当前位置:文档之家› 第二章导数与微分教学文案

第二章导数与微分教学文案

第二章导数与微分教学文案
第二章导数与微分教学文案

第二章导数与微分

数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学. 微分学与积分学统称为微积分学.

微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一.

恩格斯(1820-1895)曾指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了”. 微积分的发展历史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘).

积分的雏形可追溯到古希腊和我国魏晋时期,但微分概念直至16世纪才应运萌生. 本章及下一章将介绍一元函数微分学及其应用的内容.

第一节导数概念

从15世纪初文艺复兴时期起,欧洲的工业、农业、航海事业与商贾贸易得到大规模的发展,形成了一个新的经济时代. 而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展. 生产实践的发展对自然科学提出了新的课题,迫切要求力学、天文学等基础科学的发展,而这些学科都是深刻依赖于数学的,因而也推动了数学的发展. 在各类学科对数学提出的种种要求中,下列三类问题导致了微分学的产生:

(1) 求变速运动的瞬时速度;

(2) 求曲线上一点处的切线;

(3) 求最大值和最小值.

这三类实际问题的现实原型在数学上都可归结为函数相对于自变量变化而变化的快慢程度,即所谓函数的变化率问题. 牛顿从第一个问题出发,莱布尼茨从第二个问题出发,分别给出了导数的概念.

内容分布图示

★引言★变速直线运动的瞬时速度

★平面曲线的切线★导数的定义★几点说明

★利用定义求导数与求极限(例1、例2)★例3

★例4 ★例5 ★例6 ★例7

★左右导数★例8 ★例9

★导数的几何意义★例10 ★例11

★导数的物理意义★可导与连续的关系

★例12 ★例13 ★例14 ★例15

★内容小结★课堂练习

★习题 2 - 1 ★返回

内容要点:

一、引例:引例1: 变速直线运动的瞬时速度;引例2: 平面曲线的切线

二、导数的定义:

注:导数概念是函数变化率这一概念的精确描述,它撇开了自变量和因变量所代表的几何或物理等方面的特殊意义,纯粹从数量方面来刻画函数变化率的本质: 函数增量与自变量增量的比值是函数在以和为端点的区间上的平均变化率,而导数则是函数在点处的变化率,它反映了函数随自变量变化而变化的快慢程度.

根据导数的定义求导,一般包含以下三个步骤:

1.求函数的增量:

2.求两增量的比值: ;

3.求极限

三、左右导数

定理1函数在点处可导的充要条件是:函数在点处的左、右导数均存在且相等.

四、用定义计算导数

五、导数的几何意义

六、函数的可导性与连续性的关系

定理2如果函数在点处可导,则它在处连续.

注:上述两个例子说明,函数在某点处连续是函数在该点处可导的必要条件,但不是充分条件. 由定理2还知道,若函数在某点处不连续,则它在该点处一定不可导.

在微积分理论尚不完善的时候,人们普遍认为连续函数除个别点外都是可导的. 1872年得多数学家魏尔斯特拉构造出一个处处连续但处处不

可导的例子,这与人们基于直观的普遍认识大相径庭,从而震惊了数学界和思想界. 这就促使人们在微积分研究中从依赖于直观转向理性思维,大大促进了微积分逻辑基础的创建工作.

例题选讲:

导数概念的应用

例1 (讲义例1)求函数在处的导数.

例2(讲义例2) 试按导数定义求下列各极限(假设各极限均存在).

(1)

(2) 其中

左右导数

用定义计算导数

例3(讲义例4)求函数(C为常数)的导数.

例4(讲义例5)设函数求及.

例5(讲义例6) 求函数(n为正整数)的导数.

例6(讲义例7) 求函数的导数.

例7求函数的导数.

例8 (讲义例3)求函数在处的导数.

例9设为偶函数,且存在. 证明

例10求等边双曲线在点处的切线的斜率, 并写出在该点处的切线方程和法线方程.

例11 (讲义例8) 求曲线在点处的切线方程.

例12 (讲义例9) 讨论函数在处的连续性与可导性.

例13 (讲义例10)讨论在处的连续性与可导性.

例14设函数问取何值时,为可导函数.

例15设函数

(1) 欲使在处连续, 为何值;

(2) 欲使在处可导, 为何值.

注:上述两个例子说明,函数在某点处连续是函数在该点处可导的必要条件,但不是充分条件. 由定理2还知道,若函数在某点处不连续,则它在该点处一定不可导.

在微积分理论尚不完善的时候,人们普遍认为连续函数除个别点外都是可导的. 1872年得多数学家魏尔斯特拉构造出一个处处连续但处处不可导的例子(如第十一章第一节的Koch雪花曲线描述的函数),这与人们

基于直观的普遍认识大相径庭,从而震惊了数学界和思想界. 这就促使人们在微积分研究中从依赖于直观转向理性思维,大大促进了微积分逻辑基础的创建工作.

课堂练习

1. 函数在某点处的导数与导函数有什么区别与联系?

2. 设在处连续, , 求.

3. 求曲线上与x轴平行的切线方程.

莱布尼茨(Friedrich , Leibniz,1597~1652)

-----博学多才的数学符号大师

出生于书香门第的莱布尼兹是德国一们博学多才的学者。他的学识涉及哲学、历史、语言、数学、生物、地质、物理、机械、神学、法学、外交等领域。并在每个领域中都有杰出的成就。然而,由于他独立创建了微积分,并精心设计了非常巧妙而简洁的微积分符号,从而使他以伟大数学家的称号闻名于世。莱布尼兹对微积分的研究始于31岁,那时他在巴黎任外交官,有幸结识数学家、物理学家惠更斯等人。在名师指导下系统研究了数学著作,1673年他在伦敦结识了巴罗和牛顿等名流。从此,他以非凡的理解力和创造力进入了数学前沿阵地。

莱布尼兹在从事数学研究的过程中,深受他的哲学思想的支配。他的著名哲学观点是单子论,认为单子是“自然的真正原子……事物的元素”,是客观的、能动的、不可分割的精神实体。牛顿从运动学角度出发,以“瞬”(无穷小的“0”)的观点创建了微积分。他说dx和x相比,如同点和地球,或地球半径与宇宙半径相比。在其积分法论文中,他从求曲线所围面积积分概念,把积分看作是无穷小的和,并引入积分符号,它是把拉丁文“Summa”的字头S拉长。他的这个符号,以及微积分的要领和法则一直保留到当今的教材中。莱布尼兹也发现了微分和积分是一对互逆的运算,并建立了沟通微分与积分内在联系的微积分基本定理,从而使原本各自独立的微分学和积分学成为统一的微积分学的整体。

