当前位置:文档之家› 高等代数欧几里得空间课堂笔记

高等代数欧几里得空间课堂笔记

高等代数欧几里得空间课堂笔记
高等代数欧几里得空间课堂笔记

高等代数II期末考试试卷及答案A卷

高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分) 1、线性空间[]P x 的两个子空间的交() ()11L x L x -+= 2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是 3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是 4、设3阶方阵A 的3个行列式因子分别为:()2 1,,1,λλ λ+ 则其特征矩阵E A λ-的标准形是 5、线性方程组AX B =的最小二乘解所满足的线性方程组是: 二、 单项选择题(每小题3分,共15分) 1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构: (A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。 2、( )设 是非零线性空间 V 的线性变换,则下列命题正确的是:

(A ) 的核是零子空间的充要条件是 是满射; (B ) 的核是V 的充要条件是 是满射; (C ) 的值域是零子空间的充要条件是 是满射; (D ) 的值域是V 的充要条件是 是满射。 3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0; A A B A λλ≠是一个非零常数; ()()C A λ是满秩的;()()D A λ是方阵。 4、( )设实二次型 f X AX '=(A 为对称阵)经正交变换后化为: 222 1122...n n y y y λλλ+++, 则其中的12,,...n λλλ是: ()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。 5、( )设3阶实对称矩阵A 有三重特征根“2-”,则A 的若当 标准形是: ()()()200200200020;120;120;002002012A B C ---?? ?? ?? ? ? ? --- ? ? ? ? ? ?---?????? ()D 以上各情形皆有可能。 三、 是非题(每小题2分,共10分) (请在你认为对的小题对应的括号内打“√”,否则打“?”) 1、( )设V 1,V 2均是n 维线性空间V 的子空间,且{}1 20V V = 则12V V V =⊕。 2、( )n 维线性空间的某一线性变换在由特征向量作成的基下 的矩阵是一对角矩阵。

第八章欧氏空间

第九章欧氏空间 [教学目标] 1理解欧氏空间、内积、向量的长度、夹角、正交和度量矩阵的概念。2理解正交组、正交基、标准正交基和正交矩阵的概念,理解n维欧氏空间的标准正交基的存在性和标准正交基之间过渡矩阵的性质,重点掌握施密特正交化方法。 3理解欧氏空间同构的定义和同构的充要条件。 4理解正交变换的定义及正交变换与正交矩阵的关系,掌握正交变换的几个等价条件。 5理解子空间的正交和正交补的概念,掌握正交补的结构和存在唯一性。 6理解对称变换的定义和对称变换与对称矩阵之间的关系,掌握实对称矩阵特征值的性质,重点掌握用正交变换把实对称矩阵及实二次型化为对角形和标准形的方法。 [教学重难点] 欧氏空间的定义,求向量的长度和夹角的方法,施密特正交化方法,正交变换与正交矩阵的关系,用正交变换把实对称矩阵及实二次型化为对角形和标准形的方法。 [教学方法]讲授,讨论和习题相结合。 [教学时间]18学时。 [教学内容]

欧氏空间的定义和性质,标准正交基,同构,正交变换,子空间,对称矩阵的标准形,向量到子空间的矩离、最小二乘法*。 [教学过程] §1 定义、性质 定义1:设V 是R 上的一个线性空间,在V 上定义了一个二元实函数,称为内积,记为),(βα,如果它具有以下性质: (1)),(),(αββα= (2)),(),(βαβαk k = (3)),(),(),(γβγαγβα+=+ (4)0),(≥αα当且仅当0=α时0),(=αα。 这里R k V ∈∈,,,γβα,则V 称为欧几里得空间(简称欧氏空间) 例1、例2。 练习:394P 1(1)。 定义2:非负实数),(αα称为α的长度,记为α 性质:ααk k = 单位向量:长度为1的向量。 α单位化: α α -Cauchy Буняковский不等式:βα,?,有 βαβα≤),( 等号成立当且仅当βα,线性相关。 在不同内积中,-Cauchy Буняковский不等式的具体例子: 例1中,2 2221222212211n n n n b b b a a a b a b a b a ++++++≤+++ΛΛΛ

