当前位置:文档之家› 材料力学-第十三章动荷载(讲稿)

材料力学-第十三章动荷载(讲稿)

材料力学-第十三章动荷载(讲稿)
材料力学-第十三章动荷载(讲稿)

第十五章动荷载

一、教学目标和教学内容

1、教学目标

通过本章学习,唤起学生对动荷载问题的注意。

让学生知道动荷载问题的两个方面,目前应当掌握在较简单的工程问题中,动荷载引起杆件的应力、应变和位移的计算。对于材料在动荷载下的力学行为,以后根据工作的需要再进一步补充学习。

让学生掌握动荷载问题的基本知识,如杆件作等加速运动时的应力计算,作等速旋转圆盘的应力分析,简单的自由落体冲击和水平冲击,以及循环应力问题的有关概念。

能够深刻认识动荷系数概念,并能够熟练地进行杆件作等加速运动时的应力计算,作等速旋转圆盘的应力分析,完成简单的自由落体冲击和水平冲击的计算。

2、教学内容

介绍杆件作等加速运动拉伸、压缩及弯曲时的应力计算。

介绍等角速度旋转的动荷应力计算。

讲解简单冲击时,能量守恒的基本方程,分别导出自由落体冲击和水平冲击时的动荷系数公式,及杆件经受冲击时的应力计算公式。

二、重点难点

重点:建立三类动荷载概念。

掌握杆件作等加速运动时的应力计算。

作等速旋转圆盘的应力分析。

简单的自由落体冲击和水平冲击问题的计算

难点:对动静法和动荷系数的理解。

对于动荷载问题与静荷载问题的联系与区别。

在简单冲击问题中,被冲击杆件冲击点的相应静荷位移的理解和计算,特别是水平冲击时的静荷位移的理解和计算。

三、教学方式

采用启发式教学,通过提问,引导学生思考,让学生回答问题。

四、建议学时

3学时

五、实施学时

六、讲课提纲

(一)概念(动荷载的概念)

1、静荷载:

作用在构件上的荷载由零开始,逐渐(平缓、慢慢)地增长到最终值,以致在加载过程中,构件各点的加速度很小,可以不计;荷载加到最终值保持不变或变动的不显著的荷载,称之为静荷载。

2、动荷载:

如果构件本身处于加速度运动状态(高层、超高层建筑施工时起吊重物;这些建筑物中运行的电梯—惯性力问题);或者静止的构件承受处于运动状态的物体作用(落锤打桩,锤头猛烈冲击砼桩顶—冲击问题);地震波引起建筑物晃动(构件在振动状态下工作—振动问题);机械零件在周期性变化的荷载下工作(交变应力疲劳问题),则构件受到荷载就是动荷载。

3、动荷载与静荷载的区别

静荷载:构件在静止状态下承受静荷载作用。由零开始,逐渐缓慢加载,加到终值后变化不大、加速度很小,可以略去不计。

动荷载:在动荷载作用下,构件内部各质点均有速度改变,即发生了加速度,且这样的加速度不可忽略。

区别:加速度可忽略与不可忽略。

4、虎克定律的适用问题

实验结果表明,只要应力不超过比例极限,虎克定律仍适用于动荷载的应力、应变的计算,弹性模量与静荷载的数值相同。

5、本章讨论的问题

⑴惯性力问题:构件在加速度运动时的应力计算;构件在匀速转动时应力计算(构件上各点有向心加速度)。

⑵冲击问题:垂直冲击;水平冲击。

(二)惯性力问题

1、惯性力的大小与方向

对于加速度为a的质点,惯性力等于质点的质量m与其加速度a的乘

积,即惯性力大小。

a m F I ?= ─────────────(a)

若构件的重量为G,重力加速度为g ,则质点的质量

g

G

m =

─────────────(b) 则质点的惯性力

a g

G

F I ?=

─────────────(c) 惯性力的方向与加速度a 的方向相反。

2、动静法——达朗贝尔原理。

达朗贝尔原理指出,对作加速度的质点系,若假想地在每一质点上加上惯性力,则质点系上的原力系与惯性力系组成平衡力系。这样,就可把动力学问题在形式上作为静力学问题来处理。这就是动静法。

3、构件在加速度直线运动时的应力和变形计算。 ⑴动荷载系数K d

例如有一绳索提升重量为G 的重物(如下图)。

图13-1

则∑=0y F

0=?-

-a g G G F Nd )1(g

a G a g G G F Nd +=?+= 所以,绳索中出现的动应力为

)1()1(g

a

g a A G A F st Nd d +=+==

σσ ────────────⑴ 式中的A

G

st =

σ是静力平衡时绳索中的静应力。 若令⑴式括号内g

a +1为d K , 那么⑴式即为

st d d k σσ?=────────────────────⑵

式中的d k 称为动荷系数

⑵式表明:绳索中的动应力d σ=静应力st σ乘以动荷载系数d k 。 同理:绳索中的静伸长st l ?乘以动荷载系数d k =绳索的动伸长d l ?,即

st d d l K l ??=?────────────────────⑶

同理:

st d d K εε?=─────────────────────⑷

⑵匀加速直线运动构件的应力计算

一直杆AB 以匀加速a 向上提升(见下图);设杆长为l ,横截面积为A ,材料的容重为r ,求杆内的动应力?=d σ

图13-2

解:①用截面法截出杆的下段 ②设截面上的轴向力为Nd F

③该段在Nd F 、自重rAx 和惯性力a g

rAx

?作用下形成平衡力系(图b ) 由静力平衡条件得:

+

=rAx F Nd =?a g

rAx )1(g a

rAx +

若用A

F Nd

d =

σ代表横截面上的正应力,则 )1(g

a rx d +=σ ──────────────────(A)

∵静应力rx A rAx st ==/σ ∴st d st d K g

a σσσ=+=)1(

由(A)式可知,杆内的正应力沿杆长按直线规律变化,见图c 4、构件在匀速转动时的应力计算

当构件作定点匀速转动时,构件上各点有向心加速度

2ωR a n =

式中的R 为质点到转轴的距离(圆环的平均半径)

图13-3

离心惯性力沿圆环中心线均匀分布,其集度为

2

22

ωωD g Ar R g Ar a g Ar q n d ?=?=?=

则环向应力

222

4222ωωσθ?=???==g

rD A D

D g Ar A D q o ─────────────⑴

∵线速度ω2

D

V =

∴环向应力计算式也可写成: 2υσθ?=

g

r

───────────⑵ 其强度条件:][422

σωσθ≤?=g

rD ────────────────⑶ ][2

συσθ≤?=

g

r ─────────────────⑷

由⑶式可求转速,∵n πω2=,则⑶式可写成

r

g D n ?==

][12σππω───────────────⑸ 由⑷式可求容许线速度

r

g

?=

][][συ──────────────────⑹

例题13-1 在AB 轴的B 端有一个质量很大的飞轮(如下图)。与飞轮相比,轴的质量可忽略不计。轴的另一端A 装有刹车离合器。飞轮的转速为

min /100r n =,转动惯量为2S M KN ??=5.0x I 。轴的直径mm d 100=,刹车时使轴

在10秒内均匀减速停止。求轴内最大动应力。

图13-4

解:⑴飞轮与轴的转动角速度为s rad n o /3

1030100602π

ππω=?==

⑵当飞轮与轴同时做均匀减速转动时,其角加速度为

21/3

103

100s rad t

o

ππ

ωωε-=-=

-=

(其中负号表示ε与o

ω的方向相反,如上图)