莱布尼兹是数字史上最伟大的符号学者之一,堪称符号大师。他曾说:“要发明,就要挑选恰当的符号,要做到这一点,就要用含义简明的少量符号来表达和比较忠实地描绘事物的内在本质,从而最大限度地减少人的思维劳动,”正象印度——阿拉伯数学促进算术和代数发展一样,莱布尼兹所创造的这些数学符号对微积分的发展起了很大的促进作用。欧洲大陆的数学得以迅速发展,莱布尼兹的巧妙符号功不可灭。除

积分、微分符号外,他创设的符号还有商“a/b”,比“a:b”,相似“∽”,全等“≌”,并“∪”,交“”以及函数和行列式等符号。

牛顿和莱布尼茨对微积分都作出了巨大贡献,但两人的方法和途径是不同的。牛顿是在力学研究的基础上,运用几何方法研究微积分的;莱布尼兹主要是在研究曲线的切线和面积的问题上,运用分析学方法引进微积分要领的。牛顿在微积分的应用上更多地结合了运动学,造诣精深;但莱布尼兹的表达形式简洁准确,胜过牛顿。在对微积分具体内容的研究上,牛顿先有导数概念,后有积分概念;莱布尼兹则先有求积概念,后有导数概念。除此之外,牛顿与莱布尼兹的学风也迥然不同。作为科学家的牛顿,治学严谨。他迟迟不发表微积分著作《流数术》的原因,很可能是因为他没有找到合理的逻辑基础,也可能是“害怕别人反对的心理”所致。但作为哲学家的莱布尼兹比较大胆,富于想象,勇于推广,结果造成创作年代上牛顿先于莱布尼兹10年,而在发表的时间上,莱布尼兹却早于牛顿三年。

虽然牛顿和莱布尼兹研究微积分的方法各异,但殊途同归。各自独立地完成了创建微积分的盛业,光荣应由他们两人共享。然而在历史上曾出现过一场围绕发明微积分优先权的激烈争论。牛顿的支持者,包括数学家泰勒和麦克劳林,认为莱布尼兹剽窃了牛顿的成果。争论把欧洲科学家分成誓不两立的两派:英国和欧洲大陆。争论双方停止学术交流,不仅影响了数学的正常发展,也波及自然科学领域,以致发展到英德两国之间的政治摩擦。自尊心很强的英国民族抱住牛顿的概念和记号不放,拒绝使用更为合理的莱布尼兹的微积分符号和技巧,致使英国在数学发展上大大落后于欧洲大陆。一场旷日持久的争论变成了科学史上的前车之鉴。

莱布尼兹的科研成果大部分出自青年时代,随着这些成果的广泛传播,荣誉纷纷而来,他也越来越变得保守。到了晚年,他在科学方面已无所作为。他开始为宫廷唱赞歌,为上帝唱赞歌,沉醉于研究神学和公爵家族。莱布尼兹生命中的最后7年,是在别人带给他和牛顿关于微积分发明权的争论中痛苦地度过的。他和牛顿一样,都在终生未娶。1761年11月14日,莱布尼兹默默地离开人世,葬在宫廷教堂的墓地。

戎马不解鞍,铠甲不离傍。

冉冉老将至,何时返故乡?

神龙藏深泉,猛兽步高冈。

狐死归首丘,故乡安可忘!

牛顿(Newton , lsaac,1643~1727)

自然和自然规律隐藏在黑夜里,上帝说“降生牛顿”.于是世界就充满光明.

Newtan 墓志铭

数学和科学中的巨大进展 , 几乎总是建立在作出一点一点滴贡献的许多人的工作之上.需要一个人来走那最高和最后的一步,这个人要能够敏锐地从纷乱的猜测和说明中清理出前人的有价值的想法,有足够的想象力把这些碎片重新组织起来,并且足够大胆地制定一个宏伟的计划.在微积分中,这个人就是牛顿.

牛顿(1642-1727)生于英格兰乌尔斯托帕的一个小村庄里,父亲是在他出生前两个月去世的,母亲管理着丈夫留下的农庄,母亲改嫁后,是由外祖母把他抚养大.并供他上学.他从小在低标准的地方学校接受教育,除对机械设计有兴趣外,是个没有什么特殊的青年人,1661年他进入剑桥大学的三一学院学习,大学期间除了巴罗(Barrow)外,他从他的老师那里只得到了很少的一点鼓舞,他自己做实验并且研究当时一些数学家的著作,如Descartes的《几何》,Galileo,Kepler等的著作。大学课和刚结束,学校因为伦敦地区鼠疫流行而关闭。他回到家乡,渡过了1665年和1666年,并在那里开始了他在机械、数学和光学上伟大的工作,这时他意识到了引力的平方反比定律(曾早已有人提出过),这是打开那无所不包的力学科学的钥匙。他获得了解决微积分问题的一般方法,并且通过光学实验,作出了划时代的发现,即象太阳光那样的白光,实际上是从紫到红的各种颜色混合而成的。“所有这些”牛顿后来说:“是在1665和1666两个鼠疫年中做的,因为在这此日子里,我正处在发现力最旺盛的时期,而且对于数学和(自然)哲学的关心,比其他任何时候都多”。关于这些发现,牛顿什么也没有说过,1667年他回到剑桥获得硕士学位,并被选为三一学院的研究员。1669年他的老师巴罗主动宣布牛顿的学识已超过自己,把“路卡斯(Lucas)教授”的职位让给了年仅26岁的牛顿,这件事成了科学史上的一段佳话。牛顿并不是一个成功的教员,他提出的独创性的材料也没有受到同事们的注意。起初牛顿并没有公布他的发现,人们说他有一种变态的害怕批评的心理。在1672年和1675年发表光学方面的两篇论文遭到暴风般的批评后,他决心死后才公开它的成果,虽然,后来不是发表了《自然哲学的数学原理》、《光学》和《普遍的算术》等有限的一些成果。

