当前位置:文档之家› 利用小波滤波方法对γ能谱进行处理

利用小波滤波方法对γ能谱进行处理

数字滤波算法

几种简单的数字滤波 假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad(); 1、限副滤波 /* A值可根据实际情况调整 value为有效值,new_value为当前采样值 滤波程序返回有效的实际值*/ #define A 10 char value; char filter() { char new_value; new_value = get_ad(); if ( ( new_value - value > A ) || ( value - new_value > A ) return value; return new_value; } 2、中位值滤波法 /* N值可根据实际情况调整 排序采用冒泡法*/ #define N 11 char filter() { char value_buf[N]; char count,i,j,temp; for ( count=0;countvalue_buf[i+1] ) { temp = value_buf[i]; value_buf[i] = value_buf[i+1]; value_buf[i+1] = temp; } } }

return value_buf[(N-1)/2]; } 3、算术平均滤波法 /* */ #define N 12 char filter() { int sum = 0; for ( count=0;count

小波变换的基本原理

10.2小波变换的基本原理 地质雷达的电磁波信号和地震波信号都是非平稳随机时变信号,长期以来,因非平稳信号处理的理论不健全,只好将其作为平稳信号来处理,其处理结果当然不满意。近年来,随着科学技术的发展和进步,国内外学术界已将注意力转向非平稳随机信号分析与处理的研究上,其中非平稳随机信号的时频表示法是研究热点之一。在这一研究中,戈勃展开、小波变换、维格纳分布与广义双线性时频分布等理论发展起来,这些方法既可以处理平稳信号过程,也可以处理非平稳随机时变信号。 小波变换是上世纪80年代中后期逐渐发展起来的一种数学分析方法。1984年法国科学家J.M OLET在分析地震波的局部特性时首先使用了小波这一术语,并用小波变换对地震信号进行处理。小波术语的含义是指一组衰减震动的波形,其振幅正负相间变化,平均值为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波变换在时域和频域都具有很好的局部化性质,较好地解决了时域和频域分辨率的矛盾,对于信号的低频成分采用宽时窗,对高频成分采用窄时窗。因而,小波分析特别适合处理非平稳时变信号,在语音分析和图象处理中有广泛的应用,在地震、雷达资料处理中将有良好的应用前景。 下边就小波分析的基本原理、主要作用及在雷达资料处理中的应用三方面作以介绍。 10.2.1小波分析的基本原理 小波函数的数学表达

小波变换去噪基础地的知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数 (即母小波)和缩放函数 (也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。 5.小波变换的科学意义和应用价值

常用的8种数字滤波算法

常用的8种数字滤波算法 摘要:分析了采用数字滤波消除随机干扰的优点,详细论述了微机控制系统中常用的8种数字滤波算法,并讨论了各种数字滤波算法的适用范围。 关键词:数字滤波;控制系统;随机干扰;数字滤波算法 1 引言 在微机控制系统的模拟输入信号中,一般均含有各种噪声和干扰,他们来自被测信号源本身、传感器、外界干扰等。为了进行准确测量和控制,必须消除被测信号中的噪声和干扰。噪声有2大类:一类为周期性的,其典型代表为50 Hz 的工频干扰,对于这类信号,采用积分时间等于20 ms整倍数的双积分A/D转换器,可有效地消除其影响;另一类为非周期的不规则随机信号,对于随机干扰,可以用数字滤波方法予以削弱或滤除。所谓数字滤波,就是通过一定的计算或判断程序减少干扰信号在有用信号中的比重,因此他实际上是一个程序滤波。 数字滤波器克服了模拟滤波器的许多不足,他与模拟滤波器相比有以下优点: (1)数字滤波器是用软件实现的,不需要增加硬设备,因而可靠性高、稳定性好,不存在阻抗匹配问题。 (2)模拟滤波器通常是各通道专用,而数字滤波器则可多通道共享,从而降低了成本。 (3)数字滤波器可以对频率很低(如0.01 Hz)的信号进行滤波,而模拟滤波器由于受电容容量的限制,频率不可能太低。 (4)数字滤波器可以根据信号的不同,采用不同的滤波方法或滤波参数,具有灵活、方便、功能强的特点。 2 常用数字滤波算法 数字滤波器是将一组输入数字序列进行一定的运算而转换成另一组输出数字序列的装置。设数字滤波器的输入为X(n),输出为Y(n),则输入序列和输出序列之间的关系可用差分方程式表示为: 其中:输入信号X(n)可以是模拟信号经采样和A/D变换后得到的数字序列,也

