当前位置:文档之家› 几种小波滤波方法比较

几种小波滤波方法比较

几种小波滤波方法比较

几种小波滤波方法比较

简介:小波的多分辨率特性是小波去噪能够实现的基础。通过Mallat 算法我们可以将信号中各种不同的频率成分分解开来,从而实现信号的按频带处理方式。

假设一原始输入信号:

y(n) = f(n) + s(n),n=l,2,---,N

其中:为有用信号,为高斯分布的噪声信号。用Mallat 算法对上式进行小波变换,可知不同分解尺度上的小波系数有各自的特征,这主要是因为有用信号和噪声信号所在的频率不同引起的。f(n)经过小波变换后奇异点分布在幅

度相对较大的小波系数上,即对应尺度上的模极大值;s(n)经过小波变换后仍然是呈高斯分布的噪声,它们分布在各个尺度上且幅度比有用信号小的多。基于以上原理,小波变换去噪方法大致可以分为三类:

1 小波阈值去噪方法

由上文可知有用信号经小波变换后为对应尺度上的极大值对,而噪声信号经小波变换后仍呈高斯分布,且幅度较小,因此对噪声较严重的尺度上的小波系数利用预先设定的自适应闕值进行估计,从而达到衰减噪声的目的,完成信号的重构。其中阈值的确定直接影响着算法去噪效果的好坏。该方法的主要步骤如下:

(1)、选定小波基函数,对输入信号进行Mallat 分解,确定分解尺度,得到各个尺度上的小波系数;

(2)、设定阈值,对小波系数进行阈值判断处理,得到新的估计小波系数;

(3)、通过估计小波系数进行信号的重构。

2 去除小波变换后噪声对应的信号的滤波法

几种非线性滤波算法的研究-内附程序

2017 年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:雷达系统导论 学生所在(系):电子与信息工程学院 学生所在学科:电子与同学工程 学生姓名: 学号: 学生类别: 考核结果阅卷人 第 1 页(共页)

