当前位置:文档之家› 微分动力系统的应用一

微分动力系统的应用一

微分动力系统的应用一
微分动力系统的应用一

微分动力系统的应用(一)--竞争模型

设在一个池塘里饲养两种食用鱼:鳟鱼和鲈鱼. 设它们在时刻t 的尾数分别是x(t)和y(t). 假定鳟鱼的尾数x(t)的增长速度正比于鳟鱼尾数x(t), 增长率为k; 即

kx t x =d d . (1)

由于鲈鱼的存在而争夺食物、减小了鳟鱼的增长率. 鲈鱼越多,鳟鱼的增长率越小,可设鳟鱼的增长率k = a – by, 其中a>0, b>0是常数. 因此我们可以写出如下的描述鳟鱼尾数的微分方程:

x by a t x )(d d -=, 0≥x , 0≥y . (2)

同理由于鳟鱼的存在而争夺食物、减小了鲈鱼的增长率. 我们可得到描述鲈鱼尾数的微分方程:

y nx m t y )(d d -=, (3)

其中 m>0, n>0是常数.

当鳟鱼的尾数x(t) > m/n, 鲈鱼的尾数 y(t)

(3)可见鲈鱼的尾数y 将减少, 由方程 (2)可见鳟鱼将增加. 反之, 当鳟鱼的尾数x(t) < m/n, 鲈鱼的尾数 y(t)>a/b 时, 由方程 (3)可见鲈鱼的尾数y 将增加, 由方程 (2)可见鳟鱼尾数x(t)将减少. 现在的问题是: 设在t=0时鳟鱼和鲈鱼的初值分别是x 0和y 0尾, 要研究这两种鱼的增长情况. 是否存在x 0>0和y 0>0, 使得这两种鱼能够和平共处, 长期共存呢?

首先可见方程组 (2), (3)有常数解

b a y n m

x ==,. (4)

因此在t=0时鳟鱼x 0=m/n, 和鲈鱼y 0=a/b 尾时, 由方程可见鳟鱼和鲈鱼的增长速度是零, 所以鳟鱼和鲈鱼的尾数保持不变. 那么这种状态是否是稳定的呢? 就是说, 若鱼的尾数由于某种原因稍有变化, 这两种鱼是否还能和平共处, 长期共存呢?

由常微分方程的理论, 我们知道 (m/n, a/b) 是方程组的奇点, 我们只要分析这个奇点的稳定性就行了.

方程组(2),(3) 的向量场的Jacobi 矩阵在奇点(m/n, a/b)的值是

?????? ??--=???? ??----=00

b na n bm nx m ny bx by a J (5)

J 的两个特征值为 ma ±, 因此奇点是鞍点, 鞍点是不稳定的. 所以若鱼的尾数由于某种原因稍有变化, 这两种鱼的尾数将有大的变化.

方程组(2), (3)还有一个奇点 (0, 0), 向量场的Jacobi 矩阵在奇点(0, 0)的值是

???? ??=???? ??----=m a nx m ny bx by a J 00 (6)

J 的两个特征值为a>0, m>0, 因此奇点(0, 0)是不稳定的结点. 在奇点(0, 0) 附近的轨线当时间t 增大时都离开奇点(0,0). 另外方程组 (2), (3) 有两条半直线轨道:

(1): x=0, y>0, 对应的轨线是

mt y y e 0=, 表示鲈鱼的尾数呈指数增长.

(2): y=0, x>0, 对应的轨线是

at x x e 0=, 表示鳟鱼的尾数呈

指数增长.

由于奇点(m/n, a/b)是鞍点, 当t 趋向无穷大时, 有两条轨道从相反的方向趋向鞍点, 另有两条轨道从鞍点出发以相反的方向离开鞍点. 这四条轨道称为鞍点的分界线, 研究这些分界线的走向以及方程组的结点(0,0)的性质, 其余轨道的大致走向也就清楚了.

要知道对于一般的初值)0,0(),(00≠y x 鳟鱼和鲈鱼的尾数是怎样变化的, 最终是鳟鱼还是鲈鱼生存下来呢? 就要解出微分方程组(2), (3). 将方程组 (2), (3) 消去dt, 化为如下一阶常微分方程:

y x by a x y nx m d )(d )(-=-, (6)

(6)式是一个变量分离方程, 除了零解 (x=0, y=0) 和半直线轨道外, 可分离变量得

y y by a x x nx m d )(d )(-=-, (7) 从)0,0(),(00≠y x 到),(y x 对(7)式作定积分得到过)0,0(),(00≠y x 的积分曲线:

)(ln )(ln 0000y y b y y a x x n x x m --=--. (8)

对(8)式取指数化为形式:

nx m by a Kx y --=e e , (9)

(9)式中的K 是常数:

00e 00nx by m a x y K +--=. (10)

对于鞍点的分界线, 因它们趋向及离开鞍点, 所以分界线方程的K 应由(10)式中),(00y x 取为鞍点:

b a y n m x ==00,

, (12) 而得到. 这时(10)式的K 值为

m a a

m m a m b n a K -=e . (13)

by a y y f -=e )(, nx m x x g -=e )(.

由微分法可知)(y f 是单峰函数, 在鞍点的纵坐标b a y /=时取得最大值, 在0=y 和+∞=y 时取得最小值零. 在区间[0, a/b]上f(y) 从零严格单调增加到最大值; 在无穷区间y > a/b 上f(y)严格单调减少趋向零. 同理)(x g 是单峰函数, 在鞍点的横坐标n m x /=时取得最大值, 在0=x 时和+∞=x 时取得最小值零. 在区间[0, m/n]上g(x) 从零严格单调增加到最大值, 在无穷区间x >m/n 上g(x)严格单调减少趋向零. 根据以上事实, 可以由分界线方程(9), (13)得出鞍点的四条分界线(红色和蓝色的线)并且根据方程组(2),(3)得出分界线的走向如下示意图: (四条分界线共同的端点是鞍点 (m/n,a/b)).

x

其中x轴和y轴分别是两条分界线(用蓝色表示)的渐近线, 红色的一条分界线从结点走向鞍点, 红色的另一条分界线当t趋向负无穷大时趋向无穷远.

