当前位置:文档之家› 高等代数向量空间思考题

高等代数向量空间思考题

高等代数向量空间思考题

1. 设V 是数域Ω上的n 维向量空间, 1,,s u u V ∈…线性无关, 1,,t w w V ∈…, 这 里s t n +=. 对每个{1,2,,}i t ∈…, 记

{11111 [,,,], [,,,,,,,,].i s i

i s i i t

V u u w W u u w w w w ?+==………… 假设对每个{1,2,,}i t ∈…, 有dim 1i V s =+, 且对任意的{1,2,,}i j t ≠∈…, 有i j W W ≠. 证明: 11,,,,,s t u u w w ……恰是V 的一个基底.

2. 设V 是数域Ω上的n 维向量空间,

σ是V 上的线性变换,设 Im {()|}, Ker {|()0},x x V x V x σσσσ=∈=∈=

证明存在正整数k 使得Im Ker .k k V σσ=⊕

3. 设V 是复数域 上的n 维向量空间, σ,τ均是V 的线性变换, 假设σ,τ的特征多项式相同, 且σττσ=. 若V 可分解成σ的一维不变子空间的直和, 而τ的每个特征子空间都是一维的, 则对任意的u V θ≠∈, 有u 是σ的特征向量当且仅当u 是τ的根向量.

4. 设σ是欧氏空间V 上的线性变换,证明σ是正交变换当且仅当对V 的任意子空间S 均有() ().V S S σσ⊥⊥=⊕

5. 设ξ是n 维欧氏空间V 上的一个双线性函数, 那么存在唯一的,p q ∈ , 使得在V 的适当基底1,,n u u …下, 对任意的11n n u a u a u V =++∈ , 有

22

2211(,)p p p q u u a a a a ξ++=++??? .

高等数学证明方法

(3)反证法 这种证法是从反面考虑问题。先假设在已知条件成立的情况下,要证的结论不成立,而后从已知条件出发,运用基本概念和基本定理,通过逻辑推理导出矛盾(或与已知条件矛盾;或与某一已知概念、公式、公理、定理等矛盾;或自相矛盾等),这样则否定假设,从而肯定原结论正确。 例如,证明不是的多项式. 事实上,利用反证法,设是的多项式,不妨记此多项式为次多项式,即,则有 于是次多项式有无穷多个不同实根,这与次多项式最多只有个不同实根相矛盾,由此证明了不是的多项式. 又如,证明不存在(为自然数). 事实上,利用反证法,假设存在且设,则有 又因为 所以有 故 这与产生矛盾,因此不存在. (2)分析法 这种方法基本思路是逆着想。先假设结论正确,运用已有的定义、定理、公式、性质,从后向前一步一步地分析,直至推出已知条件,即由结论找需知,再找需知,……,直至已知。这种“执果溯因”的方法,叫做分析法。 分析法是探求证题途径的重要方法之一。它的优点在于思考过程比较自然,目的明确,较为容易找到证明的思路,但缺点是分析的过程叙述起来往往比较繁琐,因而过程多在草稿纸上进行,不正式写出。在实际解题时,特别对于一些较难的问题,常常先用分析法寻找解题的途径,然后再用综合法叙述解题过程,这种方法也可叫做分析综合法。 例如,设在时连续,且;而在时有单调递增导数,试证在时是单调递增的。 事实上,欲证为单调递增,只需证明就行了,而由于 因此就归结为证明. 利用拉格朗日中值定理及已知条件,有 单调递增 因此在时是单调递增的. 又如,用极限定义证明一数列或函数有已知极限时,多采用分析综合法证明。比如证明,其方法如下: ,欲使不等式成立, 由 所以只需,即成立. 取,于是当时,就有,从而保证了希望的不等式成立. 综合以上分析,就有 ,当时,,根据极限定义,有

2017考研:高数常考的四大定理证明

2017考研:高数常考的四大定理证明 一、求导公式的证明 2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。 当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。 类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。 二、微分中值定理的证明 这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。 费马引理的条件有两个:1.f'(x0)存在2. f(x0)为f(x)的极值,结论为f'(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f'(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x) -f(x0)<0(或>0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。 费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。 闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同