几种非线性滤波算法的介绍与性能分析 作者姓名:学号: 专业院系:电信学院电子工程系 电子邮件: 摘要—非线性滤波算法在雷达目标跟踪中有着重要的应用,对雷达的跟踪性能有着至关重要的影响。好的滤波算法有利于目标航迹的建立及保持,能够得到较精确的目标位置,为发现目标后的后续工作提供可靠的数据依据。本文重点介绍了雷达数据处理中的几种非线性滤波算法:扩展卡尔曼滤波(EKF)、不敏卡尔曼滤波(UKF)、粒子滤波(PF),并且给出了一个利用这三种算法进行数据处理的一个实例,通过这个实例对比分析了这三种算法的性能以及优劣。 关键字—非线性滤波算法;扩展卡尔曼滤波;不敏卡尔曼滤波;粒子滤波; I.概述(一级表题格式) 在雷达对目标进行跟踪前要先对目标进行检测。对于满足检测条件的目标就需要进行跟踪,在跟踪的过程中可以利用新获得的数据完成对目标的进一步检测比如去除虚假目标等,同时利用跟踪获得数据可以进一步完成对目标动态特性的检测和识别。因此对目标进行准确的跟踪是雷达性能的一个重要指标。在检测到满足条件的目标后,根据目标运动状态建立目标运动模型,然后对目标跟踪算法进行设计,这是雷达目标跟踪中的核心部分。 目前主要的跟踪算法包括线性自回归滤波,两点外推滤波、维纳滤波、- αβ滤波、加权最小二乘滤波、维纳滤波和卡尔曼滤波[1]。对于线性系统而言最优滤波的方法就是卡尔曼滤波,卡尔曼滤波是线性高斯模型下的最优状态估计算法。但是实际问题中目标的运动模型往往不是线性的,因此卡尔曼滤波具有很大的局限性。目前主要用的非线性滤波算法可以分为高斯滤波和粒子滤波[2]。不敏卡尔曼滤波和扩展卡尔曼滤波就是高斯滤波中的典型代表,也是应用相对较为广泛的。粒子滤波的应用范围比高斯滤波的适用范围要广,对于系统状态非线性,观测模型非高斯等问题都有很好的适用性。本文具体分析阐述了扩展卡尔曼滤波算法,不敏卡尔曼滤波算法,粒子滤波算法,并且通过一个实例利用仿真的方法分析了这三种算法在滤波性能上的优劣,最后对这三种算法做了一定的总结。 我本科毕业设计题目为《基于历史数据的路径生成算法研究》,由于我是跨专业保研到电信学院,该课题所研究内容不属于雷达系统研究范围,是一种城市路网最快路径生成算法。 II.几种非线性滤波算法 A.扩展卡尔曼滤波 扩展卡尔曼滤波是将非线性系统转换为近似的线性系统的一种方法,其核心思想是围绕滤波值将非线性函数展开成泰勒级数并略去二阶及以上的项,得到一个近似的线性化模型,然后应用卡尔曼滤波完成状态估计。 扩展卡尔曼滤波状态空间模型: k k k w x f+ = + ) ( x 1 状态方程 k k k v x h+ =) ( z观测方程 其中(.) f和(.) h为非线性函数 在扩展卡尔曼滤波中,状态的预测以及观测值的预测由非线性函数计算得出,线性卡尔曼滤波中的状态转移矩阵A阵和观测矩阵H阵由f和h函数的雅克比矩阵代替。 对 (.) f和(.) h Taylor展开,只保留一次项有: ) ? ( ) ?( ) ( k k k k k x x A x f x f- + ≈ ) ? ( ) ?( ) ( k k k k k x x H x h x h- + ≈ 其中: k k x x k k dx df A ?= =为f对 1- k x求导的雅克比矩阵 k k x x k k dx dh H ?= =为h对 1- k x求导的雅克比矩阵 ) ?( ? 1-k k x f x=,于是可以得出: k k k k k k k w x A x f x A x+ - + ≈ + ) ? ) ?( ( 1 k k k k k k k v x H x h x H z+ - + ≈ + ) ? ) ?( ( 1 通过以上变换,将非线性问题线性化。接下来EKF 滤波过程同线性卡尔曼滤波相同,公式如下: )) | (?( ) |1 ( X?k k X f k k= + ) ( ) ( ) | ( ) ( ) |1 (P k Q k k k P k k k+ Φ' Φ = + )1 ( )1 ( ) |1 ( )1 ( )1 (S+ + + ' + + = +k R k H k k P k H k )1 ( )1 ( ) |1 ( )1 ( K1+ + ' + = +-k S k H k k P k

几种卡尔曼滤波算法理论

自适应卡尔曼滤波 卡尔曼滤波发散的原因 如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。 引起滤波器发散的主要原因有两点: (1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。 (2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。这种由于计算舍入误差所引起的发散称为计算发散。 针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。 自适应滤波 在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。如果所建立的模型与实际模型不符可能回引起滤波发散。自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。

小波滤波器

小波滤波器 语法: [Lo_D,Hi_D,Lo_R,Hi_R]= wfilters('wname') [F1,F2]=wfilters('wname','type') [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('wname') 计算'wname'里的正交和双正交小波的四个滤波器Lo_D, the decomposition low-pass filter 分解低通滤波器 Hi_D, the decomposition high-pass filter 分解高通滤波器 Lo_R, the reconstruction low-pass filter 重建低通滤波器 Hi_R, the reconstruction high-pass filter 重建高通滤波器 [F1,F2] = wfilters('wname','type') 返回一下滤波器: 模拟频率,数字频率,模拟角频率关系 模拟频率f:每秒经历多少个周期,单位为Hz,即1/s; 模拟角频率Ω是指每秒经历多少弧度,单位rad/s 数字频率w:每个采样点间隔之间的弧度,单位rad Ω=2*pi*f; w=Ω*T

