指 。

A 杆件的软硬程度;

B 杆件的承载能力;

C 杆件对弯曲变形的抵抗能力;

D 杆件对弹性变形的抵抗能力。

答案:D

6、各向同性的假设是指材料在各个方向 。

A 、弹性模量具有相同的值

B 、变形相等

C 、具有相同的强度

D 、应力相等

E 、受力和位移是相同的

答案:A C

1、用三种不同材料制成尺寸相同的试件,在相同的实验条件下进行拉伸试验,得到的应力—应变曲线如图所示。比较三曲线,可知拉伸强度最高、弹性模量最大、塑性最好的材料分别是 。

答案:a 、b 、c

3、没有明显屈服平台的塑性材料,其破坏应力取材料的 。

A 比例极限p σ;

B 名义屈服极限2.0σ;

C 强度极限b σ;

D 根据需要确定。

答案:B

4、低碳钢的拉伸σ-ε曲线如图。若加载至强化阶段的C 点,然后卸载,则应力回到零值的路径是沿 。

A 、 曲线cbao

B 、 曲线cbf (bf ∥ oa)

C 、 直线ce (ce ∥ oa)

D 、直线cd (cd ∥σo )

答案:C 外径为D 1、内径为D 2的空心圆轴,两端受扭转力偶矩T 的作用,轴向的最大切应变为τ。若轴外径改为21D ,内径改为22D ,则轴向的最大切应力变为 。

A :τ4;

B :τ8;

C :τ16;

D :τ32

答案:B

15、薄壁圆管受扭转时的切应力公式为δπτ

22R T =,(R 和δ分别为圆管的平均半径和壁厚)下列结

论中 是正确的。

σ

d e f ε

σ

①:该切应力公式是根据平衡关系导出的;

②:该切应力公式是根据平衡、几何、物理三方面条件导出的;

③:该切应力公式是在“平面假设”的基础上导出的;

④:该切应力公式仅适用于δ<<R 的圆管。

A :②、③;

B :③、④;

C :①、④;

D :①、②

答案:C

17、如图所示单元体ABCD 在外力作用下处于纯剪切应力状态,已知其切应变为γ,则单元体的对角线AC 的线应变ε为 。

A :4γ;

B :2γ;

C :43γ;

D :γ

答案:B

于扭转剪应力公式τ(ρ)=M x ρ / I p 的应用范围有以下几种,试判断哪一种是正确的 A 。

(A )等截面圆轴,弹性范围内加载;

(B )等截面圆轴;

(C )等截面圆轴与椭圆轴;

(D )等截面圆轴与椭圆轴,弹性范围内加载。

26、两根长度相等、直径不等的圆轴承受相同的扭矩后,轴表面上母线转过相同的角度。设直径大的轴和直径小的轴的横截面上的最大剪应力分别为max 1τ和max 2τ,剪切弹性模量分别为G 1和G 2。判断下列结论的正确性。

(A )max 2max

1ττ>; (B )max 2max 1ττ<;

(C )若G 1 > G 2,则有max 2max 1ττ>;

(D )若G 1 > G 2,则有max 2max

1ττ<。 C 4、某直梁横截面面积一定,试问下图所示的四种截面形状中,那一种抗弯能力最强 B 。

A 矩形

B 工字形

C 圆形

D 正方形

9、建立平面弯曲正应力公式

z I My =σ,需要考虑的关系有 。 A 平衡关系

,物理关系,变形几何关系;

B 变形几何关系,物理关系,静力关系;

C 变形几何关系,平衡关系,静力关系;

D 平衡关系, 物理关系,静力关系;

答案:B

10、矩形截面的核心形状为 。

A 矩形;

B 菱形;

C 正方形;

D 三角形。

答案:B

11、T 形截面铸铁材料悬臂梁受力如图,轴Z 为中性轴,横截面合理布置的方案应为 。

(A ) (B ) (C ) (D )

答案:A

2、图示圆截面梁,若直径d 增大一倍(其它条件不变),则梁的最大正应力、最大挠度分别降至原来的 。

161

81.D 8181.C 8141.B 4121.;;;A 答案:D

6、梁的受力如图,挠曲线正确的是 。

q B d

m m m m m m m m

B C D

答案:B

3. 分析下列受力构件各点的受力情况:

①受扭的薄壁圆筒各点; ②纯弯曲的梁各点;

③横力弯曲的梁(不含上下边缘点); ④轴向拉或压杆各点;

⑤受滚珠压力作用的轴承圈相应点; ⑥受轮压作用的钢轨相应点;

⑦受弯扭组合作用的轴各点。

其中处于单向应力状态的受力点:

A :①,②,④

B :④,⑤,⑥

C :②,④

D :①,④,⑦

E :②,③,④。

答案:C

若构件内危险点的应力状态为二向等拉,则除( )强度理论以外,利用其他三个强度理论得到的相当应力是相等的。

A.第一

B.第二

C.第三

D.第四

答案:B

9. 铸铁水管冬天结冰时会因冰膨胀而被胀裂,而管内的冰却不会破坏。这是因为( )。

A.冰的强度较铸铁高;

B.冰处于三向受压应力状态;

C.冰的温度较铸铁高;

D.冰的应力等于零。

答案:B

1.对于偏心压缩的杆件,下述结论中( )是错误的。

A. 截面核心是指保证中性轴不穿过横截面的、位于截面形心附近的一个区域

B. 中性轴是一条不通过截面形心的直线

C. 外力作用点与中性轴始终处于截面形心的相对两边

D. 截面核心与截面的形状、尺寸及载荷大小有关

答案: D

3. 图示拉杆头和拉杆的横截面均为圆形,拉杆头的剪切面积A =( )。

答案:B

图示木杆接头剪切面积为( B )。

()