于是其他轨道的走向(用黑色表示)也就知道了. 从图可见, 分界线将第一象限分成四个区域, 当初始点(x0,y0)位于这四个区域之一时, 当时间趋向无穷大时, x(t)和y(t)中总有一个趋向零, 而另一个趋向无穷大. 具体而言, 当初始点落在红线下方时, 最终只有鳟鱼x生存, 当初始点落在红线上方时, 最终只有鲈鱼y 生存. 初始点落在红线上时, 轨道趋向鞍点, 而鞍点和结点是不稳定的, 所以不管怎样, 实际上只有一个能够生存.

这说明了对于竞争模型, 不同的物种是有排他性的, 这称为竞争排他原理.

微分动力系统的应用(二)—捕食模型

在生物界除了两个物种之间的竞争性以外, 还有一种是捕食与被捕食的关系. 例如在南极海洋中生活的鬚鲸和南极虾就是这种关系. 设南极虾的数量是x(t), 鲸的数量是y(t), 鬚鲸以南极虾为主食, 没有了南极虾, 鬚鲸的数量将指数式地下降: my t y -=d d , 0>m 是常数. (1) 但有了南极虾x(t)时, 鬚鲸的数量的变化关系(1)要改为:

y m nx t y )(d d -=, 0>n 是常数. (2)

而南极虾被鬚鲸捕食, 它的数量的变化服从以下关系: x by a t x )(d d -=, 0>a . 0>b 是常数. (3)

我们同样可以通过研究方程组(2),(3)的轨道来讨论鬚鲸与南极虾数量的变化规律.

首先方程组有两个奇点: (0,0), (m/n, a/b). 方程组(2),(3) 的向量场的Jacobi 矩阵在奇点(m/n, a/b)的值是

?????? ??-=???? ??---=00

b na n bm m nx ny bx by a J (4)

J 的两个特征值为纯虚数 ma i ±, 因为(2),(3)是非线性方程, 单凭特征值是纯虚数只能判定奇点是焦点型(即焦点或中心)的, 不能确定焦点型的奇点是否是中心.

向量场的Jacobi 矩阵在奇点(0, 0)的值是

???? ??-=???? ??---=m a m nx ny bx by a J 00 (5)

J 的两个特征值为a>0, -m<0, 因此奇点(0, 0)是鞍点、 不稳

定.

另外方程组 (2), (3) 有两条半直线轨道:

(1): x=0, y>0, 对应的轨线是

mt y y -=e 0, 表示没有了南极虾,鬚鲸数呈指数减少.

(2): y=0, x>0, 对应的轨线是

at x x e 0=, 表示没有了鬚鲸,南极虾数呈指数增长.

将方程组 (2), (3) 消去dt, 化为如下一阶常微分方程: y x by a x y m nx d )(d )(-=-, (6)

(6)式是一个变量分离方程, 除了零解 (x=0, y=0) 和半直线轨道外, 可分离变量得

y y by a x x m nx d )(d )(-=-, (7) 从)0,0(),(00≠y x 到),(y x 对(7)式作定积分得到过)0,0(),(00≠y x 的积分曲线:

)(ln )(ln 0000y y b y y a x x n x x m --=-+-. (8)

对(8)式取指数化为形式:

K x y nx m by a =--e e , (9)

(9)式中的K 是常数:

00e 00nx by m a x y K --=. (10)

by a y y f -=e )(, nx m x x g -=e )(. (11)

由微分法可知)(y f 是单峰函数, 在焦点的纵坐标b a y /=时取

第二章动力学系统的微分方程模型

第二章:动力学系统的微分方程模型 利用计算机进行仿真时,一般情况下要给出系统的数学模型,因此有必要掌握一定的建立数学模型的方法。在动力学系统中,大多数情况下可以使用微分方程来表示系统的动态特性,也可以通过微分方程可以将原来的系统简化为状态方程或者差分方程模型等。在这一章中,重点介绍建系统动态问题的微分方程的基本理论和方法。 在实际工程中,一般把系统分为两种类型,一是连续系统;其数学模型一般是高阶微分方程;另一种是离散系统,它的数学模型是差分方程。 §2.1 动力学系统统基本元件 任何机械系统都是由机械元件组成的,在机械系统中有3种类型的基本机械元件:惯性元件、弹性元件和阻尼元件。 1 惯性元件:惯性元件是指具有质量或转动惯量的元件,惯量可以定义为使加速度(或角加速度)产生单位变化所需要的力(或力矩)。 惯量(质量)= ) 加速度(力(2 /) s m N 惯量(转动惯量)= ) 角加速度(力矩(2/) s rad m N ? 2 弹性元件:它在外力或外力偶作用下可以产生变形的元件,这种元件可以通过外力做功来储存能量。按变形性质可以分为线性元件和非线性元件,通常等效成一弹簧来表示。 对于线性弹簧元件,弹簧中所受到的力与位移成正比,比例常数为弹簧刚度k 。 x k F ?= 这里k 称为弹簧刚度,x ?是弹簧相对于原长的变形量,弹性力的方向总是指向弹 簧的原长位移,出了弹簧和受力之间是线性关系以外,还有所谓硬弹簧和软弹簧,它们的受力和弹簧变形之间的关系是一非线性关系。 3 阻尼元件:这种元件是以吸收能量以其它形式消耗能量,而不储存能量,可以形象的表示为一个活塞在一个充满流体介质的油缸中运动。阻尼力通常表示为: α x c R = 阻尼力的方向总是速度方向相反。当1=α,为线性阻尼模型。否则为非线性阻 尼模型。应注意当α等于偶数情况时,要将阻尼力表示为: ||1--=αx x c R 这里的“-”表示与速度方向相反