牛顿是他那时代的世界著名的物理学家、数学家和天文学家。牛顿工作的最大特点是辛勤劳动和独立思考。他有时不分昼夜地工作,常常好几个星期一直在实验室里渡过。他总是不满中自己的成就,是个非常谦虚的人。他说:“我不知道,在别人看来,我是什么样的人。但在

自己看来,我不过就象是一个在海滨玩耍的小孩,为不时发现比寻常更为光滑的一块卵石或比寻常更为美丽的一片贝壳而沾沾自喜,而对于展现在我面前的浩瀚的真理的海洋,却全然没有发现”。牛顿对于科学的兴趣要比对于数学的兴趣大的多。在当了35处的教授后,他决定放弃研究,并于1695年担任了伦敦的不列颠造币厂的监察。1703年成为皇家学会会长,一直到逝世,1705年被授予爵士称号。关于微积分,牛顿总结了已经由许多人发展了的思想,建立起系统和成熟的方法,其最重要的工作是建立了微积分基本定理,指出微分与积分互为逆运算。从而沟通了前述几个主要科学问题之间的内在联系,至此,才算真正建立了微积分这门学科。因此,恩格斯在论述微积分产生过程时说,微积分“是由牛顿和莱布尼茨大体上完成的,但不是由他们发明的”。在他写于1671年但直到1736年他死后才出版的书《流数法和无穷级数》中清楚地陈述了微积分的基本问题。

第二章 导数与微分习题汇总

第二章 导数与微分 【内容提要】 1.导数的概念 设函数y =f (x )在x 0的某邻域(x 0-δ,x 0 + δ)(δ>0)内有定义,当自变量x 在点x 0处有改变量Δx 时,相应地,函数有改变量00()()y f x x f x ?=+?-.若0→?x 时,极限x y x ??→?0lim 存在,则称函数y =f (x )在x =x 0处可导,称此极限值为f(x)在点x 0 处的导数, 记为 )(0x f '或)(0x y '或0|x x y ='或 0|d d x x x y =或0|d d x x x f = +→?0x 时,改变量比值的极限x y x ??+ →?0 lim 称f(x)在x 0处的右导数,记为)(0x f +'。 -→?0x 时,改变量比值的极限x y x ??- →?0 lim 称f(x)在x 0处的左导数,记为)(0x f -'。 2.导数的意义 导数的几何意义:)(0x f '是曲线y =f (x )在点(x 0,y 0)处切线的斜率,导数的几何意义给我们提供了直观的几何背景,是微分学的几何应用的基础。 导数的物理意义:路程对时间的导数)(0t s '是瞬时速度v (t 0) 。以此类推,速度对时间的导数)(0t v '是瞬时加速度a (t 0)。 3.可导与连续的关系 定理 若函数)(x f y =在点x 0处可导,则函数在点x 0处一定连续。 此定理的逆命题不成立,即连续未必可导。 4.导数的运算 定理1(代数和求导法则)若u (x )和v (x )都在点x 处可导,则 v u v u '±'='±)( 定理2(积的求导法则)若u (x )和v (x )都在点x 处可导,则 v u v u uv '+'=')( 定理3(商的求导法则)若u (x )和v (x )都在点x 处可导,且v (x )≠0,则 2v v u v u v u ' -'= ' ?? ? ??

(完整版)第二章.导数和微分答案解析

第二章 导数与微分 一 导数 (一) 导数的概念(见§2.1) Ⅰ 内容要求 (ⅰ)理解导数的概念及其几何意义,了解函数的可导性与连续性之间的关系。 (ⅱ)了解导数作为函数变化率的实际意义,会用导数表达科学技术中一些量的变化率。 Ⅱ 基本题型 (ⅰ)用导数定义推证简单初等函数的导数公式 1. 用导数定义求证下列导数公式,并记忆下列公式(每题4分) (1)0)(='C (2)21 )1(x x - =' (3)x x 21)(=' (4)x x sin )(cos -=' (5)a a a x x ln )(=' (6)1 )(-='μμμx x (ⅱ)确定简单基本初等函数在某点处的切线方程和法线方程 2.(6分)求x y ln =在)0,1(点处的切线方程及法线方程。 解:x y 1' = ,1)1(' ==k y ,所以 切线方程为1-=x y 法线方程为1+-=x y 3.(6分)求x x y = 在)1,1(点处的切线方程。 解:4 3 x y =,41 ' 43-=x y ,4 3)1(' ==k y 切线方程为1)1(43+-= x y ,即4 143+=x y (ⅲ)科技中一些量变化率的导数表示 4.填空题(每题4分) (1)若物体的温度T 与时间t 的函数关系为)(t T T =,则该物体的温度随时间的变化 速度为 )(' t T (2)若某地区t 时刻的人口数为)(t N ,则该地区人口变化速度为 )(' t N Ⅲ 疑难题型 (ⅰ)分段函数在分段点处的导数计算 5. 讨论下列函数在0=x 处的连续性与可导性 (1)(7分)|sin |x y =

高等数学第2章 导数与微分

第二章 导数与微分 教学目的: 1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。 2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3、 了解高阶导数的概念,会求某些简单函数的n 阶导数。 4、 会求分段函数的导数。 5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。 教学重点: 1、导数和微分的概念与微分的关系; 2、导数的四则运算法则和复合函数的求导法则; 3、基本初等函数的导数公式; 4、高阶导数; 6、 隐函数和由参数方程确定的函数的导数。 教学难点: 1、复合函数的求导法则; 2、分段函数的导数; 3、反函数的导数 4、隐函数和由参数方程确定的导数。 §2. 1 导数概念 一、引例 1.直线运动的速度 设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: s =f (t ), 求动点在时刻t 0的速度. 考虑比值 000) ()(t t t f t f t t s s --=--, 这个比值可认为是动点在时间间隔t -t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践 中也可用来说明动点在时刻t 0的速度. 但这样做是不精确的, 更确地应当这样: 令t -t 0→0, 取