⑶按动静法,在飞机上加上方向与ε相反的惯性力偶矩d M ,且

m KN ?=--=-=3

5.0)3(5.0π

πεx d I M

⑷设作用于轴上的摩擦力矩为t M ,由平衡方程∑=0x M ,设:

m KN ?=

=3

5.0π

d t M M ⑸AB 轴由于摩擦力矩t M 和惯性力偶矩d M 引起扭转变形,横截面上

的扭矩为T M ,则

m KM ?=

=3

5.0π

d T M M ⑹横截面上的最大扭转剪应力为

2.67MPa Pa 103=?=??==

-62

3max 1067.2)10100(16

3

5.0ππ

τp r

W M

例题13-2 图示结构中的轴AB 及杆CD ,其直径均为d=80mm ,

s /40=ω,材料的MPa 70][=σ,钢的容重3KN/m 4.76=γ,试校核AB 、CD 轴的

强度。

解法之一:

解:1、校核AB 轴的强度(AB 轴的弯曲是由于CD 杆惯性力引起的,因为CD 杆的向心加速度引起了惯性力)

图13-5

⑴CD 杆的质量:g

l r A g

G m CD

??==

⑵CD 杆的加速度:CD R a ?=2ω ⑶CD 杆引起的惯性力I F ;

KN 28.112

6

.0408

.96.0104.764

08.0232

=?

?????=

?=πa m F I ⑷AB 轴的M kN ?=??==38.34

2

.11028.1143max l F M I d ⑸AB 轴的][MPa σπσ 3.6708.032

1038.333

max =??==

W M d d 2、校核CD 杆的强度(I Nd F F =受拉,危险截面在C )

][25.24

08.01028.1133

σπσ MPa =??===A

F A F I Nd d

解法之二:

图13-6

解:沿CD杆轴线单位长度上的惯性力(如图b所示)为

N/m

x

x

l

l

x

q

CD

CD

d

3

2

3

2

10

614

40

)

10

4.

76

08

.0

4

(

)

(?

=

?

?

?

?

?

=

π

当0=x时,0=

d

q

当m

x04.0

=时(c截面处),N/m

3

10

6.

24?

=

d

q

当m

x6.0=时,N/m

3

10

5.

368?

=

d

q

CD杆危险面C上轴力和正应力分别为

KN

3.

110

2.0

1.

110

]

10

4.

76

)

04

.0

6.0(

08

.0

4

[

)]

04

.0

6.0(

)

10

5.

368

10

6.

24

[(

2

13

2

3

3

max

=

+

=

?

?

-

?

?

+

-

?

?

+

?

=

π

Nd

F

MPa

9.

21

08

.0

4

10

3.

110

2

3

max

max

=

?

?

=

=

π

σ

A

F

N

d

(三)冲击荷载

落锤打桩、汽锤锻打钢坯、冲床冲压零件,转动的飞轮突然制动、车辆紧急刹车都属于冲击荷载问题。

1、垂直冲击(冲击物为自由落体)

图13-6

设有一重物Q 从高处为H 处自由落下(如图),冲击到被冲击物体的顶面上,则其动荷载系数st

d H

K δ211+

+=

式中的EA

Ql

EA l F l N st =

=

?=δ ─────构件在静荷载作用时的静位移。 ⑴若H=0时(即突加荷载——荷载由零突然加到Q 值), 则2=d K st st d d K δσσ2== st st d d K δδδ2==

即突加荷载作用下,构件的应力与变形比静荷载(由值逐渐

Q ??→?0)时要大一倍。

⑵若

102 st

H

δ时,则

st

d H

K δ21+

⑶若

1002 st

H

δ时

st

d H

K δ2≈

⑷若已知在冲击开始时冲击物自己落体的速度V ,则st

d H

K δ21+

=中的高

度H 可用g V 22来代替,即st

d g V K δ2

11++=

2、水平冲击

水平冲击时(图a 、b 所示)的动荷系数

st

d g V

K δ=

─────────────────⑺

图13-7

3、冲击荷载作用下的动位移、动应变、动应力

st d d K δδ= st d d K εε= st d d K σσ=

4、受冲击时构件的强度条件:

][σσσ≤=st d d K

例题13-3 试校核图示梁在承受水平冲击荷载作用时的强度。已知,冲击物的重量Q=500KN,冲击荷载Q 与弹簧接触时的水平速度m/s 35.0=V ;弹簧的刚度N/m 610100?=k ,冲击荷载及弹簧作用在梁的中点处,梁的抗弯截面系数3m 31010-?=W ,截面对中性轴的惯性矩 4m 3105-?=I ,钢的GPa 200=E ,

MPa 160][=σ。

图13-7

解:1、当N 500=Q 以静载方式从水平方向作用在弹簧、梁的跨中时,跨中截面的水平位移为

K

Q EI Ql st +=483δ

6

3

393310100105001051020048810500??+??????=-m 01.0005.000533.0=+= 2、动荷载系数d K

12.1313.035

.001

.08.935.0==?==

st d g V K δ

3、最大弯矩d M )(max

m N M k M st d d ??=???==33max max 1011204

8

1050012.1)()(

4、强度校核

][MPa σσ 11210

10101120)()(3

3

max max =??==-W M d d

5、结论:强度够

例题13-4 图a 所示结构,梁长2m =l ,其宽度75mm =b 。高25mm =h ;材料的200GPa =E ;弹簧的刚度10kN/m =K 。今有重量250N =Q 的重物从高度50mm =H 处自由下落,试求被冲击时梁内的最大正应力。若将弹簧置于梁的上边(图b ),则受冲击时梁内的最大正应力又为何值?