(完整版)小波原理课件

我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是basis。如果你暂时有些遗忘了basis的定义,那么简单说,在线性代数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。小波变换自然也不例外的和basis有关了。再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。 既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。比如如果我们希望选取有利于压缩的话,那么就希望这个basis能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵( Tv_n = av_n,a是eigenvalue )。总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。 好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。接下来先看看,傅立叶变换是在干嘛。 傅立叶级数最早是Joseph Fourier 这个人提出的,他发现,这个basis不仅仅存在与vector space,还存在于funct ion space。这个function space本质上还是一个linear vector space,可以是有限的,可以是无限的,只不过在这个空间里,vector就是function了,而对应的标量就是实数或者复数。在vector space里,你有vector v可以写成vector basis的线性组合,那在function space里,function f(x)也可以写成对应function basis的线性组合,也有norm。你的vector basis可以是正交的,我的function basis也可以是正交的(比如sin(t)和sin(2t))。唯一不同的是,我的function basis是无穷尽的,因为我的function space的维度是无穷的。好,具体来说,那就是现在我们有一个函数,f(x)。我们希望将它写成一些cos函数和一些sin函数的形式,像这样 again,这是一个无限循环的函数。其中的1,cosx, sinx, cos2x …..这些,就是傅立叶级数。傅立叶级数应用如此广泛的主要原因之一,就是它们这帮子function basis是正交的,这就是有趣的地方了。为什么function basis正交如此重要呢?我们说两个vector正交,那就是他俩的内积为0。那对于function basis呢?function basis怎么求内积呢? 现在先复习一下vector正交的定义。我们说两个vector v,w如果正交的话,应符合:

第五章 小波变换基本原理

第五章 小波变换基本原理 问题 ①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史 ③小波变换与短时傅里叶变换比较 a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法 多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现 ⑤小波的历史地位仍不如FT ,并不是万能的 5.1 连续小波变换 一.CWT 与时频分析 1.概念:? +∞ ∞ --ψ= dt a b t t S a b a CWT )( *)(1),( 2.小波变换与STFT 用于时频分析的区别 小波 构造? 1910 Harr 小波 80年代初兴起 Meyer —小波解析形式 80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现 90年代初 Daubechies 正交小波变换 90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题 1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原 2.母小波)(t ψ必须满足容许性条件 ∞<ψ=? ∞ +∞ -ψdw w w C 2 )( ①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式 ??+∞∞-+∞ ∞-ψ -ψ= dadb a b t b a CWT a C t S )(),(11 )(2 3.CWT 高度冗余(与CSTFT 相似) 4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1 )(2 ,22,,n t t a b t a t n b a m m n m b a m m -ψ=ψ?-ψ= ??==--ψ dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞ ∞ ---ψ=?= 5.小波变换具有时移不变性 ) ,()() ,()(00b b a C W T b t S b a C W T t S -?-? 6.用小波重构信号 ∑ ∑∑∑+∞ -∞=+∞-∞ =+∞ -∞=+∞ -∞ =ψψ= m n m n n m n m n m n m t d t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{} n m ,?ψ

滤波各种算法优缺点

滤波关键看你什么应用!采样频率,这个方法很多的。以下仅供参考: 1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点: 适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果 N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点: 对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值

小波与小波变换

第9章小波图像编码 由于小波变换技术在20世纪90年代初期已经比较成熟,因此从那时起就开始出现各种新颖的小波图像编码方法。这些编码方法包括EZW, 在EZW算法基础上改进的SPIHT和EBCOT等。由于EZW算法的开拓给后来者带来很大的启发,它是一种有效而且计算简单的图像压缩技术,因此本章将重点介绍。