欧几里得空间习题解答

第九章 欧几里得空间习题解答 P394.1.1 (,)'0(""0)'(')'''(,)A A A αααααβαβαβααβαβ∴=≥=?====正定非负性证得 由矩阵失去,线性性成立,再由(,)=A A 对称性成立,是一个内积 ( )111 11 61P394.1.2,(006);19,,P394.1.2 |(,)|||||(,)|i i j ij i j n n n ij i j i j n n ij i j i j A a x y c s B a x y εεαεεεαβαβαβ====?? ? ? == ? ? ??? ∴≤=∴--≤∑∑∑∑L L L Q 的度量矩阵即为A 不等式为|() 393.2P ①, α=(2,1,3,2), β =(1,2,-2,1) |||,)0,,2 αβαβαβπ αβ∴====∴⊥∴= 〈〉 393.2P ②, α=(1,2,2,3), β =(3,1,5,1) |||6,(,)18 (,)(,)arc cos cos ||||24arc arc αβαβαβπαβαβ=====∴==== 393.2P ③, α=(1,1,1,2), β =(3,1,-1,0) ||||(,)3 ,arc 700'30''38 αβαβαβ===∴==?〈〉 P393. 3 ||||||αβαβ+≤+Q

(,)|||()()||||| (,)(,) d d d αγαγαββγαββγαββγ∴=-=-+-≤-+-+ = P393.4在4 R 中求一单位向量与(1,1,-1),(1,-1,1-,1),(2,1,1,3)正交 解设所求 2123412341234123 44123(,,,)1,00230 1 1111111 111111102000 1003,211301310 0314,0,1 4i x x x x x x x x x x x x x x x x x x x x x x αα==+-+=??? ?--+=????+++=? ???-????-- ? ? ? ? ? ?--→-→= ? ? ? ? ? ?+ ? ?????? ===-= -∑则且与各向量的内积为0得令得 ,0,1,3),() -单位化 393.5P ①证:因为12(,)0, 1.2,,i n i n γαααα==L L 而是一个基 1 1 (,)(,)(,)0. 0. n n i i i i i i k k γγγαγαγ==∴====∑∑因此,必有 393.5P ②证,Q 12(,)(,), 1.2,i i i n γαγα==L 12(,)0, 1.2i i n γγα∴-==L 由第①小题:12120,γγγγ-==故 P393.6 1231232211(,,)(,,)2123122αααεεε?? ? =-- ? ?--?? Q 而1232211212,,3122ααα?? ?-- ? ?--?? 是正交矩阵,所以是标准正交基

大一第二学期高数期末考试题(含答案)

大一第二学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无 穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x , 则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =??x x x x f d cos )(则 . 7. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ . 8. = -+? 2 1 2 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--??? ??≤<-≤=1 32 )(1020)(dx x f x x x x xe x f x 12. 设函数 )(x f 连续, =?1 ()()g x f xt dt ,且 →=0 () lim x f x A x ,A 为常数. 求'() g x

(完整版)高等代数(北大版)第9章习题参考答案

第九章 欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =, (3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑= 'A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此 ∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 1222 22112 11)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。

(完整版)高等代数(下)期终考试题及答案(B卷)

高等代数(下)期末考试试卷及答案(B 卷) 一.填空题(每小题3分,共21分) 1. 22 3[]-2-31,(-1),(-1)P x x x x x 在中,在基下的坐标为 2. 设n 阶矩阵A 的全体特征值为12,,,n λλλL ,()f x 为任一多项式,则()f A 的全体特征值为 . 3.'=n 在数域P 上的线性空间P[x]中,定义线性变换:(,则的值域())()A A f x f x A ()-n P[x]= ,的核(0)= 1A A A 4.已知3阶λ-矩阵A (λ)的标准形为21 0 00 00 0λλλ?? ? ? ?+?? ,则A (λ)的不变 因子________________________; 3阶行列式因子 D 3 =_______________. 5. 若4阶方阵A 的初等因子是(λ-1)2,(λ-2),(λ-3),则A 的若当标准形 J= 6.在n 维欧氏空间V 中,向量ξ在标准正交基12,,,n ηηηL 下的坐标是 12(,,,)n x x x L ,那么(,)i ξη= 7. 两个有限维欧氏空间同构的充要条件是 . 二. 选择题( 每小题2分,共10 分) 1.( ) 已知{(,),,,}V a bi c di a b c d R =++∈为R 上的线性空间, 则dim(V)为 (A) 1; (B) 2; (C) 3; (D) 4 2. ( ) 下列哪个条件不是n 阶复系数矩阵A 可对角化的充要条件 (A) A 有n 个线性无关的特征向量; (B) A 的初等因子全是1次的; (C) A 的不变因子都没有重根; (D) A 有n 个不同的特征根; 3.( ) 设三阶方阵A 的特征多项式为322)(23+--=λλλλf ,则=||A