常微分方程与动力系统第二章课后题参考答案

常微分方程与动力系统第二章习题参考答案 1.证明:因为()t Φ是线性齐次系统(LH )的一个基本解矩阵,由定理2.5知()t Φ在区间J 上满足矩阵微分系统()M LH ,即. ()()()t A t t Φ=Φ, . 1 ()()() A t t t -=ΦΦ所以由()A t 确定的线性齐次系统(LH )必唯一。 2.证明:因为()t ?,()t ψ分别是. ()x A t x = 和. ()T x A t x =-的解,所以 11 1 () ()()n k k k n nk k k a d t A t t dt a ????==?? ? ?== ? ? ? ??? ∑∑ , 11211111122222* 121 ()()()n n k k k n n kn k n n n nn k a a a a a a a d t A t t dt a a a a ψψψψψψ==?????? ? ? ? ? ? ?=-ψ=-=- ? ? ? ? ? ? ????? ??? ∑∑ 因而 1111 112 2 1 1 (,)(,)(,),,n n k k k k k k n n kn k k nk k n n k a a d d d dt dt dt a a ψ??ψψ ??ψ?ψ ψ?ψ?ψ?====?? ?? ?????????? ?-?? ? ? ??? ??? ? ? ???=+= ?+?? ? ? ??? ?-?? ? ? ??? ????? ???? ??????? ?? ∑∑∑∑ 11 111 1 1 1()0 n n n n n n n n n n n n m m m m i ij j i ij j i mk k km k mk k km m m m m i j i j k k k k a a a a a a ?ψψ??ψ?ψ?ψ?ψ== === = == == = = -= += -=-=∑∑∑∑∑∑∑ ∑∑∑∑∑所以 (),() ()()1 n t t t t k k k ?ψ?ψ≡≡ ∑=常数。 3.证明:设)t Φ(为系统. ()x A t x = 的一个基本解矩阵,则由定理2.11知 [ ]1 () T t -Φ是系统. ()T x A t x =-的基本解矩阵,由定理 2.4知系统. ()x A t x = 满足初始条件00()x t x =的特解为1 00()))t t t x ?-=Φ(Φ(,[) 0,0,t t ∈+∞由题可 知)t Φ(与[ ]1 () T t -Φ在[)0,+∞上有界,从而由定理2.24知110()0 k k t ?=>

第3章--振动系统的运动微分方程题解

习 题 3-1 复摆重P ,对质心的回转半径为C ρ,质心距转动轴的距离为a ,复摆由水平位置无初速地释放,列写复摆的运动微分方程。 解:系统具有一个自由度,选复摆转角?为广义坐标,原点及正方向如如题4-1图所示。 复摆在任意位置下,根据刚体绕定轴转动微分方程 O O M J =? 其中 )(22 a g P J C O += ρ 得到复摆运动微分方程为 ?? ρcos )(22 Pa a g P C =+ 或 0cos )(22 =-+?? ρga a C 3-2均质半圆柱体,质心为C ,与圆心O 1的距离为e ,柱体半径为R ,质量为m ,对质心的回转半径为C ρ,在固定平面上作无滑动滚动,如题3-2图所示,列写该系统的运动微分方程。 解:系统具有一个自由度,选θ为广义坐标。 半圆柱体在任意位置的动能为: 222 1 21ωC C J mv T += 用瞬心法求C v : 2222*2)cos 2()(θθθ Re R e CC v C -+== θω = 2 C C m J ρ= 故 222222 1)cos 2(21θρθθ C m Re R e m T +-+= 系统具有理想约束,重力的元功为 题3-1图 题3-2图

θθδd mge W sin -= 应用动能定理的微分形式 W dT δ= θθθρθθd mge m Re R e m d C sin 21)cos 2(2122222-=?? ????+-+ θθθθθθθθθθ ρd m g e d m R e d m R e d R e m C s i n s i n c o s 2)(2222-=+-++ 等式两边同除dt , θθθθθθθθθθ ρ s i n s i n c o s 2)(2222m g e m R e m R e R e m C -=+-++ 0≠θ ,等式两边同除θ 故微分方程为 0s i n s i n )c o s 2(2222=+++-+θθθθρθ m g e m R e Re R e m C ① 若为小摆动θθ≈sin ,1cos ≈θ,并略去二阶以上微量,上述非线性微分方程可线性化,系统微摆动的微分方程为 0])[(22=++-θθρge r R C 要点及讨论 (1)本题也可以用平面运动微分方程求解。系统的受力图与运动分析图如图(b )所示。列写微分方程 ??? ??--=-=-=④③② θ θθρsin )cos (2Ne e R F m mg N y m F x m C C C 上述方程包含C x ,C y ,θ ,F ,N 五个未知量,必须补充运动学关系才能求解。建立质心坐标与广义坐标θ之间的关系 ?? ?-=-=θθ θcos sin e R y e R x C C , ???=-=θθθθθ sin cos e y e R x C C 所以 ?????+=+-=⑥ ⑤22cos sin sin cos θθθθθθθθθ e e y e e R x C C 运动学方程式⑤⑥与方程②③④联立,消去未知约束力N ,F ,就可以得到与式①相同的系统运动微分方程。 因为在理想约束的情况下,未知约束力在动能定理的表达式中并不出现,所以用动能定理解决已知力求运动的问题更简便、直接。 (2)本题也可用机械能守恒定律求解。 系统的动能 222222 1)c o s 2(21θρθθ C m Re R e m T +-+=