IIR数字滤波器设计方法: 先根据已知带通参数求出最佳滤波器阶数和截止频率 [n,Wn]=buttord(Wp,Ws,Rp,Rs); [n,Wn]=buttord(Wp,Ws,Rp,Rs,'s'); [b,a]=butter(n,Wn,'ftype','s') Wp为0-1之间,Ws为阻带角频率,0-1之间。Rp为通带波纹,或者通带衰减,Rs为阻带衰减。 给出的是模拟频率fp1通带截止频率,fp2阻带截止频率,则Wp=fp1*2/fs,Ws=fp2*2/fs。 传统FIR滤波器 函数FIRl是采用经典窗函数设计线性相位FIR数字滤波器,且具有标准低通、带通、高通和带阻等类型。函数调用格式: b=firl(n,wn) b=firl(n,wn,'ftype') b=firl(n,wn ,window) b=firl(n,wn,'ftype',window) n为FIR滤波器类型,比如高通、低通,window为窗函数类型 低通滤波器的设计要求是:采样频率为100Hz,通带截止频率为3Hz,阻带截止频率为5Hz,通带内最大衰减不高于0.5dB,阻带最小衰减不小于50dB,使用海明窗函数。确定N的步骤有:海明窗过渡带满足:△w≥3.3(2π/N) 1.从上表可查得海明窗的精确过渡带宽为6.6pi/N 2.低通滤波器的过渡带是:DeltaW=Ws-Wp=(5-3)*pi*2/100=0.04pi 3.N=6.6pi/DeltaW=6.6pi/0.04pi=165 所以滤波器的阶数至少是165

滤波器组多载波技术

滤波器组多载波技术 滤波器组多载波技术又被称作FBMC技术,是Filter Bank based Multicarrier 的缩写。其技术本身可以对于频谱效率问题、多径衰落问题进行有效的解决。FBMC技术具有较强的抗干扰能力,对于一些高速率通信需求可以有效的满足,并且保障信号的接收效果。作为新一代的核心技术,FBMC技术应用于无线通信系统中,可以更好的适应新一代带宽的网络环境。但是,在FBMC技术应用的过程中,虽然为了提高整体通信性能,采取了时域非矩形脉冲形式,但是其技术应用过程中的均衡技术、信道估计、同步技术以及快速算法等技术的实现的难度也得到了增加。在FBMC技术应用的过程中,要对于5G通信技术的滤波器组的实现算法进行进一步的研究。 多载波通信是采用多个载波信号,首先把高速数据流分割成若干并行的子数据流,从而使每个子数据流具有较低的传输速率,并用这些子数据流分别调制相应的子载波信号。在传输过程中,由于数据速率相对较低,码元周期变长,因此,只要时延扩展与码元周期的比值小于某特定值,就可以解决码间干扰问题。因为多载波调制对信道多径时延所造成的时间弥散性敏感度不强,所以,多载波传输方案能够在复杂的无线环境下给数字数据信号提供有效的保护。 OFDM作为最常用的滤波器组多载波技术在理论上和应用上都己十分成熟,但在时变信道下子带间脆弱的正交性导致性能下降很严重,这使得研究非矩形脉冲成型的多载波技术成为必要,以致滤波器组多载波理论再次得到学术界关注。 FBMC属于频分复用技术,通过一组滤波器对信道频谱进行分割以实现信道的频率复用。对现在的滤波器组多载波系统进行分类,大致分为余弦调制多频技术、离散小波多音频调制技术、滤波多音频调制技术、基于偏移正交幅度调制(offset quadratureamplitude modulation,OQAM)的OFDM技术和复指数调制滤波器组技术(exponential modulate filter bank,EMFB)。FBMC系统由发送端综合滤波器和接收端分析滤波器组成如图2所示。分析滤波器组把输入信号分解成多个子带信号,综合滤波器组对各个子带信号进行综合后进行重建输出。由此可知,分析滤波器组和综合滤波器组互为逆向结构。无论是分析滤波器组还是综合滤波器组它们的核心结构都是原型滤波器,滤波器组中其他的滤波器都是基于原型滤波器通过频移而得到。分析滤波器组和综合滤波器组的原型函数互为共扼和时间翻转。分析滤波器组和综合滤波器组的数学表达式如下。