线性空间与欧几里得空间

线性空间与欧几里得空间 自测题 一、填空题 1、对欧几里得空间V 中的任意向量βα,,有()βαβα≤ ,,而且等号成立当且仅当 。 2、设1W 与2W 是V 的两个线性子空间,如果1W +2W 中的每个向量α都可唯一的被表示成21ααα+=,2211W W ∈∈αα,,则称1W +1W 为这两个子空间的 。 3、两个同构的线性空间的维数 。 4、第二类正交变换的行列式的值等于 。 5、如果A 是正交矩阵。若k 为实数,使kA 为正交矩阵,则k 等于 。 二、选择题 6、下列n R 的子集是n R 的子空间的为( ) A :(){}n i Z a a a a a i n ...,3,2,1,.....,,,321=∈ B :(){}0.....,,,21321=a a a a a a n C :(){}R a a a a n ∈211,,0,...,0, C :{} 1..)...,,(2222121≤+++n n a a a a a a 7、全体正实数的集合+R 对于下面定义的加法与标量乘法:k a a k a b b a ==⊕ ,构成R 上的线性空间,则+R 的零元素为( ) A :0 B: 1 C: 2 D: 3 8、若A 是正交矩阵,则下列矩阵中仍为正交矩阵的是(多重选择,其中k 是1±≠的整数) A:kA B:k A C:交换A 的任两行所得的矩阵 D :把A 的某行k 倍加到另一行所得的矩阵 9、设A 是欧几里得空间V 关于基n ααα,,,...21的度量矩阵,则A 满足以下哪个条件时,n ααα,,,...21是规范正交基? ( ) A: A 是正交矩阵 B :A 为对称矩阵 C :1-A 为正交矩阵 D :A 为单位矩阵 10、以下哪个结论不是两个线性子空间1W 与2W 的和21W W +为直和的等价命题:( ) A :dim ()()()()221121dim dim dim dim W W W W W W >+>+且

高等代数期末卷及答案

沈阳农业大学理学院第一学期期末考试 《高等代数》试卷(1) 1 ?设 f (x) = x 4 +x ? +4x - 9 ,贝H f (一3) = 69 .. 2?当 t = _2,-2 . 时,f(x)=x 3 —3x+t 有重因式。 3.令f(x),g(x)是两个多项式,且f(x 3) xg(x 3)被x 2 x 1整除,则 f(1)=_0_^ g(1)= 0 . 0 6 2 =23 。 1 1 — -2 0 1 x , 2x 2 2x 3 x 4 二 0 7. 2x 1 x 2 -2x 3 -2x 4 二 0 的一般解为 x( ~'X 2 _'4x 3 ~3x 4 = 0 题号 -一- -二二 -三 四 五 六 七 总分 得分 、填空(共35分,每题5 分) 得分 4.行列式 1 -3 5. ■’4 10" 1 0 3 -1、 -1 1 3 '9 -2 -1 2 1 0 2」 2 0 1 < 9 9 11 <1 3 4 丿 6. z 5 0 0 1 -1 <0 2 1; 0-2 3 矩阵的积

c 亠5 刘=2x3 X4 4 x3, x4任意取值。X2 二-2x^ --x4

、(10分)令f(x),g(x)是两个多项式。求证 当且仅当(f(x) g(x), f(x)g(x))=1。 证:必要性.设(f(x) g(x), f (x)g(x)) =1。(1% 令 p(x)为 f (x) g (x), f (x)g(x)的不可约公因式,(1% 则由 p(x) | f (x)g (x)知 p(x)| f (x)或 p(x) |g(x) o (1%) 不妨设 p(x) | f (x),再由 p(x)|(f(x) g (x))得 p(x) | g(x)。故 p(x) |1 矛盾。(2%) 充分性.由(f (x) g(x), f (x)g(x)^1知存在多项式u(x), v(x)使 u(x)(f(x) g(x)) v(x)f(x)g(x)=1,(2%) 从而 u(x)f(x) g(x)(u(x) v(x) f(x)) =1,(2%) 故(f (x), g(x)) =1 o (1%) ax 「bx 2 2x 3 =1 ax 1 (2 b -1)x 2 3x 3 =1 ax 1 bx 2 - (b 3)X 3 = 2b _1 有唯一解、没有解、有无穷解?在有解情况下求其解。 解: a b 2 1 a b 2 1 a 2b -1 3 1 T 0 b —1 1 0 b J* b+3 2b-1 , b+1 2b-2 ‘ (5%) a 2 - b 0 1 0 b -1 1 0 L 0 0 b+1 2b —2 当b =1时,有无穷解:X 3 = 0, X 2 = 1 - a%,人任意取值; 当a =0,b =5时,有无穷解:x 1 = k,x^ --3,x^ 4 ,k 任意取值;(3%) 当b = T 或a =0且b =二1且b = 5时,无解。(4%) 三、(16分)a,b 取何值时,线性方程组 当a(b 2 T) = 0时,有唯一解: 5-b a(b 1) X 2 2 b+1 x3 = 2b -2 b 1 ;4%) (f(x),g(x)) =1