图13-8

解:第一种情况(图a )

由弹簧支承B 处的变形协调方程:

K

F EI l F Q B

B =-48)3( 解出N 6.192101010257512110200481250

4813

312

393=????????+

=+=

-kl EI Q F B B 截面的静位移m K F B st 33

1096.110

106

.19-?=?==δ

动荷载系数21.810

96.11052112113

3

=???++=++=--st

d H

K δ 梁内的最大正应力为

MPa 1211025756

12

)6.19250(4121.8)(419=????-?=-?=?=-W

l F Q K K B d st d d σσ

第二种情况(图b )

重物Q 以静载方式作用于弹簧顶部时的静位移为

m 133

1239331013.2710

1025010257512

11020048225048--?=?+???????=+=K Q EI Ql st δ 动荷载系数16.31013.2710502112113

3

=???++=++=--st

d H

K δ

梁内的最大正应力为

MPa 6.501025756

122504116.34192=??????=?=?=-W

Ql K K d st d d σσ

工程力学材料力学_知识点_及典型例题

作出图中AB杆的受力图。 A处固定铰支座 B处可动铰支座 作出图中AB、AC杆及整体的受力图。 B、C光滑面约束 A处铰链约束 DE柔性约束 作图示物系中各物体及整体的受力图。 AB杆:二力杆 E处固定端 C处铰链约束

(1)运动效应:力使物体的机械运动状态发生变化的效应。 (2)变形效应:力使物体的形状发生和尺寸改变的效应。 3、力的三要素:力的大小、方向、作用点。 4、力的表示方法: (1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!) (2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。 5、约束的概念:对物体的运动起限制作用的装置。 6、约束力(约束反力):约束作用于被约束物体上的力。 约束力的方向总是与约束所能限制的运动方向相反。 约束力的作用点,在约束与被约束物体的接处 7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。 8、柔性约束:如绳索、链条、胶带等。 (1)约束的特点:只能限制物体原柔索伸长方向的运动。 (2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。() 9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。 (1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。 (2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。() 10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。 约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()11、固定铰支座 (1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

材料力学天津大学作业答案讲课讲稿

材料力学复习题 单项选择题 1、等直杆在轴向拉伸或压缩时,横截面上正应力均匀分布是根据()得出的。 A 静力平衡条件 B 连续条件 C 小变形假设 D 平面假设及材料均匀连续假设 2、小变形是指() A 很小的变形; B 线弹性范围内的变形 C 远小于构件原始尺寸的微小变形 D 卸载后,构建中的残余变形 3、无明显屈服阶段的塑性材料作成带切槽的构件,在静载荷作用下,在截面削弱处是() A 可以略去应力集中的影响; B 不存在应力集中的影响; C 减缓应力集中的影响; D 要考虑应力集中的影响 4、等直杆在轴向拉伸或压缩时,下述提法正确的是() A 最大正应力的截面上,其剪应力必定也是最大 B 最大正应力的截面上,剪应力不一定为零 C 最大正应力的截面上,其剪应力必定为零 D 最大剪应力的截面上,其正应力必定为零 5、静定杆件的多余约束是指() A 从静力平衡条件来说是多余的 B 从系统强度来说是多余的 C 从系统刚度来说是多余的 D 从系统稳定性来说是多余的 6、剪应力互等定理只适用于() A 两个互相垂直平面上的剪应力分析 B 纯剪切应力下 C 线弹性范围内 D 扭转变形 7、当剪切超过材料的剪切比例极限时,则() A 剪切胡克定律不成立 B 剪应力互等定理不成立 C 剪切胡克定律和剪应力互等定理均成立 D 材料发生剪切破坏 8、具有外棱角(凸角)和内棱角(凹角)的棱柱杆,其表面无切向力作用,则杆件受扭时,任意横截面上外棱角顶点处的应力状态() A 正应力最大 B 剪应力为零 C 剪应力不为零 D 剪应力最大 9、设计某一主轴,发现原方案刚度不足,将进行修改设计,你认为最有效的措施是() A 轴材料改用优质高强钢 B 设计成合理的空心圆截面,采用合理的结构形式减小内力 C 加大轴径 D 把轴挖空

工程力学_静力学与材料力学课后习题答案

1-1试画出以下各题中圆柱或圆盘的受力图。与其它物体接触处的摩擦力均略去。 解: 1-2 试画出以下各题中AB 杆的受力图。 (a) B (b) (c) (d) A (e) A (a) (b) A (c) A (d) A (e) (c) (a)

解: 1-3 试画出以下各题中AB 梁的受力图。 解: (e) B B (a) B (b) (c) F B (a) (c) F (b) (d) (e) F

1-4 试画出以下各题中指定物体的受力图。 (a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。 解: (d) D (e) F Bx (a) (b) (c) (d) D (e) W (f) (a) D (b) B (c) B F D F

1-5 试画出以下各题中指定物体的受力图。 (a) 结点A,结点B;(b) 圆柱A和B及整体;(c) 半拱AB,半拱BC及整体;(d) 杠杆AB,切刀CEF及整体;(e) 秤杆AB,秤盘架BCD及整体。 解:(a) (b) (c) (d) AT F BA F (b) (e)

(c) (d) (e) C A A C ’C D D B

2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上, F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。 解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆, (2) 列平衡方程: 1 214 0 sin 60053 0 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N =?+-==?--=∴==∑∑ AC 与BC 两杆均受拉。 2-3 水平力F 作用在刚架的B 点,如图所示。如不计刚架重量,试求支座A 和D 处的约束 力。 解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形: (2) F 1 F F D F F A F D

工程力学试题库材料力学

材料力学基本知识 复习要点 1. 材料力学的任务 材料力学的主要任务就是在满足刚度、强度和稳定性的基础上,以最经济的代价,为构件确定合理的截面形状和尺寸,选择合适的材料,为合理设计构件提供必要的理论基础和计算方法。 2. 变形固体及其基本假设 连续性假设:认为组成物体的物质密实地充满物体所在的空间,毫无空隙。 均匀性假设:认为物体内各处的力学性能完全相同。 各向同性假设:认为组成物体的材料沿各方向的力学性质完全相同。 小变形假设:认为构件在荷载作用下的变形与构件原始尺寸相比非常小。 3. 外力与内力的概念 外力:施加在结构上的外部荷载及支座反力。 内力:在外力作用下,构件内部各质点间相互作用力的改变量,即附加相互作用力。内力成对出现,等值、反向,分别作用在构件的两部分上。 4. 应力、正应力与切应力 应力:截面上任一点内力的集度。 正应力:垂直于截面的应力分量。 切应力:和截面相切的应力分量。 5. 截面法 分二留一,内力代替。可概括为四个字:截、弃、代、平。即:欲求某点处内力,假想用截面把构件截开为两部分,保留其中一部分,舍弃另一部分,用内力代替弃去部分对保留部分的作用力,并进行受力平衡分析,求出内力。 6. 变形与线应变切应变 变形:变形固体形状的改变。 线应变:单位长度的伸缩量。 练习题 一. 单选题 1、工程构件要正常安全的工作,必须满足一定的条件。下列除()项,

其他各项是必须满足的条件。 A、强度条件 B、刚度条件 C、稳定性条件 D、硬度条件 2、物体受力作用而发生变形,当外力去掉后又能恢复原来形状和尺寸的性质称 为() A.弹性B.塑性C.刚性D.稳定性 3、结构的超静定次数等于()。 A.未知力的数目B.未知力数目与独立平衡方程数目的差数 C.支座反力的数目D.支座反力数目与独立平衡方程数目的差数 4、各向同性假设认为,材料内部各点的()是相同的。 A.力学性质 B.外力 C.变形 D.位移 5、根据小变形条件,可以认为() A.构件不变形 B.结构不变形 C.构件仅发生弹性变形 D.构件变形远小于其原始尺寸 6、构件的强度、刚度和稳定性() A.只与材料的力学性质有关 B.只与构件的形状尺寸有关 C.与二者都有关 D. 与二者都无关7、 在下列各工程材料中,()不可应用各向同性假设。 A.铸铁 B.玻璃 C.松木 D.铸铜 二. 填空题 1. 变形固体的变形可分为和。 2. 构件安全工作的基本要求是:构件必须具有、和足够 的稳定性。(同:材料在使用过程中提出三方面的性能要求,即、、。) 3. 材料力学中杆件变形的基本形式有 。 4. 材料力学中,对变形固体做了 四个基本假设。 、、和、、、