9.1 从子带编码到小波编码 9.1.1 子带编码 子带编码(subband coding,SBC)的基本概念是把信号的频率分成几个子带,然后对每个子带分别进行编码,并根据每个子带的重要性分配不同的位数来表示数据。在20世纪70年代,子带编码开始用在语音编码上。由于子带编码可根据子带的重要性分别进行编码等优点,20世纪80年代中期开始在图像编码中使用。1986年Woods, J. W.等科学家曾经使用一维正交镜像滤波器组(quadrature mirror filterbanks,QMF)把信号的频带分解成4个相等的子带,如图9-01所示。图9-01(a)表示分解方法,图9-01(b)表示其相应的频谱。图中的符号表示频带降低1/2,HH表示频率最高的子带,LL表示频率最低的子带。这个过程可以重复,直到符合应用要求为止。这样的滤波器组称为分解滤波器树(decomposition filter trees)。 图9-01 Lena图的子带编码(1984年) 9.1.2 多分辨率分析 S.Mallat于1988年在构造正交小波基时提出了多分辨率分析(multiresolution analysis)的概念,从空间上形象地说明了小波的多分辨率的特性,提出了正交小波的构造方法和快速算法,叫做Mallat算法。根据Mallat和Meyer等科学家的理论,使

基于Matlab的常用滤波算法研究(含代码)讲解

毕业设计(论文) UNDERGRADUATE PROJECT (THESIS) 题目: 冲击测试常用滤波算法研究 学院 专业 学号 学生姓名 指导教师 起讫日期

目录 摘要 (2) ABSTRACT (3) 第一章绪论 (4) 1.1课题背景 (4) 1.2国内外相关领域的研究 (4) 1.3主要研究内容与创新 (5) 1.3.1研究内容与意义 (5) 1.3.2课题的创新点 (5) 1.3.3 研究目的与技术指标 (6) 第二章数字滤波基础 (7) 2.1数字滤波算法概念 (7) 2.2数据采样与频谱分析原理 (8) 2.2.1 时域抽样定理 (8) 2.2.2 离散傅立叶变换(DFT) (8) 2.2.3 快速傅立叶变换(FFT) (9) 2.2.4 频谱分析原理 (9) 2.3常用数字滤波算法基础 (10) 2.3.1常用数字滤波算法分类 (10) 2.3.2常用数字滤波算法特点 (11) 2.3.3常用滤波算法相关原理 (13) 2.4 冲击测试采样数据 (16) 2.4.1噪声的特点与分类 (16) 2.4.2冲击测试采样数据特点 (17) 2.5 MATLAB简介 (17) 2.5.1 MATLAB功能简介 (18) 2.5.2 MATLAB的发展 (18) 第三章、冲击测试滤波算法设计及滤波效果分析 (20) 3.1 冲击测试采样数据的分析 (20) 3.2 滤波算法设计及效果分析 (21) 3.2.1 中位值平均法的设计 (21) 3.2.2限幅法和限速法的设计 (23) 3.2.3一阶滞后法的设计 (25) 3.2.4低通法的设计 (26) 第四章结论与展望 (34) 4.1冲击测试的滤波算法总结 (34) 4.2冲击测试的滤波算法展望 (34) 致谢 (36) 参考文献 (37) 附录:程序代码清单 (38)

小波变换的原理及matlab仿真程序讲解学习

小波变换的原理及m a t l a b仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参

数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]: 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式: (k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。 假设e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 s(k)信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