第九章 欧氏空间习题

第九章欧氏空间习题 一、填空题 1.设就是一个欧氏空间,,若对任意,都有,则。 2.在维欧氏空间中,向量在标准正交基下得坐标就是,那么,。 3.若就是一个正交矩阵,则方程组得解为。 4、已知三维欧式空间中有一组基,其度量矩阵为,则向量得长度为。 5、设中得内积为,则在此内积之下得度量矩阵为。 6.设,,,若与正交,则。 7.若欧氏空间在某组基下得度量矩阵为,某向量在此组基下得坐标为,则它得长度为,在此基下向量与向量得夹角为。 8.在欧氏空间中,若线性相关,且,则。 9.就是度量阵,则必须满足条件______________。 10.线性空间在不同基下得过渡阵、线性变换在某组基下得矩阵、欧氏空间得度量阵这三类矩阵中,可以为退化阵得就是。 11、在欧氏空间中,向量,,那么=___________, =___________。 12、两个有限维欧氏空间同构得充要条件就是__________________。 13、已知就是一个正交矩阵,那么=__________,=__________。 14、已知为阶正交阵,且,则= 。 15、实对称矩阵得属于不同特征根得特征向量就是彼此得。 16、设,则与得夹角。 17、在维欧氏空间中,级矩阵就是某个基得度量矩阵得充要条件就是。 二、判断题 1.在实线性空间中,对向量,,定义,那么构成欧氏空间( ) 2.在实线性空间中,对于向量,,定义,则构成欧氏空间。( ) 3.就是欧氏空间得一组基,对于中任意向量,均有,(,分别就是在此基下得坐标)),则此基必为标准正交基。( ) 4.欧氏空间中得线性变换可以将椭圆映射成圆。( ) 5.V与W均欧氏空间且同构,则它们作为线性空间也必同构。( ) 6.设就是一个欧氏空间,,,则与正交。() 7.设就是一个欧氏空间,,并且,则线性无关。( ) 8.若都就是欧氏空间得对称变换,则也就是对称变换。( ) 9.欧氏空间中,为对称变换。( )

北京大学数学系《高等代数》(第3版)(欧几里得空间)笔记和课后习题(含考研真题)详解【圣才出品】

第9章欧几里得空间 9.1复习笔记 一、定义与基本性质 1.欧几里得空间定义 设V是实数域R上一线性空间,在V上定义了一个二元实函数,称为内积,记作(α,β),它具有以下性质: (1)(α,β)=(β,α); (2)(kα,β)=k(α,β); (3)(α+β,γ)=(α,γ)+(β,γ); (4)(α,α)≥0,当且仅当α=0时(α,α)=0. 这里α,β,r是V中任意的向量,k是任意实数,这样的线性空间V称为欧几里得空间. 2.长度 (1)定义 非负实数称为向量α的长度,记为|α|. (2)关于长度的性质 ①零向量的长度是零, ②|kα|=|k||α|, ③长度为1的向量称为单位向量.如果α≠0,向量1 α α 就是一个单位向量,通常称此为

把α单位化. 3.向量的夹角 (1)柯西-布涅柯夫斯基不等式,即对于任意的向量α,β有 |(α,β)|≤|α||β| 当且仅当α,β线性相关时,等号才成立. (2)非零向量α,β的夹角<α,β>规定为 (3)如果向量α,β的内积为零,即(α,β)=0,那么α,β称为正交或互相垂直,记为α⊥β. 零向量才与自己正交. (4)勾股定理,即当α,β正交时,|α+β|2=|α|2+|β|2. 4.有限维空间的讨论 (1)度量矩阵 设V是一个n维欧几里得空间,在V中取一组基ε1,ε2,…,εn,对V中任意两个向量α=x1ε1+x2ε2+…+x nεn,β=y1ε1+y2ε2+…+y nεn,由内积的性质得 a ij=(εi,εj)(i,j=1,2,…,n), 显然a ij=a ji,于是