4....222d D D d C dh B Dh

A -ππππLb D La C Lb

B aL A 2.2...F F b a L L

材料力学天津大学作业答案讲课讲稿

材料力学复习题 单项选择题 1、等直杆在轴向拉伸或压缩时,横截面上正应力均匀分布是根据()得出的。 A 静力平衡条件 B 连续条件 C 小变形假设 D 平面假设及材料均匀连续假设 2、小变形是指() A 很小的变形; B 线弹性范围内的变形 C 远小于构件原始尺寸的微小变形 D 卸载后,构建中的残余变形 3、无明显屈服阶段的塑性材料作成带切槽的构件,在静载荷作用下,在截面削弱处是() A 可以略去应力集中的影响; B 不存在应力集中的影响; C 减缓应力集中的影响; D 要考虑应力集中的影响 4、等直杆在轴向拉伸或压缩时,下述提法正确的是() A 最大正应力的截面上,其剪应力必定也是最大 B 最大正应力的截面上,剪应力不一定为零 C 最大正应力的截面上,其剪应力必定为零 D 最大剪应力的截面上,其正应力必定为零 5、静定杆件的多余约束是指() A 从静力平衡条件来说是多余的 B 从系统强度来说是多余的 C 从系统刚度来说是多余的 D 从系统稳定性来说是多余的 6、剪应力互等定理只适用于() A 两个互相垂直平面上的剪应力分析 B 纯剪切应力下 C 线弹性范围内 D 扭转变形 7、当剪切超过材料的剪切比例极限时,则() A 剪切胡克定律不成立 B 剪应力互等定理不成立 C 剪切胡克定律和剪应力互等定理均成立 D 材料发生剪切破坏 8、具有外棱角(凸角)和内棱角(凹角)的棱柱杆,其表面无切向力作用,则杆件受扭时,任意横截面上外棱角顶点处的应力状态() A 正应力最大 B 剪应力为零 C 剪应力不为零 D 剪应力最大 9、设计某一主轴,发现原方案刚度不足,将进行修改设计,你认为最有效的措施是() A 轴材料改用优质高强钢 B 设计成合理的空心圆截面,采用合理的结构形式减小内力 C 加大轴径 D 把轴挖空

最新06材料力学

06材料力学

注册土木工程师(港口与航道工程)执业资格考试培训讲稿 基础考试:上午4小时 120道题每题1分其中材料力学15道题平均每道题用时2分钟。 01年结构考题: 拉压2 剪切 1 扭转 2 截面性质 3 弯曲内力 2 弯曲正应力 3 弯曲变形(含超) 2 应力状态强度理论 1 组合变形 2 稳定 1 02年岩土考题: 拉压3 剪切 1 扭转 2 截面性质 2 弯曲内力 2 弯曲正应力 1 弯曲变形(含超) 1 应力状态强度理论 2 组合变形 1 稳定 1 02年结构考题: 拉压3 剪切 1 扭转 1 截面性质 2 弯曲内力 2 弯曲正应力 2 弯曲变形(含超) 1 应力状态强度理论 2 组合变形 1 稳定 2 全部是选择题,计算量小 根据考试特点复习时应: 基本概念要清楚,基本公式和定义要记牢,解题方法要熟练,要培养快速反应能力 一、基本概念 内力:构件在外力作用下发生变形,引起构件内部各质点之间产生的附加内力(简称内力)。

应力:截面内一点处内力的分布集度。单位是:N/m2(Pa)、N/mm2(MPa)等。应力可分为正应力σ和剪应力τ(剪应力)。 位移:构件内任一点由其原来位置到其新位置的连线称为该点的线位移。构件内某一线段(或平面)由原始位置所转过的角度称为该线段(或平面)的角位移。 变形:构件形状的改变。 应变:构件内任一点处的变形程度。应变又可分为线应变ε和剪应变γ,均为无量纲量。 线应变ε表示变形前构件内任一点处的一条微线段,变形后的长度改变量与其原始长度之比。 剪应变γ表示过构件内任一点的两个互相垂直的微线段,变形后两个微线段的角度改变量。 例题0 单元体变形后的形状如图中虚线所 示,则A点的剪应变是( )。 (A) O,2γ,2γ (B) γ,γ,2γ (C) γ,2γ,2γ (D) O,γ,2γ 答案:D 例题0图 二、四种基本变形的内力、应力及强度、变形 1、内力 拉压内力:轴力N扭转内力M T弯曲内力Q、M 关键点内力的正负号,内力图的画法 重点弯曲内力(因拉压、扭转内力较简单) 熟练利用剪力、弯矩与分布力的微分关系及其图形的规律判断内力图的正确性。 (1)利用剪力Q、弯矩M与荷载集度q之间的微分关系,可得到下述结论: a)q=0段,Q图为水平直线,M图为斜直线;当Q >0,M图/(上升),Q < 0,M 图 \(下降)。 b)在q=c(常数)的区段,Q图为斜直线,M图为抛物线。 当q (↑) > 0,Q图/,M图;当q (↓) < 0,Q图 \,M图。

第四章扭转(讲稿)材料力学教案(顾志荣)

第四章扭转 同济大学航空航天与力学学院顾志荣 一、教学目标与教学内容 1、教学目标 (1)掌握扭转的概念; (2)熟练掌握扭转杆件的内力(扭矩)计算和画扭矩图; (3)了解切应力互等定理及其应用,剪切胡克定律与剪切弹性模量; (4) 熟练掌握扭转杆件横截面上的切应力计算方法和扭转强度计算方法; (5) 熟练掌握扭转杆件变形(扭转角)计算方法和扭转刚度计算方法; (6)了解低碳钢和铸铁的扭转破坏现象并进行分析。 (7)了解矩形截面杆和薄壁杆扭转计算方法。 2、教学内容 (1) 扭转的概念和工程实例; (2) 扭转杆件的内力(扭矩)计算,扭矩图; (3) 切应力互等定理, 剪切胡克定律;