欧几里得空间习题解答

第九章 欧几里得空间习题解答 P394.1.1 (,)'0(""0)'(')'''(,)A A A αααααβαβαβααβαβ∴=≥=?====正定非负性证得 由矩阵失去,线性性成立,再由(,)=A A 对称性成立,是一个内积 ( )111 11 61P394.1.2,(006);19,,P394.1.2 |(,)|||||(,)|i i j ij i j n n n ij i j i j n n ij i j i j A a x y c s B a x y εεαεεεαβαβαβ====?? ? ? == ? ? ??? ∴≤=∴--≤∑∑∑∑L L L Q 的度量矩阵即为A 不等式为|() 393.2P ①, α=(2,1,3,2), β =(1,2,-2,1) |||,)0,,2 αβαβαβπ αβ∴====∴⊥∴= 〈〉 393.2P ②, α=(1,2,2,3), β =(3,1,5,1) |||6,(,)18 (,)(,)arc cos cos ||||24arc arc αβαβαβπαβαβ=====∴==== 393.2P ③, α=(1,1,1,2), β =(3,1,-1,0) ||||(,)3 ,arc 700'30''38 αβαβαβ===∴==?〈〉 P393. 3 ||||||αβαβ+≤+Q

(,)|||()()||||| (,)(,) d d d αγαγαββγαββγαββγ∴=-=-+-≤-+-+ = P393.4在4 R 中求一单位向量与(1,1,-1),(1,-1,1-,1),(2,1,1,3)正交 解设所求 2123412341234123 44123(,,,)1,00230 1 1111111 111111102000 1003,211301310 0314,0,1 4i x x x x x x x x x x x x x x x x x x x x x x αα==+-+=??? ?--+=????+++=? ???-????-- ? ? ? ? ? ?--→-→= ? ? ? ? ? ?+ ? ?????? ===-= -∑则且与各向量的内积为0得令得 ,0,1,3),() -单位化 393.5P ①证:因为12(,)0, 1.2,,i n i n γαααα==L L 而是一个基 1 1 (,)(,)(,)0. 0. n n i i i i i i k k γγγαγαγ==∴====∑∑因此,必有 393.5P ②证,Q 12(,)(,), 1.2,i i i n γαγα==L 12(,)0, 1.2i i n γγα∴-==L 由第①小题:12120,γγγγ-==故 P393.6 1231232211(,,)(,,)2123122αααεεε?? ? =-- ? ?--?? Q 而1232211212,,3122ααα?? ?-- ? ?--?? 是正交矩阵,所以是标准正交基

最新高数期末考试题.

往届高等数学期终考题汇编 2009-01-12 一.解答下列各题(6*10分): 1.求极限)1ln(lim 1 x x e x ++ →. 2.设?? ? ??++++=22222ln a x x a a x x y ,求y d . 3.设?????-=-=3 232t t y t t x ,求22d d x y . 4.判定级数()()0!1 2≥-∑∞ =λλλn n n n n e 的敛散性. 5.求反常积分() ?-10 d 1arcsin x x x x . 6.求?x x x d arctan . 7.?-π 03d sin sin x x x . 8.将?????≤≤<=ππ πx x x x f 2,02,)(在[]ππ,-上展为以π2为周期的付里叶级数,并指出收敛于()x f 的区间. 9.求微分方程0d )4(d 2=-+y x x x y 的解. 10.求曲线1=xy 与直线0,2,1===y x x 所围平面图形绕y 轴旋转一周所得旋转体的体积. 二.(8分)将()()54ln -=x x f 展开为2-x 的幂级数,并指出其收敛域. 三.(9分)在曲线()10sin 2≤≤=x x y 上取点() ()10,sin ,2≤≤a a a A ,过点A 作平行于ox 轴的直线L ,由直线L ,oy 轴及曲线()a x x y ≤≤=0sin 2所围成的图形记为1S ,由直线L ,直线1=x 及曲线 ()1sin 2≤≤=x a x y 所围成的图形面积记为2S ,问a 为何值时,21S S S +=取得最小值. 四.(9分)冷却定律指出,物体在空气中冷却的速度与物体和空气温度之差成正比,已知空气温度为30℃时,物体由100℃经15分钟冷却至70℃,问该物体冷却至40℃需要多少时间? 五.(8分)(学习《工科数学分析》的做(1),其余的做(2)) (1)证明级数∑∞ =-02n nx e x 在[),0+∞上一致收敛. (2)求幂级数()∑ ∞ =-----1 221 21212)1(n n n n x n 的收敛域及和函数. 六.(6分)设()[]b a C x f ,2∈,试证存在[]b a ,∈ξ,使()()()()?''-+ ??? ??+-=b a f a b b a f a b dx x f ξ324 1 2