滤波器组框架理论及其在图信号处理中的应用

滤波器组框架理论及其在图信号处理中的应用 摘要:传统滤波器组框架理论通常用来处理低维规则结构数据,如时间信号、空 间信号和时空信号等。随着现代科技高速发展,高维非规则化数据信息大量涌现, 如社交网络、能源网络、交通运输网络、神经元网络等。如何对高维图结构数据 进行处理成为一个备受关注且亟待解决的问题。借助代数图论和谱图理论,图信号 处理成为近年来兴起的研究方向,用来处理高维加权图上的信号。众多学者从各自 角度出发,将传统滤波器组框架理论推广到图滤波器组框架中,取得了一系列成果。 关键词:滤波器组;框架理论;图信号;图滤波器 引言:滤波器组框架理论是应用数学、信号处理、图像处理和数字通信等领 域的重要问题之一,对滤波器组框架的分析和设计问题进行研究有着重要的科学意 义和应用前景。近年来,随着高维非规则化数据信息大量涌现,很多学者开始研究 图信号处理的滤波器组方法。因此对滤波器组框架理论及其在图信号处理中的应 用进行研究。 一、滤波器组框架理论 在各种框架中,实际应用最广泛的是由滤波器组实现的框架。有限维框架、离 散小波框架和离散Gabor框架都属于滤波器组框架。接下来介绍滤波器组基础知识、滤波器组框架理论及应用。 (一)滤波器组基础 滤波器组是一组有着共同输入或共同输出的带通滤波器。典型滤波器组的结 构如下图所示。其中左边部分为分析滤波器组,右边部分为综合滤波器组。分析滤 波器组有一个输入多个输出,其将输入信号分解成不同的子带信号,每个分析滤波 器Hi(z)有不同的频率特性,输入信号x(n)通过M个分析滤波器Hi(z)后,得到M个不 同的子带信号。信号在子带分解后,对每个通道Mi下采样,可降低信号的采样率。下采样后的子带信号可以被编码、处理或者传输。综合滤波器组具有多个输入一 个输出,其将处理后的子带信号通过带通滤波后再组合起来,重构原始信号。为保 证重构信号x?(n)与原信号x(n)具有相同的采样频率,在综合滤波器组前对各子带信 号Mi上采样(Upsampling)。也有论文将下采样称为抽取(Decimation),将上采样称 为内插(Interpolation),两者实际并无区别,本文统一称为下采样、上采样。 M通道滤波器组: 将每个通道的下采样因子Mi相同的滤波器组称为均匀滤波器组;将下采样因子不同的滤波器组称为非均匀滤波器组.将下采样因子和通道数相同的滤波器组称 为临界采样滤波器组;将下采样因子小于通道数的滤波器组称为过采样滤波器组。如果滤波器组由理想滤波器构成,没有混叠产生,则可以完全重构原始信号。由于 理想滤波器是不可实现的,为了消除混叠,需要选择合适的Hi(z)和Fi(z),使得 x?(n)=x(n?m),这样的滤波器组称为完全重构滤波器组。多采样率信号处理的核心 是信号采样率的转换和滤波器组。信号的上/下采样是多采样率信号处理的基本操作。多相(Polyphase)结构是滤波器组的一种基本表示方法。 (二)滤波器组框架 框架理论最先由Duffin等在研究非谐波Fourier序列时创立的,小波框架和Gabor框架是应用最广泛的两类框架。二十世纪八九十年代,与小波理论并行发展 的滤波器组分析和设计方法使得小波的物理实现成为现实,此后小波在信号处理、 数据压缩与编码等领域得到了飞速发展和巨大应用。目前滤波器组框架理论在采

(整理)11种滤波方法+范例代码.

软件滤波算法(转载) 这几天做一个流量检测的东西,其中用到了对数据的处理部分,试了很多种方法,从网上找到这些个滤波算法,贴出来记下 需要注意的是如果用到求平均值的话,注意总和变量是否有溢出,程序没必要照搬,主要学习这些方法,相信做东西的时候都能用得上 1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点:

适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果 N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点: 对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值 N值的选取:3~14 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 测量速度较慢,和算术平均滤波法一样 比较浪费RAM

几种滤波算法

一.十一种通用滤波算法(转) 1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4

适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果 N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点: 对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值 N值的选取:3~14