(4) 扭转杆件横截面上的切应力, 扭转强度条件; (5) 扭转杆件变形(扭转角)计算,刚度条件; (6) 圆轴受扭破坏分析; (7) 矩形截面杆的只有扭转; (8) 薄壁杆件的自由扭转。 二、重点和难点 1、重点:教学内容中(1)~(6)。 2、难点:切应力互等定理,横截面上切应力公式的推导,扭转变形与剪切变形的区别,扭转切应力连接件中切应力的区别。通过讲解,多媒体的动画演示扭转与剪切的变形和破坏情况,以及讲解例题来解决。 三、教学方式 通过工程实例建立扭转概念,利用动画演示和实物演示表示扭转时的变形,采用启发式教学,通过提问,引导学生思考,让学生回答问题。 四、建议学时 6学时 五、实施学时 六、讲课提纲

工程实例: 图4-1 **扭转和扭转变形 1、何谓扭转? 如果杆件受力偶作用,而力偶是作用在垂直于杆件轴线的平面内,则这杆件就承受了扭转。换言之,受扭杆件的受力特点是:所受到的外力是一些力偶矩,作用在垂直于杆轴的平面内。 2、何谓扭转变形? 在外力偶的作用下,杆件的任意两个横截面都绕轴线发生相对转动。杆件的这种变化形式称为扭转变形。换言之,受扭转杆件的变形

材料力学第五版课后习题答案

7-4[习题7-3] 一拉杆由两段沿n m -面胶合而成。由于实用的原因,图中的α角限于060~0范围内。作为“假定计算” ,对胶合缝作强度计算时,可以把其上的正应力和切应力分别与相应的许用应力比较。现设胶合缝的许用切应力][τ为许用拉应力][σ的4/3,且这一拉杆的强度由胶合缝强度控制。为了使杆能承受最大的荷载F ,试问α角的值应取多 大? 解:A F x =σ;0=y σ;0=x τ ατασσσσσα2s i n 2c o s 2 2 x y x y x --+ += ][22cos 12cos 22σα ασα≤+=+= A F A F A F ][22cos 1σα≤+A F ,][cos 2σα≤A F ασ2cos ][A F ≤,α σ2 max,cos ][A F N = ατασστα2c o s 2s i n 2 x y x +-= ][ 3][2sin στατα=≤= F ,σ][5.1A F ≤ ,σ][5.1max,A F T = 由切应力

强度条件控制最大荷载。由图中可以看出,当0 60=α时,杆能承受最大荷载,该荷载为: A F ][732.1max σ= 7-6[习题7-7] 试用应力圆的几何关系求图示悬臂梁距离自由端为m 72.0的截面上,在顶面以下mm 40的一点处的最大及最小主应力,并求最大主应力与x 轴之间的夹角。 解:(1)求计算点的正应力与切应力 MPa mm mm mm N bh My I My z 55.1016080401072.01012124 363=??????===σ MPa mm mm mm N b I QS z z 88.0801608012 160)4080(1010433 3*-=???????-== τ (2)写出坐标面应力 X (10.55,-0.88) Y (0,0.88) (3) 作应力圆求最大与最小主应力, 并求最大主应力与x 轴的夹角 作应力圆如图所示。从图中按 比例尺量得: MPa 66.101=σ MPa 06.03-=σ 0075.4=α 7-7[习题7-8] 各单元体面上的应力如图所示。试利用应力圆的几何关系求: (1)指定截面上的应力; (2)主应力的数值; (3)在单元体上绘出主平面的位置及主应力的方向。

复合材料力学讲义

复合材料力学讲义 第一部分简单层板宏观力学性能 1.1各向异性材料的应力—应变关系 应力—应变的广义虎克定律可以用简写符号写成为: (1—1) 其中σi为应力分量,C ij为刚度矩阵εj为应变分量.对于应力和应变张量对称的情形(即不存在体积力的情况),上述简写符号和常用的三维应力—应变张量符号的对照列于表1—1。 按表1—l,用简写符号表示的应变定义为: 表1—1 应力——应变的张量符号与简写符号的对照 注:γij(i≠j)代表工程剪应变,而εij(i≠j)代表张量剪应变 (1—2)

其中u,v,w是在x,y,z方向的位移。 在方程(1—2)中,刚度矩阵C ij有30个常数.但是当考虑应变能时可以证明弹性材料的实际独立常数是少于36个的.存在有弹性位能或应变能密度函数的弹性材料当应力σi作用于应变dεj时,单位体积的功的增量为: (1—3) 由应力—应变关系式(1—1),功的增量为: (1—4) 沿整个应变积分,单位体积的功为: (1—5) 虎克定律关系式(1—1)可由方程(1—5)导出: (1—6) 于是 (1—7) 同样 (1—8) 因W的微分与次序无,所以: (1—9) 这样刚度矩阵是对称的且只有21个常数是独立的。 用同样的方法我们可以证明: (1—10)

其中S ij是柔度矩阵,可由反演应力—变关系式来确定应变应力关系式为 (1—11) 同理 (1—12)即柔度矩阵是对称的,也只有21个独立常数.刚度和柔度分量可认为是弹性常数。 在线性弹性范围内,应力—应变关系的一般表达式为: (1—13)实际上,关系式(1—13)是表征各向异性材料的,因为材料性能没有对称平面.这种各向异性材料的别名是全不对称材料.比各向异性材料有更多的性能对称性的材料将在下面几段中叙述.各种材料性能对称的应力—应变关系式的证明由蔡(Tais)等给出。 如果材料有一个性能对称平面应力—应变关系式可简化为 (1—14)

材料力学课后习题答案

材料力学课后习题答案 欢迎大家来到,本人搜集整理了材料力学课后习题答案供大家查阅,希望大家喜欢。 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成1