《常微分方程与动力系统》课程教学说明

上海交通大学 致远学院 2016年秋季学期 《常微分方程与动力系统》课程教学说明 一.课程基本信息 1.开课学院(系):致远学院 2.课程名称:《常微分方程与动力系统》 (An Introducation to Differential Equations and Dynamical Systems) 3.学时/学分:48学时/ 3学分 4.先修课程:数学分析、高等代数、空间解析几何;或线性代数、高等数学。 5.上课时间:星期五 6-8节(12:55-15:40) 6.上课地点:东下院 101 7.期末考试时间:2017-01-(02-13)考试周 8.任课教师:肖冬梅, xiaodm@https://www.doczj.com/doc/653523871.html, 9.办公室及电话:数学楼2305,54743151转2305 10.助教:何鸿锦,hehongjin000@https://www.doczj.com/doc/653523871.html, 11.答疑(office hour):星期三晚18:30 – 20:30,数学楼2305室二.课程主要内容(如何可以,请提供中英文) 除期中考试2学时+习题课2学时外,其余全是课堂教学 第一章基本概念(3学时) 主要内容: 1.1什么是微分方程?什么是常微分方程?常微分方程的分类 1.2什么是常微分方程解?什么是特解?什么是通解? 1.3常微分方程建模:初始值问题和边界值问题 1.4关于常微分方程和解的几何看法:向量场、积分曲线 重点与难点:常微分方程和解的几何观点,方向场和积分曲线的作图 第二章一阶常微分方程的初等解法(6学时) 主要内容: 2.1 变量分离法 2.2 一阶线性常微分方程 2.3 全微分方程(或恰当方程)和积分因子 2.4 替代法和某些可解的常微分方程 重点与难点:全微分方程和积分因子,变换的技巧 第三章基本理论(8学时) 主要内容:

微分动力系统的应用一

微分动力系统的应用(一)--竞争模型 设在一个池塘里饲养两种食用鱼:鳟鱼和鲈鱼. 设它们在时刻t 的尾数分别是x(t)和y(t). 假定鳟鱼的尾数x(t)的增长速度正比于鳟鱼尾数x(t), 增长率为k; 即 kx t x =d d . (1) 由于鲈鱼的存在而争夺食物、减小了鳟鱼的增长率. 鲈鱼越多,鳟鱼的增长率越小,可设鳟鱼的增长率k = a – by, 其中a>0, b>0是常数. 因此我们可以写出如下的描述鳟鱼尾数的微分方程: x by a t x )(d d -=, 0≥x , 0≥y . (2) 同理由于鳟鱼的存在而争夺食物、减小了鲈鱼的增长率. 我们可得到描述鲈鱼尾数的微分方程: y nx m t y )(d d -=, (3) 其中 m>0, n>0是常数. 当鳟鱼的尾数x(t) > m/n, 鲈鱼的尾数 y(t)a/b 时, 由方程 (3)可见鲈鱼的尾数y 将增加, 由方程 (2)可见鳟鱼尾数x(t)将减少. 现在的问题是: 设在t=0时鳟鱼和鲈鱼的初值分别是x 0和y 0尾, 要研究这两种鱼的增长情况. 是否存在x 0>0和y 0>0, 使得这两种鱼能够和平共处, 长期共存呢? 首先可见方程组 (2), (3)有常数解

b a y n m x ==,. (4) 因此在t=0时鳟鱼x 0=m/n, 和鲈鱼y 0=a/b 尾时, 由方程可见鳟鱼和鲈鱼的增长速度是零, 所以鳟鱼和鲈鱼的尾数保持不变. 那么这种状态是否是稳定的呢? 就是说, 若鱼的尾数由于某种原因稍有变化, 这两种鱼是否还能和平共处, 长期共存呢? 由常微分方程的理论, 我们知道 (m/n, a/b) 是方程组的奇点, 我们只要分析这个奇点的稳定性就行了. 方程组(2),(3) 的向量场的Jacobi 矩阵在奇点(m/n, a/b)的值是 ?????? ??--=???? ??----=00 b na n bm nx m ny bx by a J (5) J 的两个特征值为 ma ±, 因此奇点是鞍点, 鞍点是不稳定的. 所以若鱼的尾数由于某种原因稍有变化, 这两种鱼的尾数将有大的变化. 方程组(2), (3)还有一个奇点 (0, 0), 向量场的Jacobi 矩阵在奇点(0, 0)的值是 ???? ??=???? ??----=m a nx m ny bx by a J 00 (6) J 的两个特征值为a>0, m>0, 因此奇点(0, 0)是不稳定的结点. 在奇点(0, 0) 附近的轨线当时间t 增大时都离开奇点(0,0). 另外方程组 (2), (3) 有两条半直线轨道: (1): x=0, y>0, 对应的轨线是 mt y y e 0=, 表示鲈鱼的尾数呈指数增长. (2): y=0, x>0, 对应的轨线是 at x x e 0=, 表示鳟鱼的尾数呈

常微分方程与动力学系统

《常微分方程》课程大纲 一、课程简介 课程名称:常微分方程学时/学分:3/54 先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。 面向对象:本科二年级或以上学生 教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。 二、教学内容和要求 常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数) 第一章基本概念(2,0) (一)本章教学目的与要求: 要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方向场),定解问题等基本概念。本章教学重点解释常微分方程解的几何意义。 (二)教学内容: 1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。 2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。 3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。 4.常微分方程所讨论的基本问题。

第二章初等积分法(4,2) (一)本章教学目的与要求: 要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。 本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。并通过习题课进行初步解题训练,提高解题技巧。 (二)教学内容: 1. 恰当方程(积分因子法); 2. 分离变量法 3. 一阶线性微分方程(常数变易法) 4. 初等变换法(齐次方程,伯努利方程,黎卡提方程) 5.应用举例 第三章常微分方程基本定理(10, 2) (一)本章教学目的与要求: 要求学生正确掌握存在和唯一性定理及解的延伸的含义,熟记初值问题的解存在唯一性条件,正确理解解对初值和参数的连续依赖性和可微性的几何含意。 本章教学重点是介绍常微分方程基本定理,给出几何含意,不追求定理条件的减弱,所涉及的方程至少是连续,使条件、结论及证明简洁,学生易于掌握,也为本学科的后续课程奠定基础。在习题课中,可介绍这些基本定理的应用,如证明初等函数恒等式,及推导欧拉公式。 (二)教学内容: 1. 皮卡存在和唯一性定理,用构造毕卡序列,并有它的一致收敛性来证明此定理; 2. 佩亚若存在定理; 3.解的延拓(几何含意);用两个例子说明延拓到边界的含义:时间的边界或状态空间的边界。 4. 解的全局存在唯一性定理,为动力系统理论奠定基础。 5. 比较定理(几何含意); 6.解对初值和参数的连续依赖性(几何含意); 7.解对初值和参数的连续可微性(几何含意)。 第四章奇解(2,1) (一)本章教学目的与要求: 要求学生正确掌握微分方程奇解的定义,并对几类一阶隐式方程会求奇