(完整版)高等代数(北大版)第9章习题参考答案

第九章 欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =, (3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑= 'A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此 ∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 1222 22112 11)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。

高等数学不等式的证明试题及答案

微积分中不等式的证明方法讨论 不等式的证明题经常出现在考研题中,虽然题目各种各样,但方法无非以下几种: 1.利用函数的单调性证明不等式 若在),(b a 上总有0)(>'x f ,则)(x f 在),(b a 单调增加;若在),(b a 上总有0)(<'x f ,则)(x f 在),(b a 单调减少。 注:考研题的难点是,构造恰当的辅助函数,有时需要两次利用函数的单调性证明不等式,有时需要对),(b a 进行分割,分别在小区间上讨论。 例1:证明:当0a b π<<<时, sin 2cos sin 2cos b b b b a a a a ππ++>++. 【分析】 利用“参数变易法”构造辅助函数,再利用函数的单调性证明. 【详解】 令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<, 则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=. 又 ()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,s i n 0x x x π<<>时), 故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即 sin 2cos sin 2cos b b b b a a a a ππ++>++. 【评注】 证明数值不等式一般需构造辅助函数,辅助函数一般通过移项,使不等式一端为“0”,另一端即为所作辅助函数()f x ,然后求导验证()f x 的增减性,并求出区间端点的函数值(或极限值)。 例2:设2e b a e <<<, 证明)(4ln ln 2 22a b e a b ->-. 【分析】即证a e a b e b 2 222 4ln 4ln ->- 证明: 设x e x x 224ln )(-=?,则 24ln 2)(e x x x -='?, 2ln 12)(x x x -=''?, 所以当x>e 时,,0)(<''x ? 故)(x ?'单调减少,从而当2 e x e <<时,

线性空间与欧几里得空间

线性空间与欧几里得空间 自测题 一、填空题 1、对欧几里得空间V 中的任意向量βα,,有()βαβα≤ ,,而且等号成立当且仅当 。 2、设1W 与2W 是V 的两个线性子空间,如果1W +2W 中的每个向量α都可唯一的被表示成21ααα+=,2211W W ∈∈αα,,则称1W +1W 为这两个子空间的 。 3、两个同构的线性空间的维数 。 4、第二类正交变换的行列式的值等于 。 5、如果A 是正交矩阵。若k 为实数,使kA 为正交矩阵,则k 等于 。 二、选择题 6、下列n R 的子集是n R 的子空间的为( ) A :(){}n i Z a a a a a i n ...,3,2,1,.....,,,321=∈ B :(){}0.....,,,21321=a a a a a a n C :(){}R a a a a n ∈211,,0,...,0, C :{} 1..)...,,(2222121≤+++n n a a a a a a 7、全体正实数的集合+R 对于下面定义的加法与标量乘法:k a a k a b b a ==⊕ ,构成R 上的线性空间,则+R 的零元素为( ) A :0 B: 1 C: 2 D: 3 8、若A 是正交矩阵,则下列矩阵中仍为正交矩阵的是(多重选择,其中k 是1±≠的整数) A:kA B:k A C:交换A 的任两行所得的矩阵 D :把A 的某行k 倍加到另一行所得的矩阵 9、设A 是欧几里得空间V 关于基n ααα,,,...21的度量矩阵,则A 满足以下哪个条件时,n ααα,,,...21是规范正交基? ( ) A: A 是正交矩阵 B :A 为对称矩阵 C :1-A 为正交矩阵 D :A 为单位矩阵 10、以下哪个结论不是两个线性子空间1W 与2W 的和21W W +为直和的等价命题:( ) A :dim ()()()()221121dim dim dim dim W W W W W W >+>+且