个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的1种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些? 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。 2、试述韧性断裂与脆性断裂的区别。为什么脆性断裂

材料力学讲稿:第13章 动荷载

第十五章动荷载 一、教学目标和教学内容 1、教学目标 通过本章学习,唤起学生对动荷载问题的注意。 让学生知道动荷载问题的两个方面,目前应当掌握在较简单的工程问题中,动荷载引起杆件的应力、应变和位移的计算。对于材料在动荷载下的力学行为,以后根据工作的需要再进一步补充学习。 让学生掌握动荷载问题的基本知识,如杆件作等加速运动时的应力计算,作等速旋转圆盘的应力分析,简单的自由落体冲击和水平冲击,以及循环应力问题的有关概念。 能够深刻认识动荷系数概念,并能够熟练地进行杆件作等加速运动时的应力计算,作等速旋转圆盘的应力分析,完成简单的自由落体冲击和水平冲击的计算。 2、教学内容 介绍杆件作等加速运动拉伸、压缩及弯曲时的应力计算。 介绍等角速度旋转的动荷应力计算。 讲解简单冲击时,能量守恒的基本方程,分别导出自由落体冲击和水平冲击时的动荷系数公式,及杆件经受冲击时的应力计算公式。 二、重点难点

重点:建立三类动荷载概念。 掌握杆件作等加速运动时的应力计算。 作等速旋转圆盘的应力分析。 简单的自由落体冲击和水平冲击问题的计算 难点:对动静法和动荷系数的理解。 对于动荷载问题与静荷载问题的联系与区别。 在简单冲击问题中,被冲击杆件冲击点的相应静荷位移的理解和计算,特别是水平冲击时的静荷位移的理解和计算。 三、教学方式 采用启发式教学,通过提问,引导学生思考,让学生回答问题。 四、建议学时 3学时 五、实施学时 六、讲课提纲 (一)概念(动荷载的概念) 1、静荷载: 作用在构件上的荷载由零开始,逐渐(平缓、慢慢)地增长到最终值,以致在加载过程中,构件各点的加速度很小,可以不计;荷载加到最终值保持不变或变动的不显著的荷载,称之为静荷载。

材料力学课后习题答案

8-1 试求图示各杆的轴力,并指出轴力的最大值。 (1) 用截面法求内力,取1-1、2-2截面; (2) 取1-1 (3) 取2-2 (4) 轴力最大值: (b) (1) 求固定端的约束反力; (2) 取1-1 (3) 取2-2截面的右段; (4) 轴力最大值: (c) (1) 用截面法求内力,取1-1、2-2、 3-3截面; (2) 取1-1 (3) 取2-2截面的左段; (4) 取3-3截面的右段; (c) (d) N 1 F R F N 1 F R F N 2 F N 1 N 2

(5) 轴力最大值: (d) (1) 用截面法求内力,取1-1、2-2截面; (2) 取1-1 (2) 取2-2 (5) 轴力最大值: 8-2 试画出8-1所示各杆的轴力图。 解:(a) (b) (c) (d) 8-5 段的直径分别为d 1=20 mm 和d 2=30 mm F 2之值。 解:(1) (2) 求1-1、2-2截面的正应力,利用正应力相同; 8-6 题8-5图所示圆截面杆,已知载荷F 1=200 kN ,F 2=100 kN ,AB 段的直径d 1=40 mm ,如欲 使AB 与BC 段横截面上的正应力相同,试求BC 段的直径。 解:(1) 用截面法求出1-1、2-2截面的轴力; (2) 求1-1、2-2截面的正应力,利用正应力相同; 8-7 图示木杆,承受轴向载荷F =10 kN 作用,杆的横截面面积A =1000 mm 2 ,粘接面的方位角 θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。 F N 3 F N 1 F N 2

材料力学精选练习题答案

材料力学精选练习题答案 一、是非题 1.1 材料力学主要研究杆件受力后变形与破坏的规律。 1.内力只能是力。 1.若物体各点均无位移,则该物体必定无变形。 1.截面法是分析应力的基本方法。二、选择题 1.构件的强度是指,刚度是指,稳定性是指。 A. 在外力作用下构件抵抗变形的能力 B. 在外力作用下构件保持其原有的平衡状态的能力 C. 在外力作用下构件抵抗破坏的能力 1.根据均匀性假设,可认为构件的在各点处相同。 A. 应力 B. 应变 C. 材料的弹性常数 D. 位移 1.下列结论中正确的是 A. 内力是应力的代数和 B. 应力是内力的平均值 C. 应力是内力的集度 D. 内力必大于应力 参考答案:1.1 √ 1.× 1.√ 1.× 1.C,A,B 1.C 1.C 轴向拉压 一、选择题 1. 等截面直杆CD位于两块夹板之间,如图示。杆件与夹板间的摩擦力与杆件自重保持平衡。设杆CD两侧的摩擦力沿轴线方向均匀分布,且两侧摩擦力的集度均为q,杆

CD的横截面面积为A,质量密度为?,试问下列结论中哪一个是正确的? q??gA; 杆内最大轴力FNmax?ql;杆内各横截面上的轴力FN? ?gAl 2 ; 杆内各横截面上的轴力FN?0。 2. 低碳钢试样拉伸时,横截面上的应力公式??FNA适用于以下哪一种情况? 只适用于?≤?p;只适用于?≤?e; 3. 在A和B 和点B的距离保持不变,绳索的许用拉应力为[? ]取何值时,绳索的用料最省? 0; 0; 5; 0。 4. 桁架如图示,载荷F可在横梁DE为A,许用应力均为[?]。求载荷F 的许用值。以下四种答案中哪一种是正确的? [?]A2[?]A ;; 32 [?]A; [?]A。 5. 一种是正确的? 外径和壁厚都增大;