控制系统的微分方程

控制系统的微分方程

数学模型:描述系统输入、输出变量以及内部各变量之间关系的数学表达式。 描述各变量动态关系的表达式称为动态数学模型,常用的动态模型为微分方程。 建立数学模型的方法分为解析法和实验法。 解析法:依据系统及元件各变量之间所遵循的物理、化学定律列写出变量间的数学表达式,并实验验证。 实验法:对系统或元件输入一定形式的信号(阶跃信号、单位脉冲信号、正弦信号等),根据系统或元件的输出响应,经过数据处理而辨识出系统的数学模型。

建立微分方程的步骤: 1、分析各元件的工作原理,明确输入、输出量; 2、按照信号的传递顺序,列写各变量的动态关系式; 3、化简(线性化、消去中间变量),写出输入、输出变量 间的数学表达式。

例:RLC 无源网络如图所示,图中R 、L 、C 分别为电阻(Ω)、电感(H)、电 容(F);建立输入电压u r (V)和输出电压u c (V)之间的动态方程。 解由基尔霍夫定律得: ()1 ()()()r di t u t Ri t L i t dt dt C =++?1 ()()c C u t i t dt =?

消去中间变量i (t ),可得: 2 2 2 ()d ()2()()c c c r d u t u t T T u t u t dt dt ζ++=2 2 ()()()()c c c r d u t du t LC RC u t u t dt dt ++=令,则微分方程为: 2 ,2LC T RC T ζ==式中:T 称为时间常数,单位为s, 称为阻尼比,无量纲。 ζ

例设有一弹簧、质量块、阻尼器组成的系统如图所示,当外力F 作用于系统时,系统将产生运动。建立外力F 与质量块位移y (t )之间的动态方程。其中弹簧的弹性系数为k ,阻尼器的阻尼系数为f ,质量块的质量为m 。 解对质量块进行受力分析,作用在质量块上的力有: 外 力: F 弹簧恢复力:Ky(t) 阻尼力:() dy t f dt 由牛顿第二定律得: 2 ()()()d y t dy t m F f Ky t =??

动力系统的概念

动力系统的概念 这一章是对于事实的调查,而且来源于应用于全书的动力系统理论。我们的主要目的是为后面的章节确定固定使用的常用符号和专业术语,并且回想一些常常在课本的前言中不被讨论的理论的一些方面。为了更容易的阅读,我们保持讨论时采用非专业术语,并尽可能地避免技术上的符号和观点。然而许多遗漏的细节可以从研究生使用的动力系统的课本的前言中找到,一些更加先进的课题仅仅在研究性的文章中涉及到。在某些情况下,我们将提供一些在更深的章节中关于这个主题的参考。另外,我们鼓励读者使用附录A 和B 作为基于不同的几何和函数分析的参考。 流量,映射,动力系统 对于任意的集合P ,一个变换群:P P t F →中的任意的一个参数t 属于实数,如果 ()x x F =0对于所有的x 属于集合P ,并且s t s t F F F ο=+对于任意的 ,t s , 属于实数都成立, 则被称为一个流。这两个属性表明t F 和它的逆t F -是不可以转化的。这一组合t (,)p F 叫做基于空间P 的一个连续的动力系统。换句话说,一个连续的动力系统包括一个可能状态集合和唯一决定将来状态)(x F t 的当前的状态函数x 的变化规则。通过x 这一点的变化轨迹是集 合)()(x F U x t R t ∈=γ。一个固定点的流是一个点x 且x x F t =)(对于任意的R t ∈都成立。 这个流的一个周期的轨迹就是通过这一点x 对于那些存在的正数T,并且满足x x F T =)(的这 样的轨迹。 如果用以上所说的映射族t F 定义只需0≥t ,且对于所有的t ,s 满足()x x F =0和s t s t F F F ο=+,则t F 叫做半流形。注:半流形通常是不可逆的,动力系统的一个典型的特征是在无穷大的空间中是确定的。 当有单独向映射P P f →:且存在()f P ,时,离散动力系统是确定的。这样的系统还有一些性质即通过f 的迭代次数可以得出唯一的当前状态决定所有的将来状态()(),...,2x f x f 。这时x 的取值范围是确定的在集合()()Y Z n n x f x ∈=γ中,其中

微分方程中的几个基础概念

微分方程中的几个基础概念 微分方程—基础 微分方程(Differential equation, DFQ)是一种用来描述函数与其导数之间关系的数学方程。与之前所接触初等数学代数方程的解不同,它的解不是数,而是符合方程关系的函数。 微分方程的起源约在十七世纪末,为了解决自然科学发展中遇到物理及天文学问题而产生,随着微积分的诞生与在各个科学领域中的广泛应用,很多问题被归化为某类微分方程的问题。 在微分方程分支中,存在很多各种各样已知类型的微分方程。实事上,提高对微分方程的理解的最好的方法之一是首先处理基本的分类系统。为什么?因为你可能永远不会遇到完全陌生的微分方程。大多数微分方程已经被解决了,因此,普遍适用的解决方法很可能已经存在。 除了描述方程本身的性质外,对微分方程进行分类和识别的真正附加值来自于为跳转点提供一张导图。求解微分方程的诀窍不是创造原始解法,而是对已证明的解法进行分类和应用;有时,可能需要几步把一类方程转换为另一类等效方程,以获得可实现的广义解。 最常用于描述微分方程的四个属性是: ?常微分与偏微分 ?线性与非线性 ?齐次与非齐次