比值 0) ()(t t t f t f --的极限, 如果这个极限存在, 设为v , 即 0) ()(lim t t t f t f v t t --=→, 这时就把这个极限值v 称为动点在时刻t 0的速度. 2.切线问题 设有曲线C 及C 上的一点M , 在点M 外另取C 上一点N , 作割线MN . 当点N 沿曲线C 趋于点M 时, 如果割线MN绕点M旋转而趋于极限位置MT , 直线MT就称为曲线C有点M处的切线. 设曲线C 就是函数y =f (x )的图形. 现在要确定曲线在点M (x 0, y 0)(y 0=f (x 0))处的切线, 只要定出切线的斜率就行了. 为此, 在点M 外另取C 上一点N (x , y ), 于是割线MN 的斜率为 0 000) ()(tan x x x f x f x x y y --= --= ?, 其中?为割线MN 的倾角. 当点N 沿曲线C 趋于点M 时, x →x 0. 如果当x → 0时, 上式的极限存 在, 设为k , 即 00) ()(lim 0x x x f x f k x x --=→ 存在, 则此极限k 是割线斜率的极限, 也就是切线的斜率. 这里k =tan α, 其中α是切线MT 的 倾角. 于是, 通过点M (x 0, f (x 0))且以k 为斜率的直线MT 便是曲线C 在点M 处的切线. 二、导数的定义 1. 函数在一点处的导数与导函数 从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限: 00) ()(lim 0x x x f x f x x --→. 令?x =x -x 0, 则?y =f (x 0+?x )-f (x 0)= f (x )-f (x 0), x →x 0相当于?x →0, 于是0 0) ()(lim 0 x x x f x f x x --→ 成为 x y x ??→?0lim 或x x f x x f x ?-?+→?)()(lim 000. 定义 设函数y =f (x )在点x 0的某个邻域内有定义, 当自变量x 在x 0处取得增量?x (点x 0+?x 仍在该邻域内)时, 相应地函数y 取得增量?y =f (x 0+?x )-f (x 0); 如果?y 与?x 之比当?x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为0|x x y =', 即 x x f x x f x y x f x x ?-?+=??='→?→?)()(lim lim )(00000,

高数第二章导数与微分知识点与习题

高数第二章导数与微分知识点总结 第一节 导数 1.基本概念 (1)定义 0000000000 ()()()()()|(|)'()lim lim lim x x x x x x x f x x f x f x f x dy df x y f x dx dx x x x x ==?→?→→+?--?====??-或 注:可导必连续,连续不一定可导. 注:分段函数分界点处的导数一定要用导数的定义求. (2)左、右导数 0'00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x - --?→→+?--==?-. 0 '00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x + ++?→→+?--==?-. 0'()f x 存在''00()()f x f x -+?=. (3)导数的几何应用 曲线()y f x =在点00(,())x f x 处的切线方程:000()'()()y f x f x x x -=-. 法线方程:0001 ()()'() y f x x x f x -=- -. 2.基本公式 (1)'0C = (2)' 1 ()a a x ax -= (3)()'ln x x a a a =(特例()'x x e e =)(4)1 (log )'(0,1)ln a x a a x a = >≠

(5)(sin )'cos x x = (6)(cos )'sin x x =- (7)2(tan )'sec x x = (8)2 (cot )'csc x x =- (9)(sec )'sec tan x x x = (10)(csc )'csc cot x x x =- (11)2 1(arcsin )'1x x = - (12)2 1(arccos )'1x x =- - (13)21(arctan )'1x x = + (14)2 1 (arccot )'1x x =-+ (15222 2 1[ln()]'x x a x a + += + 3.函数的求导法则 (1)四则运算的求导法则 ()'''u v u v ±=± ()'''uv u v uv =+ 2 '' ()'u u v uv v v -= (2)复合函数求导法则--链式法则 设(),()y f u u x ?==,则(())y f x ?=的导数为:[(())]''(())'()f x f x x ???=. 例5 求函数2 1 sin x y e =的导数. (3)反函数的求导法则 设()y f x =的反函数为()x g y =,两者均可导,且'()0f x ≠,则 11 '()'()'(()) g y f x f g y = =. (4)隐函数求导 设函数()y f x =由方程(,)0F x y =所确定,求'y 的方法有两种:直接求导法和公式法' ''x y F y F =-. (5)对数求导法:适用于若干因子连乘及幂指函数 4.高阶导数

2第二章 导数与微分答案

第二章 导数与微分答案 第一节 导数概念 1.填空题. (1) ()'f 0= 0; (2) (2, 4) (3) 1 . (4) =a 2 ,=b -1 . 2.选择题. (1)B ; (2)B ; (3) C ; (4)D ; (5) B ; (6)B 3.解 令)(t v 表示在t 时刻的瞬时速度,由速度与位移的关系知 ()().5)21(lim 2 ) 22(lim 22lim )2()2(22222' =++=-+-+=--==→→→t t t t t s t s s v t t t 4.设()? x 在x a =处连续,()()()f x x a x =-?, 求()'f a ;若)(||)(x a x x g ?-=,()x g 在x a =处可导吗? 解(1)因为()? x 在x a =处连续, 故)()(lim a x a x ??=→,所以 ()()()).()(lim 0 )(lim lim )('a x a x x a x a x a f x f a f a x a x a x ???==---=--=→→→ (2)类似于上面推导知 ()()()),(0 )(lim lim )(' a a x x a x a x a g x g a g a x a x ??=---=--=++ →→+ ()()()).(0)(lim lim )(' a a x x a x a x a g x g a g a x a x ??-=----=--=--→→- 可见当()0=a ?时,()0)(' ==a a g ?;当()0≠a ?时,())(' ' a g a g -+≠, 故这时()x g 在x a =处不可导。 5.求曲线y x =-43在点()12,-处的切线方程和法线方程. 解 根据导数的几何意义知道,所求切线的斜率为 ,4|4|131'1=====x x x y k 从而所求切线方程为 ),1(4)2(-=--x y 即 64-=x y .