材料力学复习题备课讲稿

材料力学复习题

拉压 σ=时,试当低碳钢试件的试验应力sσ 件将: (A)完全失去承载能力; (B)破裂; (C)发生局部紧缩现象;(D)产生很大的塑性变形。 图示受力构件的轴力图有以下四种:正确答案是。

等截面直杆受力P 作用发生拉伸变形。已知横截面面积为A ,则横截面上的正应力和450 斜截面上的正应力分别为: (A )()A P A P 2,; (B )( ) A P A P 2,; (C )()()A P A P 2,2; (D )A P A P 2, 。

伸长率(延伸率)公式 ()%1001?-=l l l δ中1l 指的是什么,有 以下四种答案: (A )断裂时试件的长度; (B )断裂后试件的长度; (C )断裂时试验段的长度; (D )断裂后试验段的长度。 等截面直杆受轴向拉力P 作用而产生弹性伸长,已知杆长为l ,面积为A ,材料弹性模量为E ,泊松比为v 。拉伸理论告诉我们,影响该杆横截面上应力的因素是:

(A )E 、v 、P ; (B )l 、A 、P ; (C )l 、A 、E 、v 、P ; (D )A 、P 。 对于没有明显屈服阶段的塑性材料,通常用2.0σ表示其屈服极限。2.0σ是塑性 应变等于 ------------------------- 时的应力值。 铸铁压缩试件,破坏是在 截面发生剪切错动,是由于 引起的。 如塑性材料拉伸实验测得s σ为150Mpa,b σ为200Mpa ,安全系数取1.8 则[]σ=__________________。

低碳钢的拉伸实验中 ,低碳钢的变形过程分为四个阶段,它们分别为: _______________________________________________________。 材料力学研究的变形体简化的基本假设为: ___________________________________。 三角构架如图所示,AB 长为1m ,杆的 横截面面积为2 11000mm A =,BC 杆的横 截面面积为2 2 600mm A =,材料许用拉应 力[]MPa 40=+σ,许用压应力[]MPa 20=- σ,E=200GPa,试校核其强度以及B 的位移。

材料力学习题册-第13章 能量法

第 十三 章 能 量 法 一、选择题 1.一圆轴在图1所示两种受扭情况下,其( A )。 A 应变能相同,自由端扭转角不同; B 应变能不同,自由端扭转角相同; C 应变能和自由端扭转角均相同; D 应变能和自由端扭转角均不同。 (图1) 2.图2所示悬臂梁,当单独作用力F 时,截面B 的转角为θ,若先加力偶M ,后加F ,则在加F 的过程中,力偶M ( C )。 A 不做功; B 做正功; C 做负功,其值为θM ; D 做负功,其值为 θM 2 1 。 3.图2所示悬臂梁,加载次序有下述三种方式:第一种为F 、M 同时按比例施加;第二种为先加F ,后加M ;第三种为先加M ,后加F 。在线弹性范围内,它们的变形能应为( D )。 A 第一种大; B 第二种大; C 第三种大; D 一样大。 4.图3所示等截面直杆,受一对大小相等,方向相反的力F 作用。若已知杆的拉压刚度为EA ,材料的泊松比为μ,则由功的互等定理可知,该杆的轴向变形为EA Fl μ,l 为杆件长 度。(提示:在杆的轴向施加另一组拉力F 。) A 0; B EA Fb ; C EA Fb μ; D 无法确定。 (图2) (图3)

二、计算题 1.图示静定桁架,各杆的拉压刚度均为EA 相等。试求节点C 的水平位移。 解:解法1-功能原理,因为要求的水平位移与P 力方向一致,所以可以用这种方法。 由静力学知识可简单地求出各杆的内力,如下表所示。 ( )() EA a P EA Pa EA Pa P C 22222212 2 2 2++=? 可得出:() EA Pa C 122+= ? 解法2-卡氏定理或莫尔积分,这两种方法一致了。 则C 点水平位移为:() EA Pa C 122+=? 2.图示刚架,已知各段的拉压刚度均为EA ,抗弯刚度均为EI 。试求A 截面的铅直位移。

材料力学课后习题答案

8-1 试求图示各杆的轴力,并指出轴力的最大值。 解:(a) (1) 用截面法求内力,取1-1、2-2截面; (2) 取1-1截面的左段; 110 0 x N N F F F F F =-==∑ (3) 取2-2截面的右段; (a (b) (c (d

220 0 0x N N F F F =-==∑ (4) 轴力最大值: max N F F = (b) (1) 求固定端的约束反力; 0 20 x R R F F F F F F =-+-==∑ (2) 取1-1截面的左段; 110 0 x N N F F F F F =-==∑ (3) 取2-2截面的右段; 1 1 2

220 0 x N R N R F F F F F F =--==-=-∑ (4) 轴力最大值: max N F F = (c) (1) 用截面法求内力,取1-1、2-2、3-3截面; (2) 取1-1截面的左段; 110 20 2 x N N F F F kN =+==-∑ (3) 取2-2截面的左段; 220 230 1 x N N F F F kN =-+==∑ (4) 取3-3截面的右段; 1 1

330 30 3 x N N F F F kN =-==∑ (5) 轴力最大值: max 3 N F kN = (d) (1) 用截面法求内力,取1-1、2-2截面; (2) 取1-1截面的右段; 110 210 1 x N N F F F kN =--==∑ (2) 取2-2截面的右段; 3 1 2

220 10 1 x N N F F F kN =--==-∑ (5) 轴力最大值: max 1 N F kN = 8-2 试画出8-1所示各杆的轴力图。 解:(a) (b) (c) F

最新材料力学常用公式讲课讲稿

材料力学常用公式 1外力偶矩计算公式(P 功率,n转速) 2弯矩、剪力和荷载集度之间的关系式 3轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正) 4轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a从x轴正方向逆时针转至外法线的方位角为正) 5 6纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)