第四章扭转(讲稿)材料力学教案(顾志荣)

第四章扭转 同济大学航空航天与力学学院顾志荣 一、教学目标与教学内容 1、教学目标 (1)掌握扭转的概念; (2)熟练掌握扭转杆件的内力(扭矩)计算和画扭矩图; (3)了解切应力互等定理及其应用,剪切胡克定律与剪切弹性模量; (4) 熟练掌握扭转杆件横截面上的切应力计算方法和扭转强度计算方法; (5) 熟练掌握扭转杆件变形(扭转角)计算方法和扭转刚度计算方法; (6)了解低碳钢和铸铁的扭转破坏现象并进行分析。 (7)了解矩形截面杆和薄壁杆扭转计算方法。 2、教学内容 (1) 扭转的概念和工程实例; (2) 扭转杆件的内力(扭矩)计算,扭矩图; (3) 切应力互等定理, 剪切胡克定律;

(4) 扭转杆件横截面上的切应力, 扭转强度条件; (5) 扭转杆件变形(扭转角)计算,刚度条件; (6) 圆轴受扭破坏分析; (7) 矩形截面杆的只有扭转; (8) 薄壁杆件的自由扭转。 二、重点和难点 1、重点:教学内容中(1)~(6)。 2、难点:切应力互等定理,横截面上切应力公式的推导,扭转变形与剪切变形的区别,扭转切应力连接件中切应力的区别。通过讲解,多媒体的动画演示扭转与剪切的变形和破坏情况,以及讲解例题来解决。 三、教学方式 通过工程实例建立扭转概念,利用动画演示和实物演示表示扭转时的变形,采用启发式教学,通过提问,引导学生思考,让学生回答问题。 四、建议学时 6学时 五、实施学时 六、讲课提纲

工程实例: 图4-1 **扭转和扭转变形 1、何谓扭转? 如果杆件受力偶作用,而力偶是作用在垂直于杆件轴线的平面内,则这杆件就承受了扭转。换言之,受扭杆件的受力特点是:所受到的外力是一些力偶矩,作用在垂直于杆轴的平面内。 2、何谓扭转变形? 在外力偶的作用下,杆件的任意两个横截面都绕轴线发生相对转动。杆件的这种变化形式称为扭转变形。换言之,受扭转杆件的变形

工程力学材料力学答案-第十章

10-1 试计算图示各梁指定截面(标有细线者)的剪力与弯矩。 解:(a) (1) 取A +截面左段研究,其受力如图; 由平衡关系求内力 0SA A F F M ++== (2) 求C 截面内力; 取C 截面左段研究,其受力如图; 由平衡关系求内力 2 SC C Fl F F M == (3) 求B -截面内力 截开B -截面,研究左段,其受力如图; 由平衡关系求内力 SB B F F M Fl == q B (d) (b) (a) SA+ M A+ SC M C A SB M B

(b) (1) 求A 、B 处约束反力 e A B M R R l == (2) 求A +截面内力; 取A +截面左段研究,其受力如图; e SA A A e M F R M M l ++=-=- = (3) 求C 截面内力; 取C 截面左段研究,其受力如图; 22 e e SC A A e A M M l F R M M R l +=-=- =-?= (4) 求B 截面内力; 取B 截面右段研究,其受力如图; 0e SB B B M F R M l =-=- = (c) (1) 求A 、B 处约束反力 e M A+ M C B R B M B

A B Fb Fa R R a b a b = =++ (2) 求A +截面内力; 取A +截面左段研究,其受力如图; 0SA A A Fb F R M a b ++== =+ (3) 求C -截面内力; 取C -截面左段研究,其受力如图; SC A C A Fb Fab F R M R a a b a b --== =?=++ (4) 求C +截面内力; 取C +截面右段研究,其受力如图; SC B C B Fa Fab F R M R b a b a b ++=-=- =?=++ (5) 求B -截面内力; 取B -截面右段研究,其受力如图; 0SB B B Fa F R M a b --=-=- =+ (d) (1) 求A +截面内力 取A +截面右段研究,其受力如图; A R SA+ M A+ R A SC- M C- B R B M C+ B R B M q B M

工程力学材料力学部分习题答案

工程力学材料力学部分习题答案

b2.9 题图2.9所示中段开槽的杆件,两端受轴向载荷P 的作用,试计算截面1-1和2-2上的应力。已知:P = 140kN ,b = 200mm ,b 0 = 100mm ,t = 4mm 。 题图2.9 解:(1) 计算杆的轴力 kN 14021===P N N (2) 计算横截面的面积 21m m 8004200=?=?=t b A 202mm 4004)100200()(=?-=?-=t b b A (3) 计算正应力 MPa 1758001000140111=?== A N σ MPa 350400 1000 140222=?== A N σ (注:本题的目的是说明在一段轴力相同的杆件内,横截面面积小的截面为该段 的危险截面) 2.10 横截面面积A=2cm 2的杆受轴向拉伸,力P=10kN ,求其法线与轴向成30°的及45°斜截面上的应力ασ及ατ,并问m ax τ发生在哪一个截面? 解:(1) 计算杆的轴力 kN 10==P N (2) 计算横截面上的正应力 MPa 50100 2100010=??==A N σ (3) 计算斜截面上的应力 MPa 5.37235030cos 2 230 =??? ? ???==ο ο σσ

MPa 6.212 3250)302 sin(2 30=?= ?= οο σ τ MPa 25225045cos 2 245 =??? ? ???==οο σσ MPa 2512 50 )452 sin(2 45=?= ?= οο σ τ (4) m ax τ发生的截面 ∵ 0)2cos(==ασα τα d d 取得极值 ∴ 0)2cos(=α 因此:2 2π α= , ο454 == π α 故:m ax τ发生在其法线与轴向成45°的截面上。 (注:本题的结果告诉我们,如果拉压杆处横截面的正应力,就可以计算该处任意方向截面的正应力和剪应力。对于拉压杆而言,最大剪应力发生在其法线与轴向成45°的截面上,最大正应力发生在横截面上,横截面上剪应力为零) 2.17 题图2.17所示阶梯直杆AC ,P =10kN ,l 1=l 2=400mm ,A 1=2A 2=100mm 2,E =200GPa 。试计算杆AC 的轴向变形Δl 。 题图2.17 解:(1) 计算直杆各段的轴力及画轴力图 kN 101==P N (拉) kN 102-=-=P N (压)