大一高数同济版期末考试题(精) - 副本

高等数学上(1) 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(l i m . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞-+++=2 2 221 n n n n n n π π ππ . 8. = -+? 2 12 1 2 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--?????≤<-≤=1 32 )(1020 )(dx x f x x x x xe x f x

北京大学数学系《高等代数》(第3版)(欧几里得空间)笔记和课后习题(含考研真题)详解【圣才出品】

第9章欧几里得空间 9.1复习笔记 一、定义与基本性质 1.欧几里得空间定义 设V是实数域R上一线性空间,在V上定义了一个二元实函数,称为内积,记作(α,β),它具有以下性质: (1)(α,β)=(β,α); (2)(kα,β)=k(α,β); (3)(α+β,γ)=(α,γ)+(β,γ); (4)(α,α)≥0,当且仅当α=0时(α,α)=0. 这里α,β,r是V中任意的向量,k是任意实数,这样的线性空间V称为欧几里得空间. 2.长度 (1)定义 非负实数称为向量α的长度,记为|α|. (2)关于长度的性质 ①零向量的长度是零, ②|kα|=|k||α|, ③长度为1的向量称为单位向量.如果α≠0,向量1 α α 就是一个单位向量,通常称此为

把α单位化. 3.向量的夹角 (1)柯西-布涅柯夫斯基不等式,即对于任意的向量α,β有 |(α,β)|≤|α||β| 当且仅当α,β线性相关时,等号才成立. (2)非零向量α,β的夹角<α,β>规定为 (3)如果向量α,β的内积为零,即(α,β)=0,那么α,β称为正交或互相垂直,记为α⊥β. 零向量才与自己正交. (4)勾股定理,即当α,β正交时,|α+β|2=|α|2+|β|2. 4.有限维空间的讨论 (1)度量矩阵 设V是一个n维欧几里得空间,在V中取一组基ε1,ε2,…,εn,对V中任意两个向量α=x1ε1+x2ε2+…+x nεn,β=y1ε1+y2ε2+…+y nεn,由内积的性质得 a ij=(εi,εj)(i,j=1,2,…,n), 显然a ij=a ji,于是

利用矩阵,(α,β)还可以写成(α,β)=X'AY, 其中 分别是α,β的坐标,而矩阵A=(a ij)nn称为基ε1,ε2,…,εn的度量矩阵. (2)性质 ①设η1,η2,…,ηn是空间V的另外一组基,而由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为C,即(η1,η2,…,ηn)=(ε1,ε2,…,εn)C,于是基η1,η2,…,ηn的度量矩阵B=(b ij)=(ηi,ηj)=C'AC;表明不同基的度量矩阵是合同的. ②对于非零向量α,即有(α,α)=X'AX>0.因此,度量矩阵是正定的. 二、标准正交基 1.正交向量组 欧式空间V中一组非零的向量,如果它们两两正交,就称为一正交向量组. 按定义,由单个非零向量所成的向量组也是正交向量组. 2.标准正交基

第四章习题与复习题(线性空间)----高等代数

习题5. 1 1. 判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间. 2.全体正实数R + , 其加法与数乘定义为 ,,k a b ab k a a a b R k R +⊕==∈∈其中 判断R + 按上面定义的加法与数乘是否构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为 A B AB BA ⊕=- 按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 4.在22P ?中,{}2222/0,,W A A A P W P ??==∈判断是否是的子空间. 习题 1.讨论22P ?中 1234111111,,,111111a a A A A A a a ???????? ==== ? ? ? ????????? 的线性相关性. 2.在4R 中,求向量1234ααααα在基,,,下的坐标.其中 1234010011001111ααααα?????????? ? ? ? ? ? ? ? ? ? ?== ? ? ? ? ?- ? ? ? ? ?-?????????? 2111,=,=,=,3010 2212342347P ααααα??????????? = ? ? ? ? ?-?????????? 110-11-1103.在中求在基=,=,=,=下的坐标.11100000 4.已知3R 的两组基 (Ⅰ): 123111ααα?????? ? ? ? ? ? ? ? ? ??????? 11=,=0,=0-11