利用矩阵,(α,β)还可以写成(α,β)=X'AY, 其中 分别是α,β的坐标,而矩阵A=(a ij)nn称为基ε1,ε2,…,εn的度量矩阵. (2)性质 ①设η1,η2,…,ηn是空间V的另外一组基,而由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为C,即(η1,η2,…,ηn)=(ε1,ε2,…,εn)C,于是基η1,η2,…,ηn的度量矩阵B=(b ij)=(ηi,ηj)=C'AC;表明不同基的度量矩阵是合同的. ②对于非零向量α,即有(α,α)=X'AX>0.因此,度量矩阵是正定的. 二、标准正交基 1.正交向量组 欧式空间V中一组非零的向量,如果它们两两正交,就称为一正交向量组. 按定义,由单个非零向量所成的向量组也是正交向量组. 2.标准正交基

厦门大学《高等代数》期末试题及答案(数学系)

10-11学年第一学期厦门大学《高等代数》期末试卷 厦门大学《高等代数》课程试卷 数学科学学院 各 系 2010 年级 各 专业 主考教师:杜妮、林鹭 试卷类型:(A 卷) 2011.1.13 一、 单选题(32 分. 共 8 题, 每题 4 分) 1) 设b 为 3 维行向量, 123123 V {(,,)|(,,)} x x x x x x b == ,则____。C A)对任意的b ,V 均是线性空间;B)对任意的b ,V 均不是线性空间;C)只有当 0 b = 时,V 是线性空间;D)只有当 0 b 1 时,V 是线性空间。 2)已知向量组 I : 12 ,,..., s a a a 可以由向量组 II : 12 ,,..., t b b b 线性表示,则下列叙述正确的是____。 A A)若向量组 I 线性无关,则s t £ ;B)若向量组 I 线性相关,则s t > ; C)若向量组 II 线性无关,则s t £ ;D)若向量组 II 线性相关,则s t > 。 3)设非齐次线性方程组AX b = 中未定元个数为 n ,方程个数为m ,系数矩阵 A 的秩为 r ,则____。 D A)当r n < 时,方程组AX b = 有无穷多解; B) 当r n = 时,方程组AX b = 有唯一解;C)当r m < 时,方程组AX b = 有解;D)当r m = 时,方程组AX b = 有解。 4) 设 A 是m n ′ 阶矩阵,B 是n m ′ 阶矩阵,且AB I = ,则____。A A)(),() r A m r B m == ;B)(),() r A m r B n == ;C)(),() r A n r B m == ; D)(),() r A n r B n == 。 5) 设 K 上 3 维线性空间 V 上的线性变换j 在基 123 ,, x x x 下的表示矩阵是 111 101 111 ?? ?÷ ?÷ ?÷ è? ,则j 在基 123 ,2, x x x 下的表示矩阵是____。C A) 121 202 121 ?? ?÷ ?÷ ?÷ è? ; B) 1 2 11 22 1 2 11 0 11 ?? ?÷ ?÷ ?÷ è? ; C)11 22 121 0 121 ?? ?÷ ? ÷ ?÷ è? ;D) 1 2 1 2 11 202 11 ?? ?÷ ?÷ ?÷ è? 。 6) 设j 是 V 到 U 的线性映射,dim V ,dim U n m == 。若m n < ,则j ____。B A)必是单射; B)必非单射; C)必是满射;D)必非满射。

第九章欧氏空间习题答案教学内容

第九章欧氏空间习题 答案

第九章欧氏空间习题答案 一、填空题 1. 0; 2. i x ;3. 123'b A b b ?? ? ? ??? ; 5. A ; 6. (2,2,1)-; 7. 2 π;8. 6±;9. 2 k >;10. 线性变换在某基下的矩阵;11. 0;12. 它们的维数相同;13. A ,1;14. 1-;15. 正交;16. 3π;17. 正定的。 二、判断题 1-5 ××√√√ 6-10 √×√√√ 11-15 √√√×√ 16-20 √√×√× 三、选择题 1-5 CDBCC 6-10 CACB(BD) 11-15 BDAAA 16-18 ABB 四、计算题 1. 由2 20 212(2)(1)(4)002E A λλλλλλλ ---=--=+--=,故特征值为2,1,4-。 当2λ=-时,有121232 34202320230x x x x x x x --=??--+=??-=?,则基础解系为11(,1,1)'2ξ=-,单位化为1122(,,)'333 η=-; 当1λ=时,有1213232022020x x x x x x --=??-+=??+=?,则基础解系为21(1,,1)'2ξ=-,单位化为2212(,,)'333 η=-; 当4λ=时,有12123232202320240x x x x x x x -=??-++=??+=?,则基础解系为31(1,1,)'2ξ=-,单位化为322 1(,,)'333 η=-。