复合材料力学讲义

复合材料力学讲义 第一部分简单层板宏观力学性能 1.1各向异性材料的应力—应变关系 应力—应变的广义虎克定律可以用简写符号写成为: (1—1) 其中σi为应力分量,C ij为刚度矩阵εj为应变分量.对于应力和应变张量对称的情形(即不存在体积力的情况),上述简写符号和常用的三维应力—应变张量符号的对照列于表1—1。 按表1—l,用简写符号表示的应变定义为: 表1—1 应力——应变的张量符号与简写符号的对照 注:γij(i≠j)代表工程剪应变,而εij(i≠j)代表张量剪应变 (1—2)

其中u,v,w是在x,y,z方向的位移。 在方程(1—2)中,刚度矩阵C ij有30个常数.但是当考虑应变能时可以证明弹性材料的实际独立常数是少于36个的.存在有弹性位能或应变能密度函数的弹性材料当应力σi作用于应变dεj时,单位体积的功的增量为: (1—3) 由应力—应变关系式(1—1),功的增量为: (1—4) 沿整个应变积分,单位体积的功为: (1—5) 虎克定律关系式(1—1)可由方程(1—5)导出: (1—6) 于是 (1—7) 同样 (1—8) 因W的微分与次序无,所以: (1—9) 这样刚度矩阵是对称的且只有21个常数是独立的。 用同样的方法我们可以证明: (1—10)

其中S ij是柔度矩阵,可由反演应力—变关系式来确定应变应力关系式为 (1—11) 同理 (1—12)即柔度矩阵是对称的,也只有21个独立常数.刚度和柔度分量可认为是弹性常数。 在线性弹性范围内,应力—应变关系的一般表达式为: (1—13)实际上,关系式(1—13)是表征各向异性材料的,因为材料性能没有对称平面.这种各向异性材料的别名是全不对称材料.比各向异性材料有更多的性能对称性的材料将在下面几段中叙述.各种材料性能对称的应力—应变关系式的证明由蔡(Tais)等给出。 如果材料有一个性能对称平面应力—应变关系式可简化为 (1—14)

工程力学材料力学答案

4-1 试求题4-1图所示各梁支座的约束力。设力的单位为kN,力偶矩的单位为kN m,长度单位为m,分布载荷集度为kN/m。(提示:计算非均布载荷的投影和与力矩和时需应用积分)。 解: (b):(1) 整体受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy,列出平衡方程; 约束力的方向如图所示。 (c):(1) 研究AB杆,受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy,列出平衡方程; 约束力的方向如图所示。 (e):(1) 研究CABD杆,受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy,列出平衡方程; 约束力的方向如图所示。 4-5 AB梁一端砌在墙内,在自由端装有滑轮用以匀速吊起重物D,设重物的重量为G,又AB长为b,斜绳与铅垂线成角,求固定端的约束力。 解:(1) 研究AB杆(带滑轮),受力分析,画出受力图(平面任意力系); (2) 选坐标系Bxy,列出平衡方程; 约束力的方向如图所示。 4-7 练钢炉的送料机由跑车A和可移动的桥B组成。跑车可沿桥上的轨道运动,两轮间距离为2 m,跑车与操作架、平臂OC以及料斗C相连,料斗每次装载物料重W=15 kN,平臂长OC=5 m。设跑车A,操作架D和所有附件总重为P。作用于操作架的轴线,问P至少应多大才能使料斗在满载时跑车不致翻倒? 解:(1) 研究跑车与操作架、平臂OC以及料斗C,受力分析,画出受力图(平面平行力系); (2) 选F点为矩心,列出平衡方程; (3) 不翻倒的条件; 4-13 活动梯子置于光滑水平面上,并在铅垂面内,梯子两部分AC和AB各重为Q,重心在A点,彼此用铰链A和绳子DE连接。一人重为P立于F处,试求绳子DE的拉力和B、C两点的约束力。 解:(1):研究整体,受力分析,画出受力图(平面平行力系); (2) 选坐标系Bxy,列出平衡方程; (3) 研究AB,受力分析,画出受力图(平面任意力系); (4) 选A点为矩心,列出平衡方程; 4-15 在齿条送料机构中杠杆AB=500 mm,AC=100 mm,齿条受到水平阻力FQ的作用。已知Q=5000 N,各零件自重不计,试求移动齿条时在点B的作用力F是多少? 解:(1) 研究齿条和插瓜(二力杆),受力分析,画出受力图(平面任意力系); (2) 选x轴为投影轴,列出平衡方程; (3) 研究杠杆AB,受力分析,画出受力图(平面任意力系); (4) 选C点为矩心,列出平衡方程; 4-16 由AC和CD构成的复合梁通过铰链C连接,它的支承和受力如题4-16图所示。已知均布载荷集度q=10 kN/m,力偶M=40 kN m,a=2 m,不计梁重,试求支座A、B、D的约束力和铰链C所受的力。 解:(1) 研究CD杆,受力分析,画出受力图(平面平行力系); (2) 选坐标系Cxy,列出平衡方程;

最新工程力学(静力学与材料力学)第四版习题答案

静力学部分 第一章基本概念受力图

2-1 解:由解析法, 23cos 80RX F X P P N θ==+=∑ 12sin 140RY F Y P P N θ==+=∑ 故: 22161.2R RX RY F F F N =+= 1(,)arccos 2944RY R R F F P F '∠==

2-2 解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有 123cos45cos453RX F X P P P KN ==++=∑ 13sin 45sin 450 RY F Y P P ==-=∑ 故: 223R RX RY F F F KN =+= 方向沿OB 。 2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。 (a ) 由平衡方程有: 0X =∑ sin 300 AC AB F F -= 0Y =∑ cos300 AC F W -= 0.577AB F W =(拉力) 1.155AC F W =(压力) (b ) 由平衡方程有:

0X =∑ cos 700 AC AB F F -= 0Y =∑ sin 700 AB F W -= 1.064AB F W =(拉力) 0.364AC F W =(压力) (c ) 由平衡方程有: 0X =∑ cos 60cos300 AC AB F F -= 0Y =∑ sin 30sin 600 AB AC F F W +-= 0.5AB F W = (拉力) 0.866AC F W =(压力) (d ) 由平衡方程有: 0X =∑ sin 30sin 300 AB AC F F -= 0Y =∑ cos30cos300 AB AC F F W +-= 0.577AB F W = (拉力) 0.577AC F W = (拉力)

材料力学讲稿:第13章 动荷载

第十五章动荷载 一、教学目标和教学内容 1、教学目标 通过本章学习,唤起学生对动荷载问题的注意。 让学生知道动荷载问题的两个方面,目前应当掌握在较简单的工程问题中,动荷载引起杆件的应力、应变和位移的计算。对于材料在动荷载下的力学行为,以后根据工作的需要再进一步补充学习。 让学生掌握动荷载问题的基本知识,如杆件作等加速运动时的应力计算,作等速旋转圆盘的应力分析,简单的自由落体冲击和水平冲击,以及循环应力问题的有关概念。 能够深刻认识动荷系数概念,并能够熟练地进行杆件作等加速运动时的应力计算,作等速旋转圆盘的应力分析,完成简单的自由落体冲击和水平冲击的计算。 2、教学内容 介绍杆件作等加速运动拉伸、压缩及弯曲时的应力计算。 介绍等角速度旋转的动荷应力计算。 讲解简单冲击时,能量守恒的基本方程,分别导出自由落体冲击和水平冲击时的动荷系数公式,及杆件经受冲击时的应力计算公式。 二、重点难点