(Ⅱ):123121βββ?????? ? ? ? ? ? ? ? ? ??????? 23=,=3,=443 (1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵; (2) 已知向量123123,,,,,αααααβββ?? ? ? ??? 1在基下的坐标为0求在基下的坐标-1; (3) 已知向量123123,,,,,βββββααα?? ? ? ???1在基下的坐标为-1求在基下的坐标2; (4) 求在两组基下坐标互为相反数的向量γ. 5.已知P [x ]4的两组基 (Ⅰ):2321234()1()()1()1f x x x x f x x x f x x f x =+++=-+=-=,,, (Ⅱ):2323321234()()1()1()1g x x x x x x x x x x x x x =++=++=++=++,g ,g ,g (1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵; (2) 求在两组基下有相同坐标的多项式f (x ). 习题 证明线性方程组 12345123451 234536420 22353056860 x x x x x x x x x x x x x x x +--+=?? +--+=??--+-=? 的解空间与实系数多项式空间3[]R x 同构. 习题 1. 求向量()1,1,2,3α=- 的长度. 2. 求向量()()1,1,0,12,0,1,3αβ=-=与向量之间的距离. 3.求下列向量之间的夹角 (1) ()()10431211αβ==--,,,,,,, (2) ()()12233151αβ==,,,,,,,

关于高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

高等代数北大版教案-第6章线性空间

第六章 线性空间 §1 集合映射 一 授课内容:§1 集合映射 二 教学目的:通过本节的学习,掌握集合映射的有关定义、运算,求和号 与乘积号的定义. 三 教学重点:集合映射的有关定义. 四 教学难点:集合映射的有关定义. 五 教学过程: 1.集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义:(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \. 定义:(集合的映射) 设A 、B 为集合.如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ).(,:a f a B A f → 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像.A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即 {}A a a f A f ∈=|)()(. 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射.若 ,B b ∈?都存在 A a ∈,使得b a f =)(,则称f 为满射.如果f 既是单射又是满射,则称f 为 双射,或称一一对应. 2.求和号与求积号 (1)求和号与乘积号的定义 为了把加法和乘法表达得更简练,我们引进求和号和乘积号. 设给定某个数域K 上n 个数n a a a ,,,21 ,我们使用如下记号:

高数中的重要定理与公式及其证明(一)

高数中的重要定理与公式及其证明(一) 考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就是教材上种类繁多的定理证明。如果本着严谨的对待数学的态度,一切定理的推导过程都是应该掌握的。但考研数学毕竟不是数学系的考试,很多时候要求没有那么高。而有些定理的证明又过于复杂,硬要要求自己掌握的话很多时候可能是又费时又费力,最后还弄得自己一头雾水。因此,在这方面可以有所取舍。 现将高数中需要掌握证明过程的公式定理总结如下。这些证明过程,或是直接的考点,或是蕴含了重要的解题思想方法,在复习的初期,先掌握这些证明过程是必要的。 1)常用的极限 0ln(1)lim 1x x x →+=,01lim 1x x e x →-=,01lim ln x x a a x →-=,0(1)1 lim a x x a x →+-=,201cos 1lim 2x x x →-= 【点评】:这几个公式大家在计算极限的过程中都再熟悉不过了,但有没有人想 过它们的由来呢?事实上,这几个公式都是两个重要极限1 lim(1 )x x x e →+=与0sin lim 1x x x →=的推论,它们的推导过程中也蕴含了计算极限中一些很基本的方法技 巧。 证明: 0ln(1)lim 1x x x →+=:由极限1 0lim(1)x x x e →+=两边同时取对数即得0ln(1)lim 1x x x →+=。 01lim 1x x e x →-=:在等式0ln(1)lim 1x x x →+=中,令ln(1)x t +=,则1t x e =-。由于极限过程是0x →,此时也有0t →,因此有0 lim 11 t t t e →=-。极限的值与取极限的符号是无关的,因此我们可以吧式中的t 换成x ,再取倒数即得01 lim 1x x e x →-=。 01lim ln x x a a x →-=:利用对数恒等式得ln 0011 lim lim x x a x x a e x x →→--=,再利用第二个极限可得ln ln 0011lim ln lim ln ln x a x a x x e e a a x x a →→--==。因此有01 lim ln x x a a x →-=。