小波神经网络及其应用

小波神经网络及其应用 陆宇颖 摘要:小波神经网络是将小波理论和神经网络理论结合起来的一种神经网络,它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。首先阐明了小波变换和多分辨分析理论,然后介绍小波神经网络数学模型和应用概况。 1. 研究背景与意义 人工神经网络是基于生物神经系统研究而建立的模型,它具有大规模并行处理和分布式存储各类图像信息的功能,有很强的容错性、联想和记忆能力,因而被广泛地应用于故障诊断、模式识别、联想记忆、复杂优化、图像处理以及计算机领域。但是,人工神经网络模型建立的物理解释,网络激活函数采用的全局性函数,网络收敛 即 ,焦李神经网络2. 2.1()x ,使式中为的Fourier 变换。对作伸缩、平移变换得到小波基函数系 对任意2()()f x L R ∈,其连续小波变换定义为: 反演公式为: 在实际应用中,特别是计算机实现中,往往要把上述的连续小波及其变换离散化,通常采用二进制离散,即 令2,2m m a b k ==,则 二进小波一定是一个允许小波,且是一个正交小波基。考虑一个连续的、平方可积的函数 2()()f x L R ∈在分辨率2m 下的逼近()m f x ,由多分辨分析理论可知:

()x Φ是尺度函数,对其作伸缩、平移变换得到()mk x Φ。 Mallat 同时证明了函数()f x 在2m 和12m -分辨率下的信息差别(即细节)()m D f x ,可以通过将函数() f x 在一小波正交基上分解而获得,从而定义了一种完全而且正交的多分辨率描述,即小波描述。 ()mk x ψ就是式(5)定义的二进小波,则()f x 在12m -分辨率下的逼近式为: Mallat 并指出,对于任意一个函数 2()()f x L R ∈可以在一组正交小波基上展开: 式(11)是一个平方可积函数的小波分解,提供了小波神经网络设计的理论框架。 .. 12(,)x x ο 则有2.2 (ψ(f x 式(Lk a 与式 (17i c i 则有: 即(21)=f Ac 式(20)的最小二乘解为: +A 被称为A 的伪逆矩阵。且 如果样本i x 均匀分布,(1,2,...,)θ=i i n 是正交基, 则T A A 是一个?n n 单位矩阵,且

小波变换去噪基础地的知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数 (即母小波)和缩放函数 (也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。 5.小波变换的科学意义和应用价值

小波分析及其在信号滤波中的应用

小波分析及其在信号滤波中的应用 学生 指导老师 电气信息工程学院 摘要:基于信号和噪声的频率不同,本文对小波进行了分析研究,并利用小波阈值方法对信号进行了滤波处理。根据频率的不同采用了最佳软阈值滤波法对原始信号进行了分离,采用db10小波和sym8小波对信号进行5层分解,并且在选择细节系数时,选用最佳阈值软模式和尺度噪声以及选用sure阈值模式和尺度噪声,分出实际有用信号和很明显的噪声信号。利用Matlab对noissin信号函数及初设原始信号进行分析,从得到的滤波前后的信号图片分析,验证了小波对信号滤波的有效性。 关键词:小波变换; 阈值; 信号滤波; MATLAB Study on Wavelet Analysis and Its Application to Signal fiter Student: Supervisor: Electrical and Information Engineering Department Abstract:Based on the frequency of the signal and noise is different, in this paper, the wavelet analysis and research, and use wavelet threshold value method to signal the filtering processing. According to the different frequency used the best soft threshold of filtering method for isolation of the original signal, the db10 wavelet and wavelet sym8 signal, 5 layers decomposition, and at selected detail coefficients, choose optimal threshold soft mode and scale noise and choose sure threshold mode and noise scale, cent gives actual useful signal and obviously noise signal. Use of Matlab noissin signal function and set up at the beginning of the original signal is analyzed, from the filter of the signal analysis before and after pictures, the effectiveness of the wavelet to signal the effectiveness of filtering. Key words:wavelet transform; Threshold; Signal fiter; MA TLAB

小波分析及应用(附常用小波变换滤波器系数)