?微分阶数 虽然这个列表并非详尽无遗,但是它是我们学习首先要掌握的知识,通常在微分方程学期课程的前几周会进行回顾;通过快速回顾每一个类别,我们将会配备基本的入门工具包来处理常见的微分方程问题。 常微分与偏微分 首先,我们在自然中所发现的微分方程最常见的分类来源于从我们手边的问题中所发现的导数类型;简单地说,方程是否包含偏导数? 如果不包含,那么它是一个常微分方程(, Ordinary differential equation)。如果包含,那么它是一个偏微分方程(, Partial differential equation)。 常微分方程是未知函数只含有一个自变量的微分方程,其微分基于该单一的自变量,通常是时间。一个常微分方程有一组离散的(有限的)变量;它们通常是一维动力系统的模型,例如:钟摆随时间的摆动。 另一方面,偏微分方程相当复杂,因为它们通常涉及多个自变量,其多种多样的偏微分方程可能基于也可能并不基于一个已知的自变量。偏微分方程常被用来描述自然界中各种各样的现象,例如:热,空间中的流体速度,或电动力学。这些似乎完全不同的物理现象被化为偏微分方程;它们在随机偏微分方程中得到推广。 下面的这些例子有助于我们分辨微分方程的导数类型包括:

动力系统综述

Xxxxxx U N I V E R S I T Y 《微分方程定性理论》实践报告 所属学院:理学院 专业班级:应用数学 姓名: 学号:xxxxxxxxxxx 实践课题:动力系统综述 实践成绩: 任课教师:

动力系统综述 随着数学知识的不断扩充及科学技术的不断发展,动力系统被广泛应用于工程、力学、生态等各大领域,推动着社会的发展。动力系统是随时间而演变的系统。 随着数学知识的不断扩充及科学技术的不断发展,动力系统被广泛应用于工程、力学、生态等各大领域,推动着社会的发展。动力系统是随时间而演变的系统。对于含参数的系统,当参数变化并经过某些临界值时,系统的定性性态,如平衡点或周期运动的数目和稳定性等会发生突然变化,这种变化称为分叉[2]。 分叉理论主要研究当参数在分叉值附近变化时,系统轨线的拓扑结构或定性性态将如何变化。近几十年来,动力系统的分叉理论被系统而深入的研究,并得到了迅猛的发展,且广泛应用于物理、化学、生物、工程等研究领域中,分叉问题的研究己成为非线性动力系统研究的重点和难点之一。 1动力系统简介 动力系统的研究起源于牛顿的经典力学理论.假设空间R n 的一个质点M 在时刻t 的坐标为),,,(21n x x x x =并且己知质点M 此时的运动速度为))(,),(),(()(21x v x v x v x v n =,并且只与坐标x 有关.那么质点M 的运动方程为: )(x v dt dx = (1) 这个方程是一个自治的微分方程.更进一步如果方程(1)满足微分方程解的存在和唯一性定理的条件,那么对任何的初值条件00)(x t x =,则方程存在唯一解),,()(00x t t t =?。 我们称x 取值的空间n ?为相空间,而称((t , x )的取值空间“n ???”为增广相空间.按照微分方程的几何意义,方程(1)定义了增广相空间中的一个向量场.解的几何意义为增广相空间中经过点),(00x t 的唯一的积分曲线[1]. 2 动力系统在力学中的应用 稳定性是系统的一个重要特性。对系统运动稳定性分析是系统与控制论的一个重要组成部分,一个实际的系统必须是稳定的,不稳定的系统是不能付诸于工程实施的。 设系统的向量状态方程为: 0,)(),,(00≥==t x t x t x f x (2.1) 式中:x 为n 维状态向量;),(??f 为n 维向量函数。

常微分方程的发展史

摘要:20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组).70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程. 从“求通解”到“求解定解问题”数学家们首先发现微分方程有无穷个解.常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数.偏微 分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定. 命方程的解含有的任意元素(即任意常数或任意函数)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元 素的解称为“通解”.在很长一段时间里,人们致力于“求通解”. 关键词:常微分方程,发展,起源 正:常微分方程是由用微积分处理新问题而产生的,它主要经历了创立及解析理论阶段、定性理论阶段和深入发展阶段。17 世纪,牛顿,英国,1642-1727)和莱布尼兹,德国,1646-1716)发明了微积分,同时也开创了微分方程的研究最初,牛顿在他的著作《自然哲学的数学原理机(1687年)中,主要研究了微分方程在天文学中的应用,随后微积分在解决物理问题上逐步显示出了巨大的威力。但是,随着物理学提出日益复杂的问题,就需要更专门的技术,需要建立物理问题的数学模型,即建立反映该问题的微分方程。1690 年,雅可比·伯努利(Jakob Bernouli,瑞士,1654-1705)提出了等时间题和悬链线问题.这是探求微分方程解的早期工作。雅可比·伯努利自己解决了

前者。翌年,约翰伯努利(Johann Bernouli ,瑞士,1667-1748)、莱布尼兹和惠更斯(,荷兰,1629-1695)独立地解决了后者。 有了微分方程,紧接着就是解微分方程,并对所得的结果进行物理解释,从而预测物理过程的特定性质.所以求解就成为微分方程的核心,但求解的困难很大,一个看似很简单的微分方程也没有普遍适用的方法能使我们在所有的情况下得出它的解。因此,最初人们的注意力放在某些类型的微分方程的一般解法上。 1691 年,莱布尼兹给出了变量分离法。他还把一阶齐次方程使其变量分离。1694 年,他使用了常数变易法把一阶常微分方程化成积分。 1695 年,雅可比·伯努利给出著名的伯努利方程。莱布尼兹用变换,将其化为线性方程。约翰和雅可比给出了各自的解法,其本质上都是变量分离法。 1734 年,欧拉,瑞士,1707-1783)给出了恰当方程的定义。他与克莱罗. Clairaut,法国,1713-1765)各自找到了方程是恰当方程的条件,并发现:若方程是恰当的,则它是可积的。那么对非恰当方程如何求解呢1739 年克莱罗提出了积分因子的概念,欧拉确定了可采用积分因子的方程类属。这样,到 18 世纪 40 年代,一阶常微分方程的初等方法都已清楚了,与此相联系,通解与特解的问题也弄清楚了。