第九章 欧氏空间

第八章 欧氏空间练习题 1.证明:在一个欧氏空间里,对于任意向量ηξ,,以下等式成立: (1)2222||2||2||||ηξηξηξ+=-++; (2).||4 1 ||41,22ηξηξηξ--+= 在解析几何里,等式(1)的几何意义是什么? 2.在区氏空间n R 里,求向量)1,,1,1( =α与每一向量 )0,,0,1,0,,0() ( i i =ε,n i ,,2,1 = 的夹角. 3.在欧氏空间4R 里找出两个单位向量,使它们同时与向量 ) 4,5,2,3()2,2,1,1() 0,4,1,2(=--=-=γβα 中每一个正交. 4.利用内积的性质证明,一个三角形如果有一边是它的外接圆的直径,那么这个三角形一定是直角三角形. 5.设ηξ,是一个欧氏空间里彼此正交的向量.证明: 222||||||ηξηξ+=+(勾股定理) 6.设βααα,,,,21n 都是一个欧氏空间的向量,且β是n ααα,,,21 的线性组合.证明:如果β与i α正交,n i ,,2,1 =,那么0=β. 7.设n ααα,,,21 是欧氏空间的n 个向量. 行列式 > <><><> <><><> <><> <= n n n n n n n G ααααααααααααααααααααα,,,,,,,,,),,,(21222121211121 叫做n ααα,,,21 的格拉姆(Gram)行列式.证明),,,(21n G ααα =0,必要且只要

n ααα,,,21 线性相关. 8.设βα,是欧氏空间两个线性无关的向量,满足以下条件: ><><ααβα,,2和> <> <βββα,,2都是0≤的整数. 证明: βα,的夹角只可能是 6 54 3,32,2π π ππ或 . 9.证明:对于任意实数n a a a ,,,21 , 2 3322211 (||n n i i a a a a n a ++++≤∑= ). 10.已知 )0,1,2,0(1=α,)0,0,1,1(2-=α, )1,0,2,1(3-=α,)1,0,0,1(4=α 是4R 的一个基.对这个基施行正交化方法,求出4R 的一个规范正交基. 11.在欧氏空间]1,1[-C 里,对于线性无关的向量级{1,x ,2x ,3x }施行正交化方法,求出一个规范正交组. 12.令},,,{21n ααα 是欧氏空间V 的一组线性无关的向量,},,,{21n βββ 是由这组向量通过正交化方法所得的正交组.证明,这两个向量组的格拉姆行列式相等,即 ><>><=<=n n n n G G βββββββββααα,,,),,,(),,,(22112121 13.令n γγγ,,,21 是n 维欧氏空间V 的一个规范正交基,又令 },2,1,10,|{1n i x x V K n i i i i =≤≤=∈=∑=γξξ K 叫做一个n -方体.如果每一i x 都等于0或1,ξ就叫做K 的一个项点.K 的顶点间一切可能的距离是多少? 14.设},,,{21m ααα 是欧氏空间V 的一个规范正交组.证明,对于任意V ∈ξ,以下等式成立:

(完整版)高数中需要掌握证明过程的定理(二)