第八章 小波分析及应用 8.1 引言 把函数分解成一系列简单基函数的表示,无论是在理论上,还是实际应用中都有重要意义。 1822年法国数学家傅里叶(J. Fourier 1768-1830)发表的研究热传导理论的“热的力学分析”,提出并证明了将周期函数展开为正弦级数的原理,奠定了傅里叶级数理论的基础[1]。傅里叶级数理论研究的是把函数在三角函数系下的展开,使得对信号和系统的研究归结为对简单的三角函数的研究。傅里叶级数与傅里叶变换共同组成了平常所说的傅里叶分析[2]。傅里叶级数用于分析周期性的函数或分布,理论分析时经常假定周期是π2,定义如式(8.1-1)、(8.1-2) ()()π2,02 L x f ∈?,()∑∞ -∞ == k ikx k e c x f (8.1-1) 其中 ()dx e x f c ikx k -?=π π20 21 (8.1-2) 然而,被分析函数的性质并不能完整地由傅里叶系数来刻划,这里有一个例子来说明[3]:从任一个平方可和的函数)(x f 出发,为了得到一个连续函数)(x g ,只需或者增大f(x)的傅里叶系数的模,或者保持它不变并适当地改变系数的位相。因此,不可能仅根据傅里叶系数大小的阶就预知函数的性质(如大小、正则性)。 傅里叶变换的定义如式(8.1-3)、(8.1-4) ()()dx e x f F x j ωω? ∞∞ -= (8.1-3) ()()ωωπ ωd e F x f x j -∞∞-?= 21 (8.1-4) 通过引入广义函数或分布的概念,可获得奇异函数(如冲击函数)的傅里叶变换的存在。对于时域的常量函数,在频域将表现为冲击函数,表明具有很好的频域局部化性质。由式(8.1-3)可知,为了得到()ωF ,必须有关于f(x)的过去和未来的所有知识,而且f(x)在时域局部值的变化会扩散到整个频域,也就是()ωF 的任意有限区域的信息都不足以确定任意小区域的f(x)。在时域,哈尔(Haar)基是一组具有最好的时域分辨能力的正交基,它在时域上是完全局部化的,但在频域的局部化却很不好,这是由于哈尔系的两个缺点:缺乏正则性与缺乏振动性。研究者们希望寻找关于空间变量(或时间变量)与频域变量都同时好的希尔伯特(Hilbert)基,R. Balian 认为:“在通讯理论中,人们对于在完全给定的时间内,把一个振动信号表示成由其中每一个都拥有足够确定的位置与有一个频率的小波的叠加这件事感兴趣。事实上,有用的信息常常同时被发射信号的频率与信号的时间结构(如音乐)所传递。当把一个信号表达成时间的函数时,其中的频谱表现并不好;相反地,信号的傅里分析却显示不了信号每一分量发射信号的瞬时与持续时

matlab-小波分解与重构-滤波

m=load('A.txt'); N=length(m); for i=1:N-1 ; q(i,1)=m(i,1); end; d=q'; s1=d; change=1000; [c,l] = wavedec(d,3,'db4'); %提取小波分解后的低频系数 ca3=appcoef(c,l,'db4',3); %提取各层小波分解后的高频系数 cd3=detcoef(c,l,3); cd2=detcoef(c,l,2); cd1=detcoef(c,l,1); %对信号强制消噪 cdd3=zeros(1,length(cd3));%第三层高频系数cd3全置0 cdd2=zeros(1,length(cd2));%第二层高频系数cd2全置0 cdd1=zeros(1,length(cd1));%第一层高频系数cd1全置0 c1=[ca3,cdd3,cdd2,cdd1];%构建新的系数矩阵 s2=waverec(c1,l,'db4')%分解新的结构 %[thr,sorh,keepapp]=ddencmp('den','wv',d); %s2=wdencmp('gbl',c,l,'db4',4,thr,sorh,keepapp); %subplot(413) %plot(1:change,s2(1:change)); %title('默认软阈值消噪后信号') figure(1) subplot(9,2,1) plot(1:change,s1(1:change)) title('原始信号') ylabel('S1') subplot(9,2,2) plot(1:change,s2(1:change)) title('强制消噪后信号') ylabel('S2')