变质量物体的运动微分方程研讨(doc 6页)

变质量物体的运动微分方程研讨 (doc 6页) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

变质量物体的运动微分方程及火箭运动 专业:物理学 学号: 0840******** 姓名: 秦瑞锋

变质量物体的运动微分方程及火箭运动 秦瑞锋 (物理与电气工程系09级物理学专业,0840********) 摘要:我们已经了解了一定质量的系统的运动学方程和动力学方程,但在实际问题中,系统的质量往往是变化(按一定规律减少或增加)的,我们所学的一定质量的物体的运动学或动力学方程却不适用于变质量系统,下面我们将研究变质量系统的运动学和动力学的若干方程,以及变质量物体的运动规律. 关键字: 变质量系统 运动微分方程 火箭 动能定理 动量定理 一、变质量物体的基本运动微分方程 在以前的学习中,我们接触到的质点或者质点组系统运动过程中,本身的质量不会发生变化。但在实际生活和自然现象中,在某时刻有一部分质量进入或者离开我么们所要研究的对象,经常有变质量系统的运动情况,例如,地球的质量由于陨石的降落而增加,飞行中的喷气飞机和火箭随着燃料的减少质量减少,浮冰由于溶化而减少质量,运动着的传送带在某时可添加或取走货物,下降的陨石由于空气的作用发生破碎或者燃烧使质量减少……这些质点系在运动过程中,不断发生系统外的质点并入,或系统内的质点分离,以致系统的总质量随时间不断改变,我们称这些系统为变质量系统。那么该用怎样的方法研究变质量系统的运动情况呢? 我们可以假设在任何时刻,系统的分离或并入的质量是小量,两次发生分离或并入的时间间隔是小量,在这些理想的假设下,离开质点系的质量 )(m 2 t 和进入质点系的质量 )(1 t m 是时间的连续可微函数,如果系统的质量m t 在t=0时刻为m 0 ,则它随着时间的 变化规律为)()()(2 1 t t t m m m m +-= ,那对应的关于质量的一些物理量也是对时间的 可微函数,得到微分方程后,进行积分,问题可解决。 设变质量质点的质量m 是时间t 的函数,即m =m (t )。在瞬时t ,质点的质量为 m (t ),质点对于定坐标系Oxyz 的速度为v (图1),即将与之合并的微粒的质量为d m (t ),其对Oxyz 的速度为u 。在瞬时t +d t ,微粒与质点合并。于是质点的质量变为(m +d m ),其对Oxyz 的速度成为v +d v 。对于质量分出的情况则d m <0,即 dt dm 为负。 m 和d m 所组成的质点系在瞬时t 的动量为m v +u d m ;在瞬时t +d t 的动量为 (m +d m )(v +d v )。在d t 时间内,动量的增加t F p d ??=ρ ρ为: p d ρ=(m +d m ))(v d v ρρ+-(m v ρ+u ρ d m )。

动力系统简介[开题报告]

毕业论文开题报告 数学与应用数学 动力系统简介 一、选题的背景、意义 动力系统的经典背景是常微分方程的解族所确定的整体的流动。在常微分方程发展早期,牛顿、莱不尼兹、欧拉、伯努里(家族)等发现了许多通过初等函数或他们的积分表达式等方法来求常微分方程的通解。但是,Liouville 在1841年证明了大多数微分方程都不能求得显式解。因而动力系统的历史一般可以追溯到19世纪末法国大数学家Henri Poincar é[]1创立的微分方程定性论,或者可以称为微分方程的几何理论。其精神是不通过微分方程的显式解而直接研究解得几何和拓扑性质。这是由于已经知道的大多数微分方程都不可能求出显式解。20世纪早期Birkhoff[]2关于拓扑动力系统的公理化式的工作为这一学科建立了大范围的理论框架。这使得动力系统的含义更为广泛,可以不一定由微分方程产生。经过了几十年相对寂静的时期,从20世纪60年代开始,动力系统,尤其是与计算机迭代直接相关的离散时间的动力系统,迅速活跃起来。新的研究方向相继产生,形成了各具实力的美国学派、前苏联学派、欧洲学派、巴西学派以及廖山涛先生独树一帜的理论为代表的中国学派。经过40多年的迅速发展,动力系统前进的势头,越来越生机勃勃。 今天的动力系统大致有微分动力系统、Hamilton动力系统、拓扑动力系统、复动力系统、遍历论、随机动力系统等若干方向。其界限并不严格,相互交叉很多。微分动力系统研究一般的可微系统。它的发端是60年代初兴起的结构稳定性研究。所谓的结构稳定性是说系统的整体拓扑在可微扰动下保持不变,这显然是一恢弘的概念。其研究产生了很大的影响,成为现代动力系统诞生的一个标志。结构稳定性系统比较理想而少见。大量存在的,是不那么结构稳定的系统,和很不结构稳定的瞬息万变的系统。目前微分动力系统的研究对非结构稳定系统正在取得大量激动人心的成果。与一般的微分动力系统相比,比较特殊的是自成体系的Hamilton动力系统理论。这一理论有天体力学的背景,更加地传统,也更贴近现实的物理世界。其结构精巧微妙,拥有很多深刻的发现,比如,著名的KAM理论。拓扑动力系统则研究一般的连续系统,在纯粹的意义下研究动力系统最基本的概念,最广泛的共性。其理论清晰透彻,高度凝练。有和动力系统紧密相关的分型理论。分形理论以其奇异的几何图形和