导数与微分练习题答案

高等数学练习题 第二章 导数与微分 第一节 导数概念 一.填空题 1.若)(0x f '存在,则x x f x x f x ?-?-→?) ()(lim 000 = )(0x f '- 2. 若)(0x f '存在,h h x f h x f h ) ()(lim 000 --+→= )(20x f ' . 000 (3)() lim x f x x f x x ?→+?-?=03()f x '. 3.设20-=')(x f , 则=--→)()2(lim )000 x f x x f x x 4 1 4.已知物体的运动规律为2 t t s +=(米),则物体在2=t 秒时的瞬时速度为5(米/秒) 5.曲线x y cos =上点( 3π,2 1 )处的切线方程为03 123=- -+π y x ,法线方程为 03 22332=-+ -π y x 6.用箭头?或?表示在一点处函数极限存在、连续、可导、可微之间的关系, 可微 ? 可导 <≠ ? | 连续 <≠ ? 极限存在。 二、选择题 1.设0)0(=f ,且)0(f '存在,则x x f x ) (lim 0→= [ B ] (A ))(x f ' ( B) )0(f ' (C) )0(f (D) 2 1 )0(f 2. 设)(x f 在x 处可导,a ,b 为常数,则x x b x f x a x f x ??--?+→?) ()(lim 0 = [ B ] (A ))(x f ' ( B) )()(x f b a '+ (C) )()(x f b a '- (D) 2 b a +)(x f ' 3. 函数在点0x 处连续是在该点0x 处可导的条件 [ B ] (A )充分但不是必要 (B )必要但不是充分 (C )充分必要 (D )即非充分也非必要 4.设曲线22 -+=x x y 在点M 处的切线斜率为3,则点M 的坐标为 [ B ] (A )(0,1) ( B) (1, 0) (C) ( 0,0) (D) (1,1)

(完整版)第二章导数与微分(答案)

x 第二章导数与微分 (一) f X 0 X f X 0 I x 0 X 3 .函数f x 在点x 0连续,是f x 在点x 0可导的(A ) 5. 若函数f x 在点a 连续,则f x 在点a ( D ) C . a 6. f x x 2 在点X 2处的导数是(D ) A . 1 B . 0 C . -1 D .不存在 7.曲线y 2x 3 5x 2 4x 5在点2, 1处切线斜率等于(A ) A . 8 B . 12 C . -6 D . 6 8.设y e f x 且fx 二阶可导,则y ( D ) A . e f x B f X r e f f X £ £ f X 丄 2 x C . e f x f x D . e f x 9.若 f x ax e , x 0 在x 0处可导,则a , b 的值应为 b sin2x, (A ) A .左导数存在; B .右导数存在; C .左右导数都存在 1 .设函数y f x ,当自变量x 由x 0改变到 X o x 时,相应函数的改变量 f x 0 x B . f x 0 x C . f x 0 X f X 0 f X 。 x 2 .设f x 在x o 处可,则lim f X 0 B . X o C . f X 0 D . 2 f X 0 A .必要不充分条件 B . 充分不必要条件 C .充分必要条件 既不充分也不必要条件 4.设函数y f u 是可导的,且u x 2 ,则 d y ( C ) x 2 B . xf x 2 C . 2 2 2xf x D . x f x D .有定义

10?若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F x f x g x , G x f x g x 在 x 0 处(A ) A ?一定都没有导数 B ?—定都有导数 C .恰有一个有导数 D ?至少一个有导数 11.函数fx 与g x 在x 0处都没有导数,则Fx g x 在 x o 处(D ) 13 . y arctg 1 ,贝U y x A .一定都没有导数 B . 一定都有导数 C .至少一个有导数 D .至多一个有导数 12.已知F x f g x ,在 X X 。处可导,则(A ) g x 都必须可导 B . f x 必须可导 C . g x 必须可导 D . x 都不一定可导

第二章导数与微分 高等数学同济大学第六版

第二章 导数与微分 数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学. 微分学与积分学统称为微积分学. 微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一. 恩格斯(1820-1895)曾指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了”. 微积分的发展历史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘). 积分的雏形可追溯到古希腊和我国魏晋时期,但微分概念直至16世纪才应运萌生. 本章及下一章将介绍一元函数微分学及其应用的内容. 第一节 导数概念 从15世纪初文艺复兴时期起,欧洲的工业、农业、航海事业与商贾贸易得到大规模的发展,形成了一个新的经济时代. 而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展. 生产实践的发展对自然科学提出了新的课题,迫切要求力学、天文学等基础科学的发展,而这些学科都是深刻依赖于数学的,因而也推动了数学的发展. 在各类学科对数学提出的种种要求中,下列三类问题导致了微分学的产生: (1) 求变速运动的瞬时速度; (2) 求曲线上一点处的切线; (3) 求最大值和最小值. 这三类实际问题的现实原型在数学上都可归结为函数相对于自变量变化而变化的快慢程度,即所谓函数的变化率问题. 牛顿从第一个问题出发,莱布尼茨从第二个问题出发,分别给出了导数的概念. 本节主要内容 1 引例变速直线运动的瞬时速度和平面曲线的切线 2 导数的定义 3 左右导数 4 用导数计算导数 5 导数的几何意义 6 函数的可导与连续的关系 讲解提纲: 一、 引例: 引例1:变速直线运动的瞬时速度0 00 ()()lim t t f t f t v t t →-=-;

导数与微分总结

arccos求导 1基础总结 1、极限的实质是:动而不达 导数的实质是:一个有规律商的极限。规律就是: 2、导数的多种变式定义: 要注意细心观察发现,是描述趋近任意x时的斜率。而可以刻画趋近具体x0时的斜率。 3、 若x没趋近到x0,那么除法得到的值是这段的平均斜率,如果趋近到了x0,得到的就是这点的斜率----导数。 4、可导与连续的关系: 导数的实质是定义在某点的左右极限。既然定义在了某点上,该点自然存在,而且还得等于左右极限。因此,可导一定是连续的。反之,如果连续,不一定可导。不多说。同理,如果不连续,肯定某点要么无定义,要么定义点跳跃跑了,肯定极限有可能存在,但是导数绝不会存在。 同理要注意左右导数的问题。如果存在左或者右导数,那么在左侧该点一定是存在的。如: 这个函数,在0点就不存在左导数,只存在右导数。为什么嫩?看定义: 。定义里面需要用到f(0)啊!因此,千万不要以为导数是一种简单的极限,极限是可以在某点无定义的,而导数却是该点必须存在! 由此引发了一些容易误判的血案: 例如: 定义解决时候一定要注意中的到底是神马。比如求上图中,这个f(x0)千万要等于2/3,而不是1! 由此也可以知道,这个函数是不存在导数的,也不存在左导数,只存在右导数。