小波滤波器

小波滤波器 语法: [Lo_D,Hi_D,Lo_R,Hi_R]= wfilters('wname') [F1,F2]=wfilters('wname','type') [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('wname') 计算'wname'里的正交和双正交小波的四个滤波器Lo_D, the decomposition low-pass filter 分解低通滤波器 Hi_D, the decomposition high-pass filter 分解高通滤波器 Lo_R, the reconstruction low-pass filter 重建低通滤波器 Hi_R, the reconstruction high-pass filter 重建高通滤波器 [F1,F2] = wfilters('wname','type') 返回一下滤波器: 模拟频率,数字频率,模拟角频率关系 模拟频率f:每秒经历多少个周期,单位为Hz,即1/s; 模拟角频率Ω是指每秒经历多少弧度,单位rad/s 数字频率w:每个采样点间隔之间的弧度,单位rad Ω=2*pi*f; w=Ω*T

IIR数字滤波器设计方法: 先根据已知带通参数求出最佳滤波器阶数和截止频率 [n,Wn]=buttord(Wp,Ws,Rp,Rs); [n,Wn]=buttord(Wp,Ws,Rp,Rs,'s'); [b,a]=butter(n,Wn,'ftype','s') Wp为0-1之间,Ws为阻带角频率,0-1之间。Rp为通带波纹,或者通带衰减,Rs为阻带衰减。 给出的是模拟频率fp1通带截止频率,fp2阻带截止频率,则Wp=fp1*2/fs,Ws=fp2*2/fs。 传统FIR滤波器 函数FIRl是采用经典窗函数设计线性相位FIR数字滤波器,且具有标准低通、带通、高通和带阻等类型。函数调用格式: b=firl(n,wn) b=firl(n,wn,'ftype') b=firl(n,wn ,window) b=firl(n,wn,'ftype',window) n为FIR滤波器类型,比如高通、低通,window为窗函数类型 低通滤波器的设计要求是:采样频率为100Hz,通带截止频率为3Hz,阻带截止频率为5Hz,通带内最大衰减不高于0.5dB,阻带最小衰减不小于50dB,使用海明窗函数。确定N的步骤有:海明窗过渡带满足:△w≥3.3(2π/N) 1.从上表可查得海明窗的精确过渡带宽为6.6pi/N 2.低通滤波器的过渡带是:DeltaW=Ws-Wp=(5-3)*pi*2/100=0.04pi 3.N=6.6pi/DeltaW=6.6pi/0.04pi=165 所以滤波器的阶数至少是165

各种滤波算法比较

数字滤波方法有很多种,每种方法有其不同的特点和使用范围。从大的范围可分为3类。 1、克服大脉冲干扰的数字滤波法 ㈠.限幅滤波法㈡.中值滤波法 2、抑制小幅度高频噪声的平均滤波法 ㈠.算数平均㈡.滑动平均㈢.加权滑动平均㈣一阶滞后滤波法 3、复合滤波法 四、介绍 在这我选用了常用的8种滤波方法予以介绍 (一)克服大脉冲干扰的数字滤波法: 克服由仪器外部环境偶然因素引起的突变性扰动或仪器内部不稳定引起误码等造成的尖脉冲干扰,是仪器数据处理的第一步。通常采用简单的非线性滤波法。 1、限幅滤波法(又称程序判断滤波法)限幅滤波是通过程序判断被测信号的变化幅度,从而消除缓变信号中的尖脉冲干扰。 A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点:能有效克服因偶然因素引起的脉冲干扰 C、缺点无法抑制那种周期性的干扰平滑度差 D、适用范围: 变化比较缓慢的被测量值 2、中位值滤波法 中位值滤波是一种典型的非线性滤波器,它运算简单,在滤除脉冲噪声的同时可以很好地保护信号的细节信息。 A、方法:连续采样N次(N取奇数)把N次采样值按大小排列(多采用冒泡法)取