重点:建立三类动荷载概念。 掌握杆件作等加速运动时的应力计算。 作等速旋转圆盘的应力分析。 简单的自由落体冲击和水平冲击问题的计算 难点:对动静法和动荷系数的理解。 对于动荷载问题与静荷载问题的联系与区别。 在简单冲击问题中,被冲击杆件冲击点的相应静荷位移的理解和计算,特别是水平冲击时的静荷位移的理解和计算。 三、教学方式 采用启发式教学,通过提问,引导学生思考,让学生回答问题。 四、建议学时 3学时 五、实施学时 六、讲课提纲 (一)概念(动荷载的概念) 1、静荷载: 作用在构件上的荷载由零开始,逐渐(平缓、慢慢)地增长到最终值,以致在加载过程中,构件各点的加速度很小,可以不计;荷载加到最终值保持不变或变动的不显著的荷载,称之为静荷载。

工程力学材料力学答案-第十一章解析

11-6 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2F 2=5 kN ,试计算梁内的 最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。 解:(1) 画梁的弯矩图 (2) 最大弯矩(位于固定端): max 7.5 M kN = (3) 计算应力: 最大应力: K 点的应力: 11-7 图示梁,由No22槽钢制成,弯矩M =80 N.m ,并位于纵向对称面(即x-y 平面)内。 试求梁内的最大弯曲拉应力与最大弯曲压应力。 解:(1) 查表得截面的几何性质: 4020.3 79 176 z y mm b mm I cm === (2) 最大弯曲拉应力(发生在下边缘点处) ()30max 8 80(7920.3)10 2.67 17610x M b y MPa I σ -+-?-?-?===? 6max max max 22 7.510176 408066 Z M M MPa bh W σ?====?6max max 33 7.51030 132 ******** K Z M y M y MPa bh I σ????====? x M 1 z M M z

(3) 最大弯曲压应力(发生在上边缘点处) 30max 8 8020.3100.92 17610 x M y MPa I σ ---???===? 11-8 图示简支梁,由No28工字钢制成,在集度为q 的均布载荷作用下,测得横截面C 底 边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力,已知钢的弹性模量E =200 Gpa ,a =1 m 。 解:(1) 求支反力 31 44 A B R qa R qa = = (2) 画内力图 (3) 由胡克定律求得截面C 下边缘点的拉应力为: 49max 3.010******* C E MPa σε+-=?=???= 也可以表达为: 2 max 4C C z z qa M W W σ+== (4) 梁内的最大弯曲正应力: 2 max max max 993267.5 8 C z z qa M MPa W W σσ+ = === q x x F S M

材料力学复习题备课讲稿

材料力学复习题

拉压 σ=时,试当低碳钢试件的试验应力sσ 件将: (A)完全失去承载能力; (B)破裂; (C)发生局部紧缩现象;(D)产生很大的塑性变形。 图示受力构件的轴力图有以下四种:正确答案是。

等截面直杆受力P 作用发生拉伸变形。已知横截面面积为A ,则横截面上的正应力和450 斜截面上的正应力分别为: (A )()A P A P 2,; (B )( ) A P A P 2,; (C )()()A P A P 2,2; (D )A P A P 2, 。

伸长率(延伸率)公式 ()%1001?-=l l l δ中1l 指的是什么,有 以下四种答案: (A )断裂时试件的长度; (B )断裂后试件的长度; (C )断裂时试验段的长度; (D )断裂后试验段的长度。 等截面直杆受轴向拉力P 作用而产生弹性伸长,已知杆长为l ,面积为A ,材料弹性模量为E ,泊松比为v 。拉伸理论告诉我们,影响该杆横截面上应力的因素是:

(A )E 、v 、P ; (B )l 、A 、P ; (C )l 、A 、E 、v 、P ; (D )A 、P 。 对于没有明显屈服阶段的塑性材料,通常用2.0σ表示其屈服极限。2.0σ是塑性 应变等于 ------------------------- 时的应力值。 铸铁压缩试件,破坏是在 截面发生剪切错动,是由于 引起的。 如塑性材料拉伸实验测得s σ为150Mpa,b σ为200Mpa ,安全系数取1.8 则[]σ=__________________。

低碳钢的拉伸实验中 ,低碳钢的变形过程分为四个阶段,它们分别为: _______________________________________________________。 材料力学研究的变形体简化的基本假设为: ___________________________________。 三角构架如图所示,AB 长为1m ,杆的 横截面面积为2 11000mm A =,BC 杆的横 截面面积为2 2 600mm A =,材料许用拉应 力[]MPa 40=+σ,许用压应力[]MPa 20=- σ,E=200GPa,试校核其强度以及B 的位移。

工程力学材料力学答案-第十一章

11-6图示悬臂梁,横截面为矩形,承受载荷最大 弯曲正应力,及该应力所在截面上 F1与F2作用,且F1=2F2=5 kN,试计算梁内的 K点处的弯曲正应力。 M max =7.5 kN 解:(1)查表得截面的几何性质: y0 =20.3 mm b = 79 mm I 176 cm4 (2)最大弯曲拉应力(发生在下边缘点处) 解:⑴画梁的弯矩图 1m 40 80 y ------ ”z 30最大弯矩(位于固定端) CT + max M(b-y。) = 80X79-20.3)X0」2.67 MPa lx 176 10’ ⑶ 最大应力: 计算应力: max M max W Z M bh2 max 6 7 5^10 - ------- =176 MPa 40 80 K点的应力: y l z M max bh 7爲106330 =132 MPa 40 803 12 M=80 N.m, 试求梁内的最大弯曲拉应力与最大弯曲压应力。 11-7图示梁,由No22槽钢制成,弯矩 12 并位于纵向对称面(即x-y平面)内。

(3)最大弯曲压应力(发生在上边缘点处) y 。 max 80 20.3 10 176 10' =0.92 MPa 11-8图示简支梁,由No28工字钢制成,在集度为q的均布载荷作用下,测得横截面边的纵向正应变F3.0 XI0"4,试计算梁内的最大弯曲正应力, 已知钢的弹性模量 C底 E=200 Gpa, a=1 m。 解:(1)求支反力 R A 3 4 qa 1 R B= qa 4 (2)画内力图 x x 由胡克定律求得截面C下边缘点的拉应力为: 也可以表达为: max _4 9 ;E =3.0 10 200 10 =60 MPa ⑷梁内的最大弯曲正应力: 二 max 2 qa CT : C max M e W z W z 小 2 9qa M max ___ 32 W z W z 9 . 蔦二C max =67.5 MPa 8