7 8纵向线应变和横向线应变 9 10泊松比 11胡克定律 12受多个力作用的杆件纵向变形计算公式? 13承受轴向分布力或变截面的杆件,纵向变形计算公式 14轴向拉压杆的强度计算公式 15许用应力,脆性材料,塑性材料 16延伸率 17截面收缩率 18剪切胡克定律(切变模量G,切应变g) 19拉压弹性模量E、泊松比和切变模量G之间关系式

20圆截面对圆心的极惯性矩(a)实心圆 21(b)空心圆 22圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r) 23圆截面周边各点处最大切应力计算公式 24扭转截面系数,(a)实心圆 25(b)空心圆 26薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式 27圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式 28同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或 29等直圆轴强度条件 30塑性材料;脆性材料

31扭转圆轴的刚度条件? 或 32受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 33平面应力状态下斜截面应力的一般公式 , 34平面应力状态的三个主应力, , 35主平面方位的计算公式 36面内最大切应力 37受扭圆轴表面某点的三个主应力,, 38三向应力状态最大与最小正应力, 39三向应力状态最大切应力 40广义胡克定律 41

材料力学习题与答案

第一章 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(ζP)或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服强度(ζS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素 与以下三个方面相联系的因素都会影响到屈服强度 位错增值和运动 晶粒、晶界、第二相等

外界影响位错运动的因素 主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构) 单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。 派拉力: 位错交互作用力 (a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。)2.晶粒大小和亚结构 晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。 晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。 屈服强度与晶粒大小的关系: 霍尔-派奇(Hall-Petch) ζs= ζi+kyd-1/2 3.溶质元素 加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。 4.第二相(弥散强化,沉淀强化) 不可变形第二相

材料力学实讲义

§1 金属材料的拉伸实验 一、实验目的 1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度sU σ,下屈服强度sL σ和抗拉 强度b σ。 2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率δ和断面收缩率ψ。 3.测定铸铁的强度性能指标:抗拉强度b σ。 4.观察、比较低碳钢(Q235 钢)和铸铁两种材料的力学性能、拉伸过程及破坏现象。 5. 学习试验机的使用方法。 二、设备和仪器 1.材料试验机(见附1-2)。 2.电子引伸计(见附1-2)。 3.游标卡尺。 三、试样 为使实验结果可以相互比较,必须对试样、试验机及实验方法做出明确具体的规定。国标GB/T228-2002 “金属材料室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形和板状两种试样,如图1-1所示。它们均由夹持、过渡和平行三部分组成。夹持部分应适合于试验机夹头的夹持。过渡部分的圆孤应与平行部分光滑地联接,以保证试样破坏时断口在平行部分。平行部分中测量伸长用的长度称为标距。受力前的标距称为原始标距,记作L 0,通常在 l 0 l b h (a) (b) 图1-1 试样

其两端划细线标志。 按试样原始标距L 0和原始横截面面积A 0之间的关系分,试样可分为比例试样和定标距试样两种。 比例试样的0L =系数K 通常取为5.65或11.3,前者称为短比例试样(简称短试样),后者称为长比例试样(简称长试样)。对圆形试样来说,原始标距分别等于5d 0和10d 0。一般应采用短比例试样。定标距试样L 0与A 0无上述比例关系。 国标GB/T228-2002中,对试样形状、尺寸、公差和表面粗糙度均有明确规定。 本次实验采用d 0=10mm 的圆形截面短比例试样。 四、实验原理 低碳钢(Q235 钢)的拉伸实验(图解方法) 将试样安装在试验机的上下夹头中,引伸计装卡在试样上,启动试验机对试样加载,试验机将自动绘制出载荷位移曲线(F -ΔL 曲线),如图1-2。观察试样的受力、变形直至破坏的全过程,可以看到低碳钢拉伸过程中的四个阶段 (弹性阶段、屈服阶段、强化阶段和局部变形阶 段)。 屈服阶段反映在F -ΔL 曲线图上为一水平波动线。上屈服力sU F 是试样发生屈服而载荷首次下降前的最大载荷。下屈服力sL F 是试样在屈服期间去除初始瞬时效应(载荷第一次急剧下降)后波动最低点所对应的载荷。最大力b F 是试样在 屈服阶段之后所能承受的最大载荷。相应的强度指标由以下公式计算 上屈服强度sU σ :sU sU 0 F A σ= (1-1) 下屈服强度sL σ: sL sL 0 F A σ= (1-2 ) 抗拉强度b σ: b b 0 F A σ= (1-3) 式中:A 0为试样原始横截面面积。 在强化阶段任一时刻卸载、再加载,可以观察加载、卸载规律和冷作硬化现象。 在最大力b F 以前,变形是均匀的。从最大力b F 开始,试样局部显著收缩,产生所谓颈缩。由于颈缩,使颈缩处截面减小,致使载荷随之下降,最后断裂。断口呈杯锥形。 测量断后的标距部分长度L u 和颈缩处最小直径d u ,按以下两式计算其主要塑性指标: 断后伸长率δ 图1-2 低碳钢拉伸图

材料力学培训讲稿概论

注册工程师执业资格考试培训讲稿 基础考试:上午4小时 120道题每题1分其中材料力学15道题平均每道题用时2分钟。 根据考试特点复习时应: 基本概念要清楚,基本公式和定义要记牢,解题方法要熟练,要培养快速反应能力 一、基本概念 内力:构件在外力作用下发生变形,引起构件内部各质点之间产生的附加内力(简称内力)。 应力:截面内一点处内力的分布集度。单位是:N/m2(Pa)、N/mm2(MPa)等。应力可分为正应力σ和剪应力τ(剪应力)。 位移:构件内任一点由其原来位置到其新位置的连线称为该点的线位移。构件内某一线段(或平面)由原始位置所转过的角度称为该线段(或平面)的角位移。 变形:构件形状的改变。 应变:构件内任一点处的变形程度。应变又可分为线应变ε和剪应变γ,均为无量纲量。 线应变ε表示变形前构件内任一点处的一条微线段,变形后的长度改变量与其原始长度之比。 剪应变γ表示过构件内任一点的两个互相垂直的微线段,变形后两个微线段的角度改变量。 例题0 单元体变形后的形状如图中虚线所 示,则A点的剪应变是( )。 (A) O,2γ,2γ (B) γ,γ,2γ (C) γ,2γ,2γ (D) O,γ,2γ 例题0图答案: D 二、四种基本变形的内力、应力及强度、变形 1、内力 15