高数中的重要定理与公式及其证明(二) 在第一期的资料内我们总结了高数前半部分需要掌握证明过程的定理,由于最近比较忙,所以一直没来得及写。现将后半部分补上。希望对大家有所帮助。 1)泰勒公式(皮亚诺余项) 设函数()f x 在点0x 处存在n 阶导数,则在0x 的某一邻域内成立 () ()()()2 00' '' ()000 00()()()()...()2! ! n n n x x x x f x f x x x f x f x f x o x x n --??=+-+ ++ +-?? 【点评】:泰勒公式在计算极限、高阶导数及证明题中有很重要的应用。对于它们,我们首要的任务是记住常见函数(sin ,cos ,ln(1),,(1)x a x x x e x ++)在0x =处的泰勒公式,并能利用它们计算其它一些简单函数的泰勒公式,然后在解题过程中加以应用。在复习的前期, 如果基础不是很好的话,两种不同形式的泰勒公式的证明可以先不看。但由于证明过程中所用到的方法还是很常用的。因此把它写在这里。 证明: 令()()()200'''() 00000()()()()()...()2!!n n x x x x R x f x f x x x f x f x f x n ??--=-+-+ ++?????? 则我们要证明()0()n R x o x x ??=-?? 。 由高阶无穷小量的定义可知,需要证明() 0() lim 0n x x R x x x →=-。 这个极限式的分子分母都趋于零,并且都是可导的, 因此用洛必达法则得 () ()()()() 1 ''''()0 0000100()()()...()1!() lim lim n n n n x x x x x x f x f x x x f x f x n R x x x n x x --→→??--+-++?? -????=-- 再次注意到该极限式的分子分母仍趋于零,并且也都是可导的,因此可以再次运用洛必达法则。 不难验证该过程可以一直进行下去, 运用过1n -次洛必达法则后我们可以得到 () ()() ()0 00 (1)(1)()00000(1) (1) () 000()()()() lim lim !()()() lim !! n n n n x x x x n n n x x f x f x x x f x R x n x x x x f x f x f x n x x n --→→--→---=---=- - 由于()f x 在点0x 处存在n 阶导数,由导数的定义可知() (1)(1)()000()() lim ()n n n x x f x f x f x x x --→-=-

习题与复习题详解线性空间高等代数

习题与复习题详解线性 空间高等代数 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

习题5. 1 1.判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间. 答 是. 因为是通常意义的矩阵加法与数乘, 所以只需检验集合对加法与数乘运算的封闭性. 由n 阶实对称矩阵的性质知,n 阶实对称矩阵加n 阶实对称矩阵仍然是n 阶实对称矩阵,数乘n 阶实对称矩阵仍然是n 阶实对称矩阵, 所以集合对矩阵加法与数乘运算封闭, 构成实数域上的线性空间. 2.全体正实数R +, 其加法与数乘定义为 ,,k a b ab k a a a b R k R +⊕==∈∈其中 判断R +按上面定义的加法与数乘是否构成实数域上的线性空间. 答 是. 设,R λμ∈. 因为,a b R a b ab R ++?∈?⊕=∈, ,R a R a a R λλλ++?∈∈?=∈, 所以R +对定义的加法与数乘运算封闭. 下面一一验证八条线性运算规律 (1) a b ab ba b a ⊕===⊕; (2)()()()()()a b c ab c ab c abc a bc a b c ⊕⊕=⊕====⊕⊕; (3) R +中存在零元素1, ?a R +∈, 有11a a a ⊕=?=; (4) 对R +中任一元素a ,存在负元素1n a R -∈, 使111a a aa --⊕==; (5)11a a a ==; (6)()()a a a a a λμμλμλ μλλμ?? ==== ?? ? ;

(7) ()a a a a a a a a λμμμλλλμλμ++===⊕=⊕; 所以R +对定义的加法与数乘构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为 按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 答 否. A B B A ∴⊕⊕与不一定相等. 故定义的加法不满足加法的交换律即运算规则(1), 全体实n 阶矩阵按定义的加法与数乘不构成实数域上的线性空间. 4.在22P ?中,{}2222/0,,W A A A P W P ??==∈判断是否是的子空间. 答 否. 121123123345?????? ? ? ??????? 例如和的行列式都为零,但的行列式不为零, 也就是说集合对加法不封闭. 习题 1.讨论22P ?中 的线性相关性. 解 设11223344x A x A x A x A O +++=, 即1234 1 234 12341234 00 ax x x x x ax x x x x ax x x x x ax +++=??+++=??+++=??+++=? . 由系数行列式3111111 (3)(1)111111 a a a a a a =+- 知, 3 1 , , a a ≠-≠且时方程组只有零解这组向量线性无关; 2.在4R 中,求向量1234ααααα在基,,,下的坐标.其中 解 设11223344x x x x ααααα=+++