5、反函数的导数与原函数的关系: 有这样一条有趣的关系:函数的导数=对应的反函数的导数的倒数。 注意,求反函数时候不要换元。因为换了元虽然对自身来讲函数形式不变,但是与原函数融合运算时候就算是换了一个不是自己反函数的一个函数进行运算。结果显然是错误的。举例子: 求的导数。显然反函数(不要换元)是。反函数的导数是。反函数导数的倒数是,因此, 再如,求的导数。 解:令函数为,则其反函数为,导数的倒数为。但是必须消去。因此变形得 (注意到在定义域内cosy恒为正,因此舍掉负解) 6、复合函数求导法则: 只要父函数和子函数随时能有定义,就拆着求就可以了。 7、高阶导数: 如果f(x)在点x处具有n阶导数,那么f(x)在点x的某一邻域内必定具有一切低于n阶的导数。 ; ;其余的也记不住,自己慢慢推导。 ; 二项式定理中有:;类似的,乘法的n阶导数也有: 。这个是要熟练记忆的。 8、隐函数,参数方程的导数,相关变化率 建议隐函数,参数方程的导数,以及求导数的相关变化率时使用形式求解。只有这样才能准确,安全,方便。 举例:求(隐函数f(x,y)=0)中y对x的导数 解:两边求导,,解完以后发现效果还不错。如果直接用什么y’神马的净是错误,所以不要直接用口算,用dy/dx方法求解。

第2章 导数与微分总结

1基础总结 1、极限的实质是:动而不达 导数的实质是:一个有规律商的极限。规律就是:0lim x y x ?→?? 2、导数的多种变式定义: 00000()()()() lim =lim lim x x x x f x f x y f x x f x x x x x ?→?→→-?+?-=??- 要注意细心观察发现,0 ()() lim x f x x f x x ?→+?-?是描述趋近任意x 时的斜率。而 00 ()() lim x x f x f x x x →--可以刻画趋近具体x0时的斜率。 3、 若x 没趋近到x0,那么除法得到的值是这段的平均斜率,如果趋近到了x0,得到的就是这点的斜率——导数。 4、可导与连续的关系:

导数的实质是定义在某点的左右极限。既然定义在了某点上,该点自然存在,而且还得等于左右极限。因此,可导一定是连续的。反之,如果连续,不一定可导。不多说。同理,如果不连续,肯定某点要么无定义,要么定义点跳跃跑了,肯定极限有可能存在,但是导数绝不会存在。 同理要注意左右导数的问题。如果存在左或者右导数,那么在左侧该点一定是存在的。如: (),0f x x x =< 这个函数,在0点就不存在左导数,只存在右导数。为什么嫩?看定义: 0()()()(0) lim lim x x f x x f x f x x f x x ?→?→+?-+?-=??。定义里面需要用到f(0)啊!因此,千万不要以为导数是一种简单的极限,极限是可以在某点无定义的,而导数却是该点必须存在! 由此引发了一些容易误判的血案: 例如: 定义解决时候一定要注意0 00 ()() lim x x f x f x x x →--中的0()f x 到底是神马。比如求上图 中01 ()() lim x f x f x x x + →-- ,这个f(x0)千万要等于2/3,而不是1!

导数与微分单元归纳

学科:数学 教学内容:导数与微分单元达纲检测 【知识结构】 【内容提要】 1.本章主要内容是导数与微分的概念,求导数与求微分的方法,以及导数的应用. 2.导数的概念. 函数y=f(x)的导数f ′(x),就是当△x →0时,函数的增量△y 与自变量△x 的比x y ??的极限,即 x x f x x f x y x f x x ?-?+=??=→?→?) ()(lim lim )('00 函数y=f(x)在点0x 处的导数的几何意义,就是曲线y=f(x)在点))(,(00x f x P 处的切线的斜率. 3.函数的微分

函数y=f(x)的微分,即dy=f ′(x)dx . 微分和导数的关系:微分是由导数来定义的,导数也可用函数的微分与自变量的微分的商来表示,即dx dy x f = )('. 函数值的增量△y 也可以用y 的微分近似表示,即△y ≈dy 或△y ≈f ′(x)dx 。 4.求导数的方法 (1)常用的导数公式 c ′=0(c 为常数); )()'(1 Q m mx x m m ∈=-; (sinx)′=cosx ; (cosx)′=-sinx ; x x e e =)'(, a a a x x ln )'(=; x x 1)'(ln = , e x a x a log 1)'(log =。 (2)两个函数四则运算的导数: (u ±v)′=u ′±v ′; (uv)′=u ′v+uv ′ )0(' ''2 ≠-= ?? ? ??v v uv v u v u 。 (3)复合函数的导数 设y=f(u),)(x u ?=, 则)(')(''''x u f u y y x u x ??=?=. 5.导数的应用

导数与微分导数概念

第二章 导数与微分 第一节 导数概念 1.x x x y = ,求y ' 2.求函数y =2tan x +sec x -1的导数y ' 3. x x y 1010 +=,求y ' 4. 求曲线y =cos x 上点)2 1 ,3(π处的切线方程和法线方程式. 5.3ln ln +=x e y ,求y ' 6.已知? ??<-≥=0 0 )(2x x x x x f 求f +'(0)及f -'(0), 又f '(0)是否存在? 7.设????? =≠=0 ,00 ,1sin )(x x x x x f ,用定义证明)(x f 在点0=x 处连续,但不可导。

8. 证明: 双曲线xy =a 2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a 2 . 9.讨论函数y =|sin x |在x =0处的连续性与可导性: 10.设函数? ??>+≤=1 1 )(2x b ax x x x f ,为了使函数f (x )在x =1处连续且可导, a , b 应取什么值? 第二节 函数的求导法则 1.设()22arcsin x y =,求y ' 2.求函数y =sin x ?cos x 的导数y ' 3.求函数y =x 2ln x 的导数y '

4.求函数x x y ln =的导数y ' 5.求函数3ln 2+=x e y x 的导数y ' 6. )(cos )(sin 2 2x f x f y +=,求y ' 7. n b ax f y )]([+=,求y ' 8. ) ()(x f x e e f y =,求y ' 9. x x x y arcsin 12 +-=,求y ' 10.求函数y =x 2ln x cos x 的导数y ' 第三节 高阶导数 1. x x x y ln 1 arctan +=,求y ''