拉压内力:轴力N扭转内力M T弯曲内力Q、M 关键点内力的正负号,内力图的画法 重点弯曲内力(因拉压、扭转内力较简单) 熟练利用剪力、弯矩与分布力的微分关系及其图形的规律判断内力图的正确性。 (1)利用剪力Q、弯矩M与荷载集度q之间的微分关系,可得到下述结论: a)q=0段,Q图为水平直线,M图为斜直线;当Q >0,M图/(上升),Q < 0,M图 \(下降)。 b)在q=c(常数)的区段,Q图为斜直线,M图为抛物线。 当q (↑) > 0,Q图/,M图;当q (↓) < 0,Q图 \,M图。 c)在Q = 0的点处,M图有极值;在Q 突变处,M图有一个折角。 (2)Q图、M图的一般规律: a)集中力作用处,Q有突变,突变量等于集中力值,突变方向与集中力作用方向一致。M斜率有突变,出现折角。 b)在集中力偶作用处,Q图无变化。M图有突变,突变量等于该集中力偶矩值。 c)在分布力的起点和终点,Q图有拐点; M图为直线与抛物线的光滑连接。 d)当梁的简支端或自由端无集中力偶时, M为零。 e)梁的最大弯矩通常发生在剪力Q=0处或集中力、集中力偶作用点处。 f)对称结构承受对称荷载作用时,剪力图是反对称的(剪力指向仍是对称的),弯矩图是对称的。对称结构承受反对称荷载时,剪力图是对称的,弯矩图是反对称的。 以上剪力图与载荷之间关系可以推广到拉压轴力N、扭转内力M T中。 例1根据梁的受力分析Q、M图图形 16 图2 图1

材料力学习题册答案-第13章-能量法

材料力学习题册答案-第13章-能量法

第 十三 章 能 量 法 一、选择题 1.一圆轴在图1所示两种受扭情况下,其 ( A )。 A 应变能相同,自由端扭转角不同; B 应变能不同,自由端 扭转角相同; C 应变能和自由端扭转角均相同; D 应变能和自由端扭转角均不同。 (图1) 2.图2所示悬臂梁,当单独作用力F 时,截面 B 的转角为θ,若先加力偶M ,后加F ,则在加F 的过程中,力偶M ( C )。 A 不做功; B 做正功; C 做负功,其值为θM ; D 做负功,其值为θM 2 1 。 3.图2所示悬臂梁,加载次序有下述三种方式: 第一种为F 、M 同时按比例施加;第二种为先加F ,后加M ;第三种为先加M ,后加F 。在线弹性范围内,它们的变形能应为( D )。 a 2M M a M

A 第一种大; B 第二种大; C 第三种大; D 一样大。 4.图3所示等截面直杆,受一对大小相等,方 向相反的力F 作用。若已知杆的拉压刚度为EA ,材料的泊松比为μ,则由功的互等定理 可知,该杆的轴向变形为EA Fl μ,l 为杆件长度。 (提示:在杆的轴向施加另一组拉力F 。) A 0; B EA Fb ; C EA Fb μ; D 无法确 定。 F M A B C b F F (图2 ) (图3)

二、计算题 1.图示静定桁架,各杆的拉压刚度均为EA 相 等。试求节点C 的水平位移。 a a P C B A D 解:解法1-功能原理,因为要求的水平位移与P 力方向一致,所以可以用这种方法。 由静力学知识可简单地求出各杆的内力,如下表所示。 ( )()EA a P EA Pa EA Pa P C 22222212 2 2 2++=? 可得出:( )EA Pa C 122+= ? 解法2-卡氏定理或莫尔积分,这两种方法一致了。 在C 点施加水平单位力,则各杆的内力如下表所示。 1

材料力学练习题及答案-全

材料力学练习题及答案-全

第2页共52页 学年第二学期材料力学试题(A 卷) 一、 选择题(20分) 1、图示刚性梁AB 由杆1和杆2支承,已知两杆的材料相同,长度不等,横截面积分别为A 1和A 2,若载荷P 使刚梁平行下移,则其横截面面积( )。 A 、A 1〈A 2 B 、A 1 〉A 2 C 、A 1=A 2 D 、A 1、A 2为任意 2、建立圆轴的扭转应力公式τρ=M ρρ/I ρ时需考虑下列因素中的哪几个?答:( ) (1) 扭矩M T 与剪应力τρ的关系M T =∫A τρρdA (2) 变形的几何关系(即变形协调条件) (3) 剪切虎克定律 (4) 极惯性矩的关系式I T =∫A ρ2dA A 、(1) B 、(1)(2) C 、(1)(2)(3) D 、全部 3、二向应力状态如图所示,其最大主应力σ1=( ) A 、σ B 、2σ C 、3σ D 、4σ 4、高度等于宽度两倍(h=2b)的矩形截 题 号 一 二 三 四 五 六 总分 得 分 题一、 题