高等数学证明题

1. 证明:函数)4)(3)(2()(---=x x x x f 在区间)4,2(内至少存在一点ξ,使0)(=''ξf 。 证明: )(x f 在]3,2[上连续,在)3,2(内可导,且0)3()2(==f f ,由罗尔定理,至少存在一 点)3,2(1∈ξ,使0)(1='ξf ,同理,至少存在一点)4,3(2∈ξ,使得0)(2='ξf ;)(x f '在 ],[21ξξ上连续,在),(21ξξ内可导,再一次运用罗尔定理,至少存在一点)4,2(),(21?∈ξξξ, 使得 0)(=''ξf 。 2. 设f 为[,]a b 上的二阶可导函数,()()0f a f b ==, 并存在一点(,)c a b ∈,使得()0f c >. 证 明至少存在一点(,)a b ξ∈,使得''()0f ξ>. (10分) 证明:考虑区间[,]a c ,则 f 在[,]a c 满足Lagrange 中值定理的条件,则存在1(,)a c ξ∈,使得 1()() '()0f c f a f c a ξ-= >-. (3分) 同理可证存在2(,)c b ξ∈, 使得 2()() '()0f b f c f b c ξ-= <-. (5分) 再考虑区间12[,]ξξ, 由条件可知导函数'()f x 在12[,]ξξ上满足 Lagrange 中值定理的条件,则存在 12(,)ξξξ∈, 使得 2121 ()() ''()0f f f ξξξξξ-= >-. 得证. 3. 设)(x f 在],[b a 上连续,在),(b a 上可导,且 0)(≤'x f ?-= x a dt t f a x x F )(1)( 证明在],[b a 内有0)(≤'x F 证明在],[b a 内有0) (≤'x F ])()()[() (1 )(2?---= 'x a dt t f x f a x a x x F (2分) = )]()()()[()(1 2 ξf a x x f a x a x ---- ]),[],[(b a x a ?∈ξ(2分) = )(ηξ f a x x '-- ]),[),((b a x ?∈ξη 0)(≤'∴x F (2分) 4. 证明:当0>x 时,x x x arctan )1ln( )1(>++

高等代数习题及答案)

高等代数试卷 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、)(x p 若是数域F 上的不可约多项式,那么)(x p 在F 中必定没有根。 ( ) 2、若线性方程组的系数行列式为零,由克莱姆法则知,这个线性方程组一定是无解的。 ( ) 3、实二次型),,,(21n x x x f 正定的充要条件是它的符号差为n 。 ( ) 4、(){}321321;3,2,1,,,x x x i R x x x x W i ===∈=是线性空间3R 的一个子空间。( ) 5、数域F 上的每一个线性空间都有基和维数。 ( ) 6、两个n 元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。 ( ) 7、零变换和单位变换都是数乘变换。 ( ) 8、线性变换σ的属于特征根0λ的特征向量只有有限个。 ( ) 9、欧氏空间V 上的线性变换σ是对称变换的充要条件为σ关于标准正交基的矩阵为实对称矩阵。 ( ) 10、若{ }n ααα,,,21 是欧氏空间V 的标准正交基,且∑==n i i i x 1 αβ,那么∑==n i i x 1 2 β。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、关于多项式的最大公因式的下列命题中,错误的是( ) ①()()()()()()n n n x g x f x g x f ,,=; ②()()()n j i j i f f f f f j i n ,,2,1,,,1,1,,,21 =≠=?=; ③()()()()()()()x g x g x f x g x f ,,+=; ④若()()()()()()()()1,1,=-+?=x g x f x g x f x g x f 。 2、设D 是一个n 阶行列式,那么( ) ①行列式与它的转置行列式相等; ②D 中两行互换,则行列式不变符号; ③若0=D ,则D 中必有一行全是零; ④若0=D ,则D 中必有两行成比例。 3、设矩阵A 的秩为r r (>)1,那么( ) ①A 中每个s s (<)r 阶子式都为零; ②A 中每个r 阶子式都不为零; ③A 中可能存在不为零的1+r 阶子式; ④A 中肯定有不为零的r 阶子式。 4、设()n x x x f ,,,21 为n 元实二次型,则()n x x x f ,,,21 负定的充要条件为( )

相关主题
文本预览
相关文档 最新文档