中间值为本次有效值 B、优点:能有效克服因偶然因素引起的波动(脉冲)干扰 C、缺点:对流量、速度等快速变化的参数不宜 D、适用范围:对温度、液位的变化缓慢的被测参数有良好的滤波效果 (二)抑制小幅度高频噪声的平均滤波法 小幅度高频电子噪声:电子器件热噪声、A/D量化噪声等。通常采用具有低通特性的线性滤波器:算数平均滤波法、加权平均滤波法、滑动加权平均滤波法一阶滞后滤波法等。 3、算术平均滤波法算术平均滤波法是对N个连续采样值相加,然后取其算术平均值作为本次测量的滤波值。 A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4 B、优点:对滤除混杂在被测信号上的随机干扰信号非常有效。被测信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点:不易消除脉冲干扰引起的误差。对于采样速度较慢或要求数据更新率较高的实时系统,算术平均滤法无法使用的。比较浪费RAM 4、递推平均滤波法(又称滑动平均滤波法) 对于采样速度较慢或要求数据更新率较高的实时系统,算术平均滤法无法使用的。滑动平均滤波法把N个测量数据看成一个队列,队列的长度固定为N,每进行一次新的采样,把测量结果放入队尾,而去掉原来队首的一个数据,这样在队列中始终有N个“最新”的数据。 A、方法:把连续取N个采样值看成一个队列,队列的长度固定为N ,每次采样到

小波神经网络及其应用

小波神经网络及其应用 陆宇颖 摘要:小波神经网络是将小波理论和神经网络理论结合起来的一种神经网络,它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。首先阐明了小波变换和多分辨分析理论,然后介绍小波神经网络数学模型和应用概况。 1. 研究背景与意义 人工神经网络是基于生物神经系统研究而建立的模型,它具有大规模并行处理和分布式存储各类图像信息的功能,有很强的容错性、联想和记忆能力,因而被广泛地应用于故障诊断、模式识别、联想记忆、复杂优化、图像处理以及计算机领域。但是,人工神经网络模型建立的物理解释,网络激活函数采用的全局性函数,网络收敛 即 ,焦李神经网络2. 2.1()x ,使式中为的Fourier 变换。对作伸缩、平移变换得到小波基函数系 对任意2()()f x L R ∈,其连续小波变换定义为: 反演公式为: 在实际应用中,特别是计算机实现中,往往要把上述的连续小波及其变换离散化,通常采用二进制离散,即 令2,2m m a b k ==,则 二进小波一定是一个允许小波,且是一个正交小波基。考虑一个连续的、平方可积的函数 2()()f x L R ∈在分辨率2m 下的逼近()m f x ,由多分辨分析理论可知:

()x Φ是尺度函数,对其作伸缩、平移变换得到()mk x Φ。 Mallat 同时证明了函数()f x 在2m 和12m -分辨率下的信息差别(即细节)()m D f x ,可以通过将函数() f x 在一小波正交基上分解而获得,从而定义了一种完全而且正交的多分辨率描述,即小波描述。 ()mk x ψ就是式(5)定义的二进小波,则()f x 在12m -分辨率下的逼近式为: Mallat 并指出,对于任意一个函数 2()()f x L R ∈可以在一组正交小波基上展开: 式(11)是一个平方可积函数的小波分解,提供了小波神经网络设计的理论框架。 .. 12(,)x x ο 则有2.2 (ψ(f x 式(Lk a 与式 (17i c i 则有: 即(21)=f Ac 式(20)的最小二乘解为: +A 被称为A 的伪逆矩阵。且 如果样本i x 均匀分布,(1,2,...,)θ=i i n 是正交基, 则T A A 是一个?n n 单位矩阵,且