机械设计作业集第13章答案

第十三章滚动轴承 一、选择题 — 各类滚动轴承中,除承受径向载荷外,还能承受不大的双向轴向载荷的是 ,还能承受一定单向轴向载荷的是 、 。 深沟球轴承 角接触球轴承 圆柱滚子轴承 圆锥滚子轴承 — 选择滚动轴承类型时为方便拆卸常用 ,需有一定调心性能时选 ,作为游动轴承时适宜选 、 。 深沟球轴承 圆锥滚子轴承 圆柱滚子轴承 调心球轴承 — 转速 ,一端固定一端游动的蜗杆轴其固定端轴承应选用 。 推力球轴承 深沟球轴承 一对角接触球轴承 一对圆锥滚子轴承 — 适用多支点、弯曲刚度小的轴及难于精确对中的支承。 深沟球轴承 圆锥滚子轴承 角接触球轴承 调心球轴承 — 载荷一定的深沟球轴承,当工作转速由 变为 时,其寿命变化为 。 增大为 ( ) 下降为 ( ) 增大为 ( ) 下降为 ( ) — 若一滚动轴承的基本额定寿命为 转,则该轴承所受的当量动载荷 基本

额定动载荷。 大于 小于 等于 大于等于 — 某滚动轴承按寿命公式计算得寿命 ,其可靠度 ;若要求工作寿命达 可靠度 。 为 为 — 直齿圆柱齿轮轴系由一对圆锥滚子轴承支承,轴承径向反力 ,则作用在轴承上的轴向力 。 — 滚动轴承内圈与轴颈配合的正确标注为 。 6 7 50 k H φ 750H φ 650k φ 7 650 H k φ — 滚动轴承内圈与轴颈、外圈与座孔的配合 。 均为基轴制 前者为基轴制,后者为基孔制 均为基孔制 前者为基孔制,后者为基轴制 — 为保证轴承内圈与轴肩端面接触良好,轴承的圆角半径 与轴肩处圆角半径 应满足 的关系。 — 不是滚动轴承预紧的目的。

最新材料力学常用公式讲课讲稿

材料力学常用公式 1外力偶矩计算公式(P 功率,n转速) 2弯矩、剪力和荷载集度之间的关系式 3轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正) 4轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a从x轴正方向逆时针转至外法线的方位角为正) 5 6纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)

7 8纵向线应变和横向线应变 9 10泊松比 11胡克定律 12受多个力作用的杆件纵向变形计算公式? 13承受轴向分布力或变截面的杆件,纵向变形计算公式 14轴向拉压杆的强度计算公式 15许用应力,脆性材料,塑性材料 16延伸率 17截面收缩率 18剪切胡克定律(切变模量G,切应变g) 19拉压弹性模量E、泊松比和切变模量G之间关系式

20圆截面对圆心的极惯性矩(a)实心圆 21(b)空心圆 22圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r) 23圆截面周边各点处最大切应力计算公式 24扭转截面系数,(a)实心圆 25(b)空心圆 26薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式 27圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式 28同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或 29等直圆轴强度条件 30塑性材料;脆性材料

31扭转圆轴的刚度条件? 或 32受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 33平面应力状态下斜截面应力的一般公式 , 34平面应力状态的三个主应力, , 35主平面方位的计算公式 36面内最大切应力 37受扭圆轴表面某点的三个主应力,, 38三向应力状态最大与最小正应力, 39三向应力状态最大切应力 40广义胡克定律 41

第十三章结构的极限荷载(精)

第十三章 结构的极限荷载 第一节 概述(先作三个图) 1、 材料性质的简化模型:线弹性小变形、弹塑性、全塑性三种概念。 2容许应力法(弹性分析方法): (1) 假定结构为理想弹性体,线弹性小变形,卸载变形可恢复,应力应变成正比 (2) 结构的最大应力达到材料的极限应力时结构将会破坏 (3) 强度条件:k u σσσ= ≤][max (4) 缺点: a 塑性材料的结构,在最大应力到达屈服极限,甚至某一局部已进入塑性阶段时并不破坏 b 以个别截面的局部应力来衡量整个结构的承载能力不经济合理 c 安全系数k 也不能反映整个结构的强度储备 2、 塑性分析方法:(不适用叠加原理) (1) 破坏标志:结构进入塑性阶段并最后丧失承载能力是的极限状态 (2) 极限荷载,结构的极限状态,考虑塑性; 结构丧失承载能力,考虑安全系数。 r 0S ≤R (3)强度条件:K P P u ≤ 3、 理想弹塑性材料:应力应变关系 4、 比例加载:荷载一次加于结构,且各荷载按同一比 例增加 4、例子 1) 一次超静定组合结构,不考虑横梁的弯曲影响和破坏(EI=∞) 2) 比例加载 3) 弹性分析(力法)(线弹性小变形):N AE =0.5P ,N BD =0.98P ,N CD =0.72P 4 ) P 不断增大, N BD 先屈服(拉杆,应力均匀):0.98P S =A σs ,P S =18.8KN 。弹性极限状态,弹性极限荷 载(卸载后,变形完全恢复) 5) P 继续增加:(塑性分析)比例加载,BD 杆相当于一个常力:

弹性塑性分两种颜色:P N AE ?=?,P N CD ?=?2 45.18272.0==?+s s A P P σ,ΔP=3.46KN ,P j =P s +ΔP=22.28KN 塑性极限荷载 增量法:逐渐加载法(结构破坏,极限荷载),弹性极限荷载:线弹性小变形,变形恢复;塑性极限荷载:结构破坏。 14-2极限弯距和塑性铰、破坏机构、静定梁的计算 受拉、压杆件,应力均匀; 受弯杆件:理想弹塑性材料,纯受弯,矩形截面梁。 一、矩形截面梁 梁(纯弯曲塑性材料的矩形等截面梁,任一截面) 应力、应变、塑性区的分布图(先作三组图) 1)弹性阶段 弹性极限弯矩,屈服弯曲 σ=E ε,ε=k ? y ,k EI ydA M A ?=?=?σ,y y bh M σ62 = 屈服弯距s s s bh W M σσ6 2 ==

工程力学--材料力学(北京科大、东北大学版)第4版第六章习题答案

第六章 习题 6—1 用积分法求以下各梁的转角方程、挠曲线方程以及指定的转角和挠度。已知抗弯刚度EI为常数。 6-2、用积分法求以下各梁的转角方程、挠曲线方程以及指定的转角和挠度。已知抗弯刚度EI为常数。

6-3、用叠加法求图示各梁中指定截面的挠度和转角。已知梁的抗弯刚读EI为常数。 6-4阶梯形悬臂梁如图所示,AC段的惯性矩为CB段的二倍。用积分法求B端的转角以及挠度。 6-5一齿轮轴受力如图所示。已知:a=100mm,b=200mm,c=150mm,l=300mm;材料的弹性模量E=210Pa;轴在轴承处的许用转角[]