第3页共52页

第4页共52页 四、电动机功率为9kW ,转速为715r/min ,皮带轮直径D =250mm ,主轴外伸部分长度为l =120mm ,主轴直径d =40mm ,〔σ〕=60MPa ,用第三强度理论校核轴的强度。(15分) 五、重量为Q 的重物自由下落在图示刚架C 点,设刚架的抗弯刚度为EI ,试求冲击时刚架D 处的垂直位移。(15分) 六、结构如图所示,P=15kN ,已知梁和杆为一种材料,E=210GPa 。梁ABC 的惯性矩I=245cm 4,等直圆杆BD 的直径D=40mm 。规定杆BD 的稳定安全系数n st =2。 求○1BD 杆承受的压力。 ○2用欧拉公式判断BD 杆是否失稳。(20分) 六题 五 四题 工程技术学院 _______________专业 班级 姓名____________ 学号

材料力学 课后练习讲课讲稿

材料力学课后练习

判断 1、材料的弹性模量E 是一个常量,任何情况下都等于应力和应变的比值。( × ) 2、因为材料的弹性模量A E σ =,因而它随应力的增大而提高。( × ) 试件越粗E 越大( ×) 3、平行移轴定理的应用条件是两轴平行,并有一轴通过截面形心。( √ ) 4、梁弯曲时中性轴必过截面的形心,( √ )中性轴是梁截面的对称轴。( × ) 5、如图所示,沿截面n n -将梁截分为二。若以梁左段为研究对象,则截面n n -上的剪力和弯矩与q 、M 无关;若以梁右段为研究对象,则截面上的剪力和弯矩与F 无关。( × ) 6、在有集中力作用处,梁的剪力图要发生突变,弯矩图的斜率要发生突变。( √ ) 7、梁的最大弯矩只发生在剪力为零的横截面上。( × ) 8、小挠度微分方程的使用条件是线弹性范围内的直梁。( × ) 9、用高强度优质碳钢代替低碳钢,既可以提高粱的强度,又可以提高梁的刚度。( × ) 10、材料、长度、截面形状和尺寸完全相同的两根梁,当受力相同,其变形和位移也相同。( × ) 11、两梁的材料、长度、截面形状和尺寸完全相同,若它们的挠曲线相同,则受力相同。( √ ) 12、杆件发生斜弯曲时,杆变形的总挠度方向一定与中性轴向垂直。 ( × ) 13、若偏心压力位于截面核心的内部,则中性轴穿越杆件的横截面。 ( × ) 14、若压力作用点离截面核心越远,则中性轴离截面越远。 ( × ) 15、在弯扭组合变形圆截面杆的外边界上,各点的应力状态都处于平面应力状态。( √ ) 16、在弯曲与扭转组合变形圆截面杆的外边界上,各点主应力必然是σ1> σ2 ,σ2=0,σ3<0 。 ( √ ) 17、承受斜弯曲的杆件,其中性轴必然通过横截面的形心,而且中性轴上正应力必为零。( √ ) 18、承受偏心拉伸(压缩)的杆件,其中性轴仍然通过横截面的形心。 ( × ) 19、偏心拉压杆件中性轴的位置,取决于梁截面的几何尺寸和载荷作用点的位置,而与载荷的大小无关。 ( √ ) 20、拉伸(压缩)与弯曲组合变形和偏心拉伸(压缩)组合变形的中性轴位置都与载荷的大小无关。 ( × ) 选择 1、对于某个平面图形,以下结论中哪个是错误的? A .图形的对称轴必定通过形心 B .图形如有两根对称轴,两根对称轴交点必定为形心 C .对于图形的对称轴,图形的静矩必为零 D .图形的对于某个轴的静矩为零,则该轴必为对称轴。 D 1、杆件的刚度是指 。 A 杆件的软硬程度; B 杆件的承载能力; C 杆件对弯曲变形的抵抗能力; D 杆件对弹性变形的抵抗能力。

完整版材料力学性能课后习题答案整理

材料力学性能课后习题答案 第一章单向静拉伸力学性能 I、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2 ?滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3 ?循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载, 规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5 ?解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6?塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7. 解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8. 河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9. 解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10. 穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 II. 韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 2、说明下列力学性能指标的意义。 答:E弹性模量G切变模量二r规定残余伸长应力C 0.2屈服强度 P金属材料拉伸时最大应力下的总伸长率n 应变硬化指数P15 3、金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指

复合材料力学讲义

复合材料力学讲义-CAL-FENGHAI.-(YICAI)-Company One1

复合材料力学讲义 第一部分简单层板宏观力学性能 1.1各向异性材料的应力—应变关系 应力—应变的广义虎克定律可以用简写符号写成为: (1—1) 其中σi为应力分量,C ij为刚度矩阵εj为应变分量.对于应力和应变张量对称的情形(即不存在体积力的情况),上述简写符号和常用的三维应力—应变张量符号的对照列于表1—1。 按表1—l,用简写符号表示的应变定义为: 表1—1 应力——应变的张量符号与简写符号的对照 注:γij(i≠j)代表工程剪应变,而εij(i≠j)代表张量剪应变 (1—2) 其中u,v,w是在x,y,z方向的位移。 在方程(1—2)中,刚度矩阵C ij有30个常数.但是当考虑应变能时可以证明弹性材料的实际独立常数是少于36个的.存在有弹性位能或应变能密度函数的弹性材料当应力σi作用于应变dεj时,单位体积的功的增量为: (1—3) 由应力—应变关系式(1—1),功的增量为:

(1—4) 沿整个应变积分,单位体积的功为: (1—5) 虎克定律关系式(1—1)可由方程(1—5)导出: (1—6) 于是 (1—7) 同样 (1—8) 因W的微分与次序无,所以: (1—9) 这样刚度矩阵是对称的且只有21个常数是独立的。 用同样的方法我们可以证明: (1—10) 其中S ij是柔度矩阵,可由反演应力—变关系式来确定应变应力关系式为 (1—11) 同理 (1—12) 即柔度矩阵是对称的,也只有21个独立常数.刚度和柔度分量可认为是弹性常数。 在线性弹性范围内,应力—应变关系的一般表达式为: (1—13)

相关主题
文本预览
相关文档 最新文档