则令1223332123332213 33T ??- ? ? ?=- ? ? ?- ???,为正交阵,有1214T AT --?? ?= ? ???。 2. (1)111111t A t t ?? ?=- ? ?-??,由于二次型正定,则2300320t t t t >??>??-->? ,即2t >。 (2)当1t =时,则111111111A ?? ?=- ? ?-?? 。 由21 12111(2)(1)01 11E A λλλλλλ----=---=-+=--,特征值为2,2,1-。故标准形为22212322f y y y =+-。 3. 二次型矩阵为202023b A b a ?? ?= ? ??? 。由于正交变换得到的标准形为 22212325f y y y =++,则A 的特征值为1,2,5,故23125a ++=++, 12510A =??=可得3,0a b ==。 当1λ=时,有123230220230x x x x x -=??--=??--=? ,则基础解系为1(0,1,1)'ξ=-,单位化 为 1(0,,22 η=-; 当2λ=时,有23232020x x x x --=??--=? ,则基础解系为2(1,0,0)'ξ=,单位化为2(1,0,0)'η=; 当5λ=时,有1232330220220x x x x x =??-=??-+=? ,则基础解系为3(0,1,1)'ξ=,单位化为

高等代数试题2(附答案)

科目名称:《高等代数》 姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ 一、填空题(每小题5分,共25分) 1、在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。 2、向量组()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。 3、(维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。 4、假设??? ? ? ? ?-----=17 5131 023A 的特征根是 ,特征向量分别为 。 5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为 二、是非题(每小题2分,共20分) 1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。( ) 2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。( ) 3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。( ) 4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。( ) 5、令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变换。其中 ),,,()(2 42 32 22 1x x x x =ξδ。( ) 6、矩阵A 的特征向量的线性组合仍是A 的特征向量。( ) 7、若矩阵A 与B 相似,那么A 与B 等价。( ) 8、n 阶实对称矩阵A 有n 个线性无关的特征向量。( ) 9、在)(2R M 中,若W 由所有满足迹等于零的矩阵组成,那么W 是)(2R M 的 子空间。( )

第九章 欧氏空间

第八章 欧氏空间练习题 1.证明:在一个欧氏空间里,对于任意向量ηξ,,以下等式成立: (1)2222||2||2||||ηξηξηξ+=-++; (2).||4 1 ||41,22ηξηξηξ--+= 在解析几何里,等式(1)的几何意义是什么? 2.在区氏空间n R 里,求向量)1,,1,1( =α与每一向量 )0,,0,1,0,,0() ( i i =ε,n i ,,2,1 = 的夹角. 3.在欧氏空间4R 里找出两个单位向量,使它们同时与向量 ) 4,5,2,3()2,2,1,1() 0,4,1,2(=--=-=γβα 中每一个正交. 4.利用内积的性质证明,一个三角形如果有一边是它的外接圆的直径,那么这个三角形一定是直角三角形. 5.设ηξ,是一个欧氏空间里彼此正交的向量.证明: 222||||||ηξηξ+=+(勾股定理) 6.设βααα,,,,21n 都是一个欧氏空间的向量,且β是n ααα,,,21 的线性组合.证明:如果β与i α正交,n i ,,2,1 =,那么0=β. 7.设n ααα,,,21 是欧氏空间的n 个向量. 行列式 > <><><> <><><> <><> <= n n n n n n n G ααααααααααααααααααααα,,,,,,,,,),,,(21222121211121 叫做n ααα,,,21 的格拉姆(Gram)行列式.证明),,,(21n G ααα =0,必要且只要

n ααα,,,21 线性相关. 8.设βα,是欧氏空间两个线性无关的向量,满足以下条件: ><><ααβα,,2和> <> <βββα,,2都是0≤的整数. 证明: βα,的夹角只可能是 6 54 3,32,2π π ππ或 . 9.证明:对于任意实数n a a a ,,,21 , 2 3322211 (||n n i i a a a a n a ++++≤∑= ). 10.已知 )0,1,2,0(1=α,)0,0,1,1(2-=α, )1,0,2,1(3-=α,)1,0,0,1(4=α 是4R 的一个基.对这个基施行正交化方法,求出4R 的一个规范正交基. 11.在欧氏空间]1,1[-C 里,对于线性无关的向量级{1,x ,2x ,3x }施行正交化方法,求出一个规范正交组. 12.令},,,{21n ααα 是欧氏空间V 的一组线性无关的向量,},,,{21n βββ 是由这组向量通过正交化方法所得的正交组.证明,这两个向量组的格拉姆行列式相等,即 ><>><=<=n n n n G G βββββββββααα,,,),,,(),,,(22112121 13.令n γγγ,,,21 是n 维欧氏空间V 的一个规范正交基,又令 },2,1,10,|{1n i x x V K n i i i i =≤≤=∈=∑=γξξ K 叫做一个n -方体.如果每一i x 都等于0或1,ξ就叫做K 的一个项点.K 的顶点间一切可能的距离是多少? 14.设},,,{21m ααα 是欧氏空间V 的一个规范正交组.证明,对于任意V ∈ξ,以下等式成立:

高等代数期末卷 及答案

沈阳农业大学理学院第一学期期末考试 《高等代数》试卷(1) 一、 填空(共35分,每题5分) 1.设4 2 ()49f x x x x =++-, 则(3)f -= 69_ .. 2.当t = _2,-2 .时, 3()3f x x x t =-+有重因式。 3. 令 ()f x ,()g x 是两个多项式, 且33()()f x xg x +被21x x ++整除, 则 (1)f = 0_ , (1)g = _0 . 4. 行列式 31 0210 62 101132 1 -=-- 23 。 5. 矩阵的积41010311 1321022 011 34?? ? --?? ?= ? ??? ??? 9219911--?? ???。 6. 1 500031021-?? ?= ? ??? 1 05011023?? ? ?- ? ? - ??? 7. 1234123412342202220430 x x x x x x x x x x x x +++=?? +--=??---=?的一般解为 134234523423x x x x x x ? =+??? ?=--?? , 34,x x 任意取值。 二、(10分)令()f x ,()g x 是两个多项式。求证((),())1f x g x =当且仅当

(()(),()())1f x g x f x g x +=。 证:必要性. 设(()(),()())1f x g x f x g x +≠。(1%) 令()p x 为()(),()()f x g x f x g x +的不可约公因式,(1%)则由()|()()p x f x g x 知 ()|()p x f x 或()|()p x g x 。(1%) 不妨设()|()p x f x ,再由()|(()())p x f x g x +得()|()p x g x 。故()|1p x 矛盾。(2%) 充分性. 由(()(),()())1f x g x f x g x +=知存在多项式(),()u x v x 使 ()(()())()()()1u x f x g x v x f x g x ++=,(2%) 从而()()()(()()())1u x f x g x u x v x f x ++=,(2%) 故((),())1f x g x =。(1%) 三、(16分),a b 取何值时,线性方程组 有唯一解、没有解、有无穷解?在有解情况下求其解。 解: 21212131011032100122201011000122a b a b a b b a b b b b b a b b b b ???? ? ?-→- ? ? ? ?+-+-????-?? ?→- ? ?+-?? (5%) 当2 (1)0a b -≠时,有唯一解:1235222 , (1)+11 b b x x x a b b b ---= ==++,; (4%) 当1b =时,有无穷解:3210,1,x x ax ==-1x 任意取值; 当a 0,5b ==时,有无穷解:14 12333,,,x k x x k ==-=任意取值;(3%) 当1b =-或0 1 5a b b =≠±≠且且时,无解。(4%) 四、(10分)设12,,...,n a a a 都是非零实数,证明 证: 对n 用数学归纳法。当n=1时 , 1111 1 1(1)D a a a =+=+, 结论成立(2%); 假设n-1时成立。则n 时

高等代数(上)期末复习题

高等代数(1)复习题 一、判断题 1、四阶行列式中含因子2311a a 的项为42342311a a a a 和44322311a a a a 。( ) 2、设D 为六阶行列式,则162534435261a a a a a a 是D 中带负号的项。( ) 3、对任一排列施行偶数次对换后,排列的奇偶性不变。( ) 4、排列()3211 -n n 的逆序数为n 。( ) 5、排列()3211 -n n 为偶排列。( ) 6、若行列式中所有元素都是整数,且有一行中元素全为偶数,则行列式的值一定是偶数。( ) 7、若22B A =,则B A =或B A -=。( ) 8、若AC AB =,0≠A ,则C B =。( ) 9、若矩阵A 满足A A =2,则0=A 或E A =。( ) 10、设A 是n 阶方阵,若0≠A ,则必有A 可逆。( ) 11、若矩阵A 满足02=A ,则0=A 。( ) 12、若矩阵B A ,满足0AB =,且0A ≠,则0B =。( ) 13、对n 阶可逆方阵A ,B ,必有()111 ---=B A AB 。( ) 14、对n 阶可逆方阵A ,B ,必有()111 ---+=+B A B A 。( ) 15、设A ,B 为n 阶方阵,则必有B A B A +=+。( ) 16、设A ,B 为n 阶方阵,则必有BA AB =。( ) 17、若矩阵A 与B 等价,则B A =。( ) 18、若A 与B 都是对称矩阵,则AB 也是对称矩阵。( ) 19、若矩阵A 的所有1r +级的子式全为零,则A 的秩为r 。( ) 20、设n m A ?,n m B ?为矩阵,则()()()B R A R B A R +≤+。( ) 21、设A =0,则()0=A R 。( ) 22、线性方程组0=?X A n n 只有零解,则0≠A 。( ) 23、若b AX =有无穷多解,则0=AX 有非零解。( )