=0.005rad。近似的设全轴的直径均为d=60mm,试校核轴的刚度。 回答: 6-6一跨度为4m的简支梁,受均布载荷q=10Kn/m,集中载荷P=20Kn,梁由两个槽钢组成。设材料的许用应力[]=160Ma,梁的许 用挠度[]=。试选择槽钢的号码,并校核其刚度。梁的自重忽略不计。 6-7两端简支的输气管道,外径D=114mm。壁厚=4mm,单位长度重量q=106N/m,材料的弹性模量E=210Gpa。设管道的许用挠度 试确定管道的最大跨度。 6-8 45a号工字钢的简支梁,跨长l=10m,材料的弹性模量E-210Gpa。若梁的最大挠度不得超过,求梁所能承受的布满全梁的

最大均布载荷q。 6-9一直角拐如图所示,AB段横截面为圆形,BC 段为矩形,A段固定,B段为滑动轴承。C端作用一集中力P=60N。有关尺寸如 图所示。材料的弹性模量E=210Gpa,剪切弹性模量G=0.4E。试求C端的挠度。 提示:由于A端固定,B端为滑动轴承,所以BC杆可饶AB杆的轴线转动。C端挠度由二部分组成;(1)把BC杆当作悬臂梁,受 集中力P作用于C端产生的挠度,;(2)AB杆受扭转在C锻又产生了挠度,。最后,可得 C端的挠度 6-10、以弹性元件作为测力装置的实验如图所示,通过测量BC梁中点的挠度来确定卡头A处作用的力P,已知, 梁截面宽b=60mm,高h=40mm,材料的弹性模量E=210Gpa。试问当百分表F指针转动一小格(1/100mm)时,载荷P增加多少?

材料力学实讲义

§1 金属材料的拉伸实验 一、实验目的 1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度sU σ,下屈服强度sL σ和抗拉 强度b σ。 2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率δ和断面收缩率ψ。 3.测定铸铁的强度性能指标:抗拉强度b σ。 4.观察、比较低碳钢(Q235 钢)和铸铁两种材料的力学性能、拉伸过程及破坏现象。 5. 学习试验机的使用方法。 二、设备和仪器 1.材料试验机(见附1-2)。 2.电子引伸计(见附1-2)。 3.游标卡尺。 三、试样 为使实验结果可以相互比较,必须对试样、试验机及实验方法做出明确具体的规定。国标GB/T228-2002 “金属材料室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形和板状两种试样,如图1-1所示。它们均由夹持、过渡和平行三部分组成。夹持部分应适合于试验机夹头的夹持。过渡部分的圆孤应与平行部分光滑地联接,以保证试样破坏时断口在平行部分。平行部分中测量伸长用的长度称为标距。受力前的标距称为原始标距,记作L 0,通常在 l 0 l b h (a) (b) 图1-1 试样

其两端划细线标志。 按试样原始标距L 0和原始横截面面积A 0之间的关系分,试样可分为比例试样和定标距试样两种。 比例试样的0L =系数K 通常取为5.65或11.3,前者称为短比例试样(简称短试样),后者称为长比例试样(简称长试样)。对圆形试样来说,原始标距分别等于5d 0和10d 0。一般应采用短比例试样。定标距试样L 0与A 0无上述比例关系。 国标GB/T228-2002中,对试样形状、尺寸、公差和表面粗糙度均有明确规定。 本次实验采用d 0=10mm 的圆形截面短比例试样。 四、实验原理 低碳钢(Q235 钢)的拉伸实验(图解方法) 将试样安装在试验机的上下夹头中,引伸计装卡在试样上,启动试验机对试样加载,试验机将自动绘制出载荷位移曲线(F -ΔL 曲线),如图1-2。观察试样的受力、变形直至破坏的全过程,可以看到低碳钢拉伸过程中的四个阶段 (弹性阶段、屈服阶段、强化阶段和局部变形阶 段)。 屈服阶段反映在F -ΔL 曲线图上为一水平波动线。上屈服力sU F 是试样发生屈服而载荷首次下降前的最大载荷。下屈服力sL F 是试样在屈服期间去除初始瞬时效应(载荷第一次急剧下降)后波动最低点所对应的载荷。最大力b F 是试样在 屈服阶段之后所能承受的最大载荷。相应的强度指标由以下公式计算 上屈服强度sU σ :sU sU 0 F A σ= (1-1) 下屈服强度sL σ: sL sL 0 F A σ= (1-2 ) 抗拉强度b σ: b b 0 F A σ= (1-3) 式中:A 0为试样原始横截面面积。 在强化阶段任一时刻卸载、再加载,可以观察加载、卸载规律和冷作硬化现象。 在最大力b F 以前,变形是均匀的。从最大力b F 开始,试样局部显著收缩,产生所谓颈缩。由于颈缩,使颈缩处截面减小,致使载荷随之下降,最后断裂。断口呈杯锥形。 测量断后的标距部分长度L u 和颈缩处最小直径d u ,按以下两式计算其主要塑性指标: 断后伸长率δ 图1-2 低碳钢拉伸图

工程力学(材料力学部分)

工程力学作业(材料力学) 班级 学号 姓名

第一、二章 拉伸、压缩与剪切 一、填空题 1、铸铁压缩试件,破坏是在 截面发生剪切错动,是由于 引起的。 2、a 、b 、c 三种材料的应力-应变曲线如图所示。其中强度最高的材料 是 ,弹性模量最小的材料是 ,塑性最好的材料是 。 3、图示结构中杆1和杆2的截面面积和拉压许用应力均相同,设载荷P 可在刚性梁AD 上移动。结构的许可载荷[ P ]是根据P 作用于 点处确定的。 O σ ε a b c

4、五根抗拉刚度EA 相同的直杆铰接成如图所示之边长为a 的正方形结构,A 、B 两处受力 P 作用。若各杆均为小变形,则A 、B 两点的相对位移?AB = 。 5、图示结构中。若1、2两杆的EA 相同,则节点A 的竖向位移?Ay = ,水平位移为?Ax = 。 6、铆接头的连接板厚度t = d ,则铆钉的切应力τ为 , 挤压应力σ bs 为 。 P / 2 P / 2

二、选择题 1、当低碳钢试件的试验应力σ = σs 时,试件将: (A) 完全失去承载能力; (B) 破断; (C) 发生局部颈缩现象; (D) 产生很大的塑性变形。 正确答案是 。 2、图示木接头,水平杆与斜杆成α角,其挤压面积为A bs 为: (A )b h ; (B )b h tan α ; (C )b h / cos α ; (D )b h /(cos α sin α)。 正确答案是 。 3、图示铆钉联接,铆钉的挤压应力为: (A )2 P / ( π d 2 ); (B )P / (2 d t ); (C )P / (2 b t ); (D )4 P / ( π d 2 )。 正确答案是 。 4、等截面直杆受轴向拉力P 作用而产生弹性伸长,已知杆长为l ,截面积为A ,材料弹性模量为E ,泊松比为ν,拉伸理论告诉我们,影响该杆横截面上

相关主题
文本预览
相关文档 最新文档