小波变换去噪

小波变换的图像去噪方法 一、摘要 本文介绍了几种去噪方法,比较这几种去噪方法的优缺点,突出表现了小波去噪法可以很好的保留图像的细节信息,性能优于其他方法。 关键词:图像;噪声;去噪;小波变换 二、引言 图像去噪是一种研究颇多的图像预处理技术。一般来说, 现实中的图像都是带噪图像。为了减轻噪声对图像的干扰,避免误判和漏判,去除或减轻噪声是必要的工作。 三、图像信号常用的去噪方法 (1)邻域平均法 设一幅图像f (x, y) 平滑后的图像为g(x, y),它的每个象素的灰度值由包含在(x, y)制定邻域的几个象素的灰度值的平均值决定。将受到干扰的图像模型化为一个二维随机场,一般噪声属于加性、独立同分布的高斯白噪声。可见,邻域平均所用的邻域半径越大,信噪比提高越大,而平滑后图像越模糊,细节信息分布不明显。 (2)时域频域低通滤波法 对于一幅图像,它的边缘、跳跃部分以及噪声都为图像的高频分量,而大面积背景区和慢变部分则代表图像低频分量,可以设计合适的低通滤波器除去高频分量以去除噪声。 设f(x,y)为含噪图像,F(x,y)为其傅里叶变换,G(x,y)为平滑后图像的傅里叶变换,通过H,使F(u,v)的高频分量得到衰减。理想的低通滤波器的传递函数满足下列条件: 1 D(u,v)≤D H(u,v)= 0 D(u,v)≤D 式中D0非负D(u,v)是从点(u,v)到频率平面原点的距离,即,即D(u, v) = u2 + v2 (3)中值滤波 低通滤波在消除噪声的同时会将图像中的一些细节模糊掉。中值滤波器是一种非线性滤波器,它可以在消除噪声的同时保持图像的细节。 (4)自适应平滑滤波 自适应平滑滤波能根据图像的局部方差调整滤波器的输出。局部方差越大,滤波器的平滑作用越强。它的最终目标是使恢复图像f*(x,y) 与原始图f(x,y) 的均方误差 e2 = E ( f (x, y) ? f *(x, y))2 最小。自适应滤波器对于高斯白噪声的处理效果比较好. (5)小波变换图像信号去噪方法 小波变换去噪法的基本思想在于小波变换将大部分有用信号的信息压缩而将噪声信息分散。对信号进行小波分解,就是把信号向L2 ( R) ( L2 ( R) 是平方可积的实数空间) 空间各正交基分量投影,即求信号与各小波基函数之间的相关系数,亦即小波变换值。“软阈值化” ( soft-thresholding) 和“硬阈值化”( hard-thresholding) 是对超过阈值之上的小波系数进行缩减的两种主要方法。一般说来,硬阈值比软阈值处理后的图像信号更粗糙,所以常对图像信号进行软 阈值的小波变换去噪。如图2 所示,横坐标代表信号( 图像) 的原始小波系数,纵坐标

小波分析及其在信号滤波中的应用

小波分析及其在信号滤波中的应用 学生 指导老师 电气信息工程学院 摘要:基于信号和噪声的频率不同,本文对小波进行了分析研究,并利用小波阈值方法对信号进行了滤波处理。根据频率的不同采用了最佳软阈值滤波法对原始信号进行了分离,采用db10小波和sym8小波对信号进行5层分解,并且在选择细节系数时,选用最佳阈值软模式和尺度噪声以及选用sure阈值模式和尺度噪声,分出实际有用信号和很明显的噪声信号。利用Matlab对noissin信号函数及初设原始信号进行分析,从得到的滤波前后的信号图片分析,验证了小波对信号滤波的有效性。 关键词:小波变换; 阈值; 信号滤波; MATLAB Study on Wavelet Analysis and Its Application to Signal fiter Student: Supervisor: Electrical and Information Engineering Department Abstract:Based on the frequency of the signal and noise is different, in this paper, the wavelet analysis and research, and use wavelet threshold value method to signal the filtering processing. According to the different frequency used the best soft threshold of filtering method for isolation of the original signal, the db10 wavelet and wavelet sym8 signal, 5 layers decomposition, and at selected detail coefficients, choose optimal threshold soft mode and scale noise and choose sure threshold mode and noise scale, cent gives actual useful signal and obviously noise signal. Use of Matlab noissin signal function and set up at the beginning of the original signal is analyzed, from the filter of the signal analysis before and after pictures, the effectiveness of the wavelet to signal the effectiveness of filtering. Key words:wavelet transform; Threshold; Signal fiter; MA TLAB

小波分析及应用(附常用小波变换滤波器系数)