长沙理工大学大一高数期末考试题(精)

一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A ) (0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2.  )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中 ()f x 在区间上(1,1)-二阶可导且'>()0f x ,则 ( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(10 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )2 2 x (B ) 2 22x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 20 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =??x x x x f d cos )(则 . 7. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ . 8. = -+? 2 1 2 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--?????≤<-≤=1 32 )(1020 )(dx x f x x x x xe x f x 12. 设函数 )(x f 连续, =?1 ()()g x f xt dt ,且→=0() lim x f x A x ,A 为常数. 求'() g x 并讨论'()g x 在=0x 处的连续性.

第九章欧氏空间习题答案

第九章欧氏空间习题答案 、填空题 ............ Fbj 1.0; 2. X i, Jx; +x ;+ 二+x:; 3. A b2 ; 4. √13 ; 5. ';8. _6 ; 9. k .2 ; 10.线性变换在某基下的矩阵;11.0, 、2 ; 12.它们的维数相2 同;13. A,1; 14. -1 ; 15.正交;16. - ; 17.正定的。 3 、判断题 1-5 ××√√√6-10 √×√√√11-15 √√√×√16-20 √√×√× 三、选择题 A ;6. (2, -2,1); 7. 2、2 , 1-5 CDBCC 四、计算题 6-10 CACB(BD) 11-15 BDAAA 16-18 ABB 1. λ-2-2 由^E-A= —2 丸一1 0 2 2 =(人+2)(人一1)(几一4) = 0 ,故特征值为一2,1,4。 当彊=「2时,有 ~4 X1 - 2 x^ — 0 -2 X1 — 3x2 + 2 X =0 ,则基础解系为 12 2 十3,3,3 当’=1时, ?2x2— 3x3 = 0 - x1- 2x2 = 0 有t -2x1 +2x3 = 0, 2x2 +x3 =0 1=(-丄,1,1)',单位化 为 M 1 则基础解系为2 = (1,-一 2 ,1),'单位化为 2x1 - 2x2 = 0 当人=4时,有」-2x1 +3x2 +2x3 = 0 ,则基础解系为 2x2 +4x3 = 0 3 = (1,1厂丄)',单位化 为 2 2 2 _1_ 3,3, 3 2 3

3 'l l l (2)当 t=l 时,则 A= l l —l 订 —l l l =(丸—2)2(人+l) = O ,特征值为2,2,—l 。故标 λ-l 准形为 f = 2y l 2 2y ; - y f 。 z 2 b O A 3.二次型矩阵为 A = 'b a 2。由于正交变换得到的标准形为 f = y 2 +2y ; +5y ;, e 2 3」 则 A 的特征值为 l,2,5,故 2?a ?3=l2? 5 ,A =l 2 5=l0 可得 a = 3,b=O 。 -x ∣ = O I 当λ =l 时,有< —2X 2—2X 3=0,则基础解系为气=(0,l,—1)',单位化为 -2x 2 ^ 3x^ — 0 …X …2 X — 0 当慣-2时,有 2 3 ,则基础解系为;=(l,0,0)',单位化为2 =(l,0,0)'; -2x 2 -x^ 0 3x l = 0 当怎-5时,有2X 2 -2X 3 =0 ,则基础解系为 ^(0,1,1)',单位化为 - 2x 2 ■ 2X 3 = 0 l l λ (1) A = l t -l ,由于二次型正定,则 -l t 丿 3 3 3 2 . \>0 0 ,即 t>2。 3 Jt —3t —2A 0 则令T = ,为正交阵,有T Jl AT = λ —l — 由 PE -A = -2-1 k-1 -l l

相关主题
文本预览
相关文档 最新文档