第二章导数与微分试题及答案

第二章 导数与微分 1. ()().1,102-'=f x x f 试按定义求设 2002 00(1)(1)10(1)10 '(1)lim lim 1020lim lim(1020)20x x x x f x f x f x x x x x x ?→?→?→?→-+?--?---==???-?==?-=-? 2. 下列各题中均假定()0x f '存在,按导数定义观察下列极限,指出此极限表示什么, 并将答案填在括号内。 ⑴ ()()=?-?-→?x x f x x f x 000lim (0'()f x -); ⑵ ()=→?x x f x 0lim ('(0)f ), 其中()()存在;且0,00f f '= ⑶ ()() =--+→h h x f h x f h 000lim (02'()f x ). 3. 求下列函数的导数: ⑴ ='=y x y ,4则3 4x ⑵ ='=y x y ,32则132 3 x - ⑶ ='=y x y ,1 则32 12x -- ⑷ = '=y x x y ,53则115165x 4. 求曲线. 21,3 cos 程处的切线方程和法线方 上点?? ? ??=πx y 'sin ,'()3y x y π=-= 所以切线方程为1)223y x π- =-- 2(1)03 y +-+=

法线方程为1)23y x π- =- 化简得3)0x π+-= 5. 讨论函数?????=≠=0 00 1sin 2 x x x x y 在0=x 处的连续性和可导性. 20(0)0 1 lim sin 0(0)()x f x f x →===因为有界量乘以无穷小 所以函数在0x =处连续 因为 20001 sin (0)(0) 1lim lim lim sin 0x x x x f x f x x x x x ?→?→?→?+?-==?=??? 所以函数在0x =处可导. 6. 已知()()()()是否存在? 又及求 0 ,0 0 , 0 2f f f x x x x x f '''???<-≥=-+ 2 ' 00(0)(0)(0)lim lim 0h h f h f h f h h + →+→++-=== '0 0(0)(0)(0)lim lim 1h h f h f h f h h -→-→++--===- ''(0)(0)f f +-≠ '(0)f ∴不存在 7. ()(). , 0 sin x f x x x x x f '?? ?≥<=求已知 当0x <时, '()(sin )'cos f x x x ==; 当0x >时, '()()'1f x x ==;

第二章导数与微分总结

第二章 导数与微分总结 一、导数与微分概念 1.导数的定义 设函数()x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ?,相应地函数增量()()00x f x x f y -?+=?。如果极限 ()()x x f x x f x y x x ?-?+=??→?→?0000lim lim 存在,则称此极限值为函数()x f 在0x 处的导数(也称微商),记作()0x f ',或0 x x y =' , 0x x dx dy =,()0 x x dx x df =等,并称函数()x f y =在点0x 处可导。如果上面的极限不存在, 则称函数()x f y =在点0x 处不可导。 导数定义的另一等价形式,令x x x ?+=0,0x x x -=?,则 ()()() 000 lim x x x f x f x f x x --='→ 我们也引进单侧导数概念。 右导数:()()()()() x x f x x f x x x f x f x f x x x ?-?+=--='++ →?→+000000lim lim 0 左导数:()()()()()x x f x x f x x x f x f x f x x x ?-?+=--='-- →?→-000000lim lim 0 则有 ()x f 在点0x 处可导()x f ?在点0x 处左、右导数皆存在且相等。 2.导数的几何意义与物理意义 如果函数()x f y =在点0x 处导数()0x f '存在,则在几何上()0x f '表示曲线 ()x f y =在点()()00,x f x 处的切线的斜率。 切线方程:()()()000x x x f x f y -'=- 法线方程:()() ()()()01 0000≠'-'- =-x f x x x f x f y

第二章导数与微分教学文案

第二章导数与微分 数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学. 微分学与积分学统称为微积分学. 微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一. 恩格斯(1820-1895)曾指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了”. 微积分的发展历史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘). 积分的雏形可追溯到古希腊和我国魏晋时期,但微分概念直至16世纪才应运萌生. 本章及下一章将介绍一元函数微分学及其应用的内容. 第一节导数概念 从15世纪初文艺复兴时期起,欧洲的工业、农业、航海事业与商贾贸易得到大规模的发展,形成了一个新的经济时代. 而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展. 生产实践的发展对自然科学提出了新的课题,迫切要求力学、天文学等基础科学的发展,而这些学科都是深刻依赖于数学的,因而也推动了数学的发展. 在各类学科对数学提出的种种要求中,下列三类问题导致了微分学的产生: (1) 求变速运动的瞬时速度; (2) 求曲线上一点处的切线; (3) 求最大值和最小值. 这三类实际问题的现实原型在数学上都可归结为函数相对于自变量变化而变化的快慢程度,即所谓函数的变化率问题. 牛顿从第一个问题出发,莱布尼茨从第二个问题出发,分别给出了导数的概念. 内容分布图示 ★引言★变速直线运动的瞬时速度

★平面曲线的切线★导数的定义★几点说明 ★利用定义求导数与求极限(例1、例2)★例3 ★例4 ★例5 ★例6 ★例7 ★左右导数★例8 ★例9 ★导数的几何意义★例10 ★例11 ★导数的物理意义★可导与连续的关系 ★例12 ★例13 ★例14 ★例15 ★内容小结★课堂练习 ★习题 2 - 1 ★返回 内容要点: 一、引例:引例1: 变速直线运动的瞬时速度;引例2: 平面曲线的切线 二、导数的定义: 注:导数概念是函数变化率这一概念的精确描述,它撇开了自变量和因变量所代表的几何或物理等方面的特殊意义,纯粹从数量方面来刻画函数变化率的本质: 函数增量与自变量增量的比值是函数在以和为端点的区间上的平均变化率,而导数则是函数在点处的变化率,它反映了函数随自变量变化而变化的快慢程度. 根据导数的定义求导,一般包含以下三个步骤: 1.求函数的增量: 2.求两增量的比值: ; 3.求极限 三、左右导数 定理1函数在点处可导的充要条件是:函数在点处的左、右导数均存在且相等. 四、用定义计算导数 五、导数的几何意义 六、函数的可导性与连续性的关系 定理2如果函数在点处可导,则它在处连续. 注:上述两个例子说明,函数在某点处连续是函数在该点处可导的必要条件,但不是充分条件. 由定理2还知道,若函数在某点处不连续,则它在该点处一定不可导. 在微积分理论尚不完善的时候,人们普遍认为连续函数除个别点外都是可导的. 1872年得多数学家魏尔斯特拉构造出一个处处连续但处处不