第八章 小波分析及应用 8.1 引言 把函数分解成一系列简单基函数的表示,无论是在理论上,还是实际应用中都有重要意义。 1822年法国数学家傅里叶(J. Fourier 1768-1830)发表的研究热传导理论的“热的力学分析”,提出并证明了将周期函数展开为正弦级数的原理,奠定了傅里叶级数理论的基础[1]。傅里叶级数理论研究的是把函数在三角函数系下的展开,使得对信号和系统的研究归结为对简单的三角函数的研究。傅里叶级数与傅里叶变换共同组成了平常所说的傅里叶分析[2]。傅里叶级数用于分析周期性的函数或分布,理论分析时经常假定周期是π2,定义如式(8.1-1)、(8.1-2) ()()π2,02 L x f ∈?,()∑∞ -∞ == k ikx k e c x f (8.1-1) 其中 ()dx e x f c ikx k -?=π π20 21 (8.1-2) 然而,被分析函数的性质并不能完整地由傅里叶系数来刻划,这里有一个例子来说明[3]:从任一个平方可和的函数)(x f 出发,为了得到一个连续函数)(x g ,只需或者增大f(x)的傅里叶系数的模,或者保持它不变并适当地改变系数的位相。因此,不可能仅根据傅里叶系数大小的阶就预知函数的性质(如大小、正则性)。 傅里叶变换的定义如式(8.1-3)、(8.1-4) ()()dx e x f F x j ωω? ∞∞ -= (8.1-3) ()()ωωπ ωd e F x f x j -∞∞-?= 21 (8.1-4) 通过引入广义函数或分布的概念,可获得奇异函数(如冲击函数)的傅里叶变换的存在。对于时域的常量函数,在频域将表现为冲击函数,表明具有很好的频域局部化性质。由式(8.1-3)可知,为了得到()ωF ,必须有关于f(x)的过去和未来的所有知识,而且f(x)在时域局部值的变化会扩散到整个频域,也就是()ωF 的任意有限区域的信息都不足以确定任意小区域的f(x)。在时域,哈尔(Haar)基是一组具有最好的时域分辨能力的正交基,它在时域上是完全局部化的,但在频域的局部化却很不好,这是由于哈尔系的两个缺点:缺乏正则性与缺乏振动性。研究者们希望寻找关于空间变量(或时间变量)与频域变量都同时好的希尔伯特(Hilbert)基,R. Balian 认为:“在通讯理论中,人们对于在完全给定的时间内,把一个振动信号表示成由其中每一个都拥有足够确定的位置与有一个频率的小波的叠加这件事感兴趣。事实上,有用的信息常常同时被发射信号的频率与信号的时间结构(如音乐)所传递。当把一个信号表达成时间的函数时,其中的频谱表现并不好;相反地,信号的傅里分析却显示不了信号每一分量发射信号的瞬时与持续时

matlab-小波分解与重构-滤波

m=load('A.txt'); N=length(m); for i=1:N-1 ; q(i,1)=m(i,1); end; d=q'; s1=d; change=1000; [c,l] = wavedec(d,3,'db4'); %提取小波分解后的低频系数 ca3=appcoef(c,l,'db4',3); %提取各层小波分解后的高频系数 cd3=detcoef(c,l,3); cd2=detcoef(c,l,2); cd1=detcoef(c,l,1); %对信号强制消噪 cdd3=zeros(1,length(cd3));%第三层高频系数cd3全置0 cdd2=zeros(1,length(cd2));%第二层高频系数cd2全置0 cdd1=zeros(1,length(cd1));%第一层高频系数cd1全置0 c1=[ca3,cdd3,cdd2,cdd1];%构建新的系数矩阵 s2=waverec(c1,l,'db4')%分解新的结构 %[thr,sorh,keepapp]=ddencmp('den','wv',d); %s2=wdencmp('gbl',c,l,'db4',4,thr,sorh,keepapp); %subplot(413) %plot(1:change,s2(1:change)); %title('默认软阈值消噪后信号') figure(1) subplot(9,2,1) plot(1:change,s1(1:change)) title('原始信号') ylabel('S1') subplot(9,2,2) plot(1:change,s2(1:change)) title('强制消噪后信号') ylabel('S2')

小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如 图所示[6] : 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下

相关主题
文本预览
相关文档 最新文档