Matlab之小波滤波函数

Matlab之小波滤波函数 南京理工大学仪器科学与技术专业谭彩铭 2010-3-20 1 wfilters函数 [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('wname') computes four filters associated with the orthogonal or biorthogonal wavelet named in the string 'wname'. The four output filters are Lo_D, the decomposition low-pass filter Hi_D, the decomposition high-pass filter Lo_R, the reconstruction low-pass filter Hi_R, the reconstruction high-pass filter 2 biorfilt函数 The biorfilt command returns either four or eight filters associated with biorthogonal wavelets. 3 orthfilt函数 [Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt(W) computes the four filters associated with the scaling filter W corresponding to a wavelet 4 biorwaef函数 [RF,DF] = biorwavf(W) returns two scaling filters associated with the biorthogonal wavelet specified by the string W. 5 coifwavf函数 F = coifwavf(W) returns the scaling filter associated with the Coiflet wavelet specified by the string W where W = 'coifN'. Possible values for N are 1, 2, 3, 4, or 5 6 dbaux函数 W = dbaux(N,SUMW) is the order N Daubechies scaling filter such that sum(W) = SUMW. Possible values for N are 1, 2, 3, ... W = dbaux(N) is equivalent to W = dbaux(N,1) W = dbaux(N,0) is equivalent to W = dbaux(N,1) 7 dbwavf函数 F = dbwavf(W) returns the scaling filter associated with Daubechies wavelet specified by the string W where W = 'dbN'. Possible values for N are 1, 2, 3, ..., 45. 8 mexihat函数 [PSI,X] = mexihat(LB,UB,N) returns values of the Mexican hat wavelet on an N point regular grid, X, in the interval [LB,UB]. Output arguments are the wavelet function PSI computed on the grid X. This wavelet has [-5 5] as effective support.

经典滤波算法及C语言程序

经典的滤波算法(转) 1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点: 适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM

递推平均滤波法对偶然出现的脉冲性干扰的抑制作用较差 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果 N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点: 对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值 N值的选取:3~14 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 测量速度较慢,和算术平均滤波法一样 比较浪费RAM 6、限幅平均滤波法 A、方法: 相当于“限幅滤波法”+“递推平均滤波法” 每次采样到的新数据先进行限幅处理, 再送入队列进行递推平均滤波处理 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 比较浪费RAM

小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如 图所示[6] : 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下

数据处理中的几种常用数字滤波算法

数据处理中的几种常用数字滤波算法 王庆河王庆山 (济钢集团计量管理处,济南250101) (济钢集团中厚板厂,济南250101) 摘要随着数字化技术的发展,数字滤波技术成为数字化仪表和计算机在数据采集中的关键性技术,本文对常用的几种数字滤波算法的原理进行描述,并给出必要的数学模型。 关键词:数据采样噪声滤波移动滤波 一、引言 在仪表自动化工作中,经常需要对大量的数据进行处理,这些数据往往是一个时间序列或空间序列,这时常会用到数字滤波技术对数据进行预处理。数字滤波是指利用数学的方法对原始数据进行处理,去掉原始数据中掺杂的噪声数据,获得最具有代表性的数据集合。 数据采样是一种通过间接方法取得事物状态的技术如将事物的温度、压力、流量等属性通过一定的转换技术将其转换为电信号,然后再将电信号转换为数字化的数据。在多次转换中由于转换技术客观原因或主观原因造成采样数据中掺杂少量的噪声数据,影响了最终数据的准确性。 为了防止噪声对数据结果的影响,除了采用更加科学的采样技术外,我们还要采用一些必要的技术手段对原始数据进行整理、统计,数字滤波技术是最基本的处理方法,它可以剔除数据中的噪声,提高数据的代表性。 二、几种常用的数据处理方法 在实际应用中我们所用的数据滤波方法很多,在计算机应用高度普及的今天更有许多新的方法出现,如逻辑判断滤波、中值滤波、均值滤波、加权平均 2中值滤波 中值滤波是对采样序列按大小排滤波、众数滤波、一阶滞后滤波、移动滤波、复合滤波 等。 假设我们采用前端仪表采集了一组采样周期为1s的温度数据的时间序列 T0为第0s 采集的温度值,Ti为第is采集的温度值。下面介绍如何应用几种不同滤波算法来计算结果温度T。 1.程序判断滤波 当采样信号由于随机干扰、误检测或变送器不稳定引起严重失真时,可采用程序判断滤波算法,该算法的基本原理是根据生产经验,确定出相邻采样输入信号可能的最大偏差△T,若超过此偏差值,则表明该输入信号是干扰信号,应该去掉,若小于偏差值则作为此次采样值。 (1)限幅滤波 限幅滤波是把两次相邻的采集值进行相减,取其差值的绝对值△T作为比较依据,如果小于或等于△T,则取此次采样值,如果大于△T,则取前次采样值,如式(1)所示:

相关主题
文本预览
相关文档 最新文档