(新)高数第二章导数与微分知识点与习题

高数第二章导数与微分知识点总结 第一节 导数 1.基本概念 (1)定义 0000000000 ()()()()()|(|)'()lim lim lim x x x x x x x f x x f x f x f x dy df x y f x dx dx x x x x ==?→?→→+?--?====??-或 注:可导必连续,连续不一定可导. 注:分段函数分界点处的导数一定要用导数的定义求. (2)左、右导数 0'00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x - --?→→+?--==?-. 0'00000 ()()()()()lim lim x x x f x x f x f x f x f x x x x + ++?→→+?--==?-. 0'()f x 存在''00()()f x f x -+?=. (3)导数的几何应用 曲线()y f x =在点00(,())x f x 处的切线方程:000()'()()y f x f x x x -=-. 法线方程:0001 ()()'() y f x x x f x -=- -. 2.基本公式 (1)'0C = (2)' 1 ()a a x ax -= (3)()'ln x x a a a =(特例()'x x e e =)(4)1 (log )'(0,1)ln a x a a x a = >≠ (5)(sin )'cos x x = (6)(cos )'sin x x =- (7)2(tan )'sec x x = (8)2 (cot )'csc x x =-

考研数学高数第二章导数与微分的知识点总结

考研数学高数第二章导数与微分的知识点总结 导数与微分是考研数学的基础,占据至关重要的地位。基本概念、基本公式一定要掌握牢固,常规方法和做题思路要非常熟练。下面文都考研数学老师给出该章的知识点总结,供广大考生参考。 第一节 导数 1.基本概念 (1)定义 0000000000 ()()()()()|(|)'()lim lim lim x x x x x x x f x x f x f x f x dy df x y f x dx dx x x x x ==?→?→→+?--?====??-或 注:可导必连续,连续不一定可导. 注:分段函数分界点处的导数一定要用导数的定义求. (2)左、右导数 0'000000 ()()()()()lim lim x x x f x x f x f x f x f x x x x ---?→→+?--==?-. 0'00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x +++?→→+?--==?-. 0'()f x 存在''00()()f x f x -+?=. (3)导数的几何应用 曲线()y f x =在点00(,())x f x 处的切线方程:000()'()()y f x f x x x -=-. 法线方程:0001()()'() y f x x x f x -=--. 2.基本公式 (1)'0C = (2)'1()a a x ax -=

(3)()'ln x x a a a =(特例()'x x e e =)(4)1(log )'(0,1)ln a x a a x a =>≠ (5)(sin )'cos x x = (6)(cos )'sin x x =- (7)2(tan )'sec x x = (8)2 (cot )'csc x x =- (9)(sec )'sec tan x x x = (10)(csc )'csc cot x x x =- (11 )(arcsin )'x =(12 )(arccos )'x = (13)21(arctan )'1x x =+ (14)21(arccot )'1x x =-+ ( 15[ln(x += 3.函数的求导法则 (1)四则运算的求导法则 ()'''u v u v ±=± ()'''uv u v uv =+ 2 ''()'u u v uv v v -= (2)复合函数求导法则--链式法则 设(),()y f u u x ?==,则(())y f x ?=的导数为:[(())]''(())'()f x f x x ???=. 例5 求函数21 sin x y e =的导数. (3)反函数的求导法则 设()y f x =的反函数为()x g y =,两者均可导,且'()0f x ≠,则 11'()'()'(()) g y f x f g y ==. (4)隐函数求导 设函数()y f x =由方程(,)0F x y =所确定,求'y 的方法有两种:直接求导法和公式法'''x y F y F =-. (5)对数求导法:适用于若干因子连乘及幂指函数

第二章 导数与微分部分考研真题及解答

第二章 导数与微分 2.1导数的概念 01.1)设f (0)=0,则f (x )在点x =0可导的充要条件为 ( B ) (A )01lim (1cosh)h f h →-存在 (B )01 lim (1)h h f e h →-存在 (C )01lim (sinh)h f h h →-存在 (D )01 lim [(2)()]h f h f h h →-存在 03.3) 设f (x )为不恒等于零的奇函数,且)0(f '存在,则函数x x f x g ) ()(= (A) 在x =0处左极限不存在. (B) 有跳跃间断点x =0. (C) 在x =0处右极限不存在. (D) 有可去间断点x =0. [ D ] 03.4) 设函数)(1)(3 x x x f ?-=,其中)(x ?在x =1处连续,则0)1(=?是f (x )在x =1处可 导的 [ A ] (A) 充分必要条件. (B )必要但非充分条件. (C) 充分但非必要条件 . (D) 既非充分也非必要条件. 05.12)设函数n n n x x f 31lim )(+=∞ →,则f (x )在),(+∞-∞内 [ C ] (A) 处处可导. (B) 恰有一个不可导点. (C) 恰有两个不可导点. (D) 至少有三个不可导点. 05.34) 以下四个命题中,正确的是 [ C ] (A ) 若)(x f '在(0,1)内连续,则f (x )在(0,1)内有界. (B) 若)(x f 在(0,1)内连续,则f (x )在(0,1)内有界. (C) 若)(x f '在(0,1)内有界,则f (x )在(0,1)内有界. (D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. (取f (x )= x 1 ,x x f =)(反例排除) 06.34) 设函数()f x 在x =0处连续,且()22 lim 1n f h h →=,则 ( C ) (A )()()' 000f f -=且存在(B)()()'010f f -=且存在 (C)()()' 000f f +=且存在 (D)()()' 010f f +=且存在 07.1234) 设函数f (x )在x =0处连续,下列命题错误的是: ( D )(反例:()f x x =) (A ) 若0()lim x f x x →存在,则f (0)=0. (B) 若0()() lim x f x f x x →+-存在,则f (0)=0. (C) 若0()lim x f x x →存在,则(0)f '存在. (D) 若0()() lim x f x f x x →--存在,则(0)f '存在

相关主题
文本预览
相关文档 最新文档