《常微分方程》教学大纲

教学大纲 一、教学目的、任务 常微分方程历来是综合性大学数学系各专业的核心基础课程,不仅是进一步学习泛函分析、数理方程、微分几何的必要准备,本身也在工程力学、流体力学、天体力学、电路振荡分析、工业自动控制以及化学、生物、经济等领域有广泛的应用. 通过本课程学习,不仅为后行课程打下基础,而且以穿插其中的在历史上成功利用微分方程解释实际现象的著名范例来培养学生用数学理论解决实际问题的意识和初步能力. 实行中英双语教学,适时穿插工程实践背景的应用分析,培养学生的动手能力和创新意识. 二、教学内容的结构 分为六章内容讲解,具体地: 1.微分方程建模(8学时); 2.初等积分法(12学时); 3.线性系统(8学时); 4.常系数线性系统(12学时,包括若干振动问题4学时); 5.一般理论(12学时); 6.定性理论初步(12学时). 三、单元教学目标与任务 第一章绪论 1、基本内容 (1) 常微分方程模型(含Duffing机械振动、Van de Pol电磁震荡、天 文二体问题、生态种群竞争系统、物理化学系统); (2) 微分方程求解思想(解的定义、高阶方程与一阶方程组的互化, 微分方程的几何解释,包括等倾线与方向场分析等); (3) 微分方程的基本问题(通解的概念,“线性”与“非线性”微分方程). 2、基本要求 (1) 了解微分方程的背景和建模过程; (2) 理解微分方程的定解条件,尤其是初值条件;

(3) 掌握高阶方程与一阶方程组的互化; (4) 理解等倾线与方向场与解的关系. 3、建议课时(8学时) (1) 常微分方程模型(2学时); (2) 微分方程求解思想(4学时); (3) 基本问题(1学时); (4) 习题课(1学时). 第二章初等积分法 1、基本内容 (1) 变量分离形式(含初等变换应用、一阶线性方程、伯努里方程、 齐次方程和线性分式方程求解); (2) 恰当方程形式(对恰当方程求通积分,以及积分因子法); (3) 隐式方程(微分法与参数法); (4) 初等积分法的一些应用(奇解与包络并引伸出解的存在唯一性问 题,Clairaut方程,高阶微分方程,平面保守系统,Riccati方程). 2、基本要求 (1) 掌握分离变量法和积分因子法; (2) 理解恰当方程的条件; (3) 掌握一阶线性方程和伯努里方程求解,掌握求解隐式微分方程微 分法与参数法; (4) 了解奇解与包络. 3、建议课时(12学时) (1) 变量分离形式及习题课(4学时); (2) 恰当方程形式及习题课(3学时); (3) 隐式方程(2学时); (4) 初等积分法的一些应用及习题课(3学时). 第三章线性方程 1、基本内容 (1) 存在性与唯一性; (2) 齐次线性方程组的通解结构(含叠加原理、Wronsky行列式及 Liouville定理);

常微分方程教学大纲

218.111.1 常微分方程教学大纲 (Ordinary Differential Equations) 学分数 3 周学时 3+1 一.说明 1.课程名称: 常微分方程 (一学期课程) 一学期: 4*18. 2.教学目的和要求: (1)课程性质:本课程是数学系二年级必修课。本课程是数学系的一门基础课,一般安排在第三学期。它的前续课程是:数学分析、高等代数、解析几何、普通物理等。本课程是数学应用于物理、力学等的桥梁,是运用数学工具解决实际问题的重要工具和基础。也是加深理解数学分析、高等代数等课程的重要课程。 (2)基本内容:本课程主要内容为常微分方程的理论与计算。包括以下内容: 常微分方程问题的来源,简单常微分方程的初等解法,常系数线性方程解的结构(以及解法),线性微分方程组理论与解法,微分方程基本理论,微分方程定性理论初步。 (3)基本要求: 通过本课程的学习,学生对微分方程在实际问题(包括数学本身以及物理、力学、经济、生物等各个领域)中的应用有较好的认识,熟练掌握简单常微分方程的初等解法、常系数线性方程的解法和线性微分方程组的知识(对于低阶方程组、简单的高阶方程组要会解),掌握微分方程(组)的基本理论,对微分方程(组)的定性理论有一定的了解。 3.教学方式:课堂授课。 4.考试方式:考试(笔试)。 5.教材: 《常微分方程》,金福临,李训经等编,上海科学技术出版社,1984。 参考书:《常微分方程》 V. I. 阿诺尔德著, 沈家骐,周宝熙,卢亭鹤译,科学出版社, 2001。 其他院校,例如北京大学、南京大学编写的常微分方程教材。 二.讲授纲要 第一章引论(10学时+4学时) §1.1. 常微分方程问题的来源(1学时) §1.2. 简单常微分方程的初等解法(4学时) §1.3. 高阶方程的降阶(3学时) §1.4. 两体问题 (2学时) 本章教学要求: 对微分方程在实际问题(包括数学本身以及物理、力学、经济、生物等各个领域)中的应用有较好的认识,熟练掌握简单常微分方程的初等解法和一些可以利用降阶解决的高阶常微分方程的求解。 注:4学时为习题课

第二章 非线性微分方程动力系统的一般性研究

1 第二章 非线性微分动力系统的一般性研究 在对一个由非线性微分方程所描述的数学模型设计一个计算格式之前,在对该模型所表示的控制系统进行镇定设计或其他工作之前,人们往往希望对该系统可能呈现的动态特性有一个清楚的了解。特别是当系统模型包含若干个可变参数时,人们又希望知道,这些参数的变化将如何影响整个系统的动态特性。本章主要介绍非线性微分方程的一般理论,它将是进一步研究和讨论以下几章的基础。 本章中将研究非线性常微分方程定义的动力系统: ()dx x f x dt '== (2.1) 其中n x R ∈,()f x 是定义在某个开集n G R ?中的一阶连续可微函数。首先,介绍系统(2.1)的流在任何常点邻域的拓扑结构的共同特征。然后,分别介绍非线性微分方程的解的动态特性研究中的三个主要的内容,即方程的平衡点、闭轨以及轨线的渐近性态分析。 2.1 常点流、直化定理 本节介绍系统(2.1)的流在任何常点邻域的拓扑结构的共同特征,即证明如下的直化定理。 定理2.1 设有定义在开集n G R ?上的动力系统(2.1),0x G ∈是它的一个常点,则存在0x 的邻域0()U x 及其上的r C 微分同胚α,它将0()U x 内的流对应为n R 内原点邻域的一族平行直线段。 证明:由于0x 是常点,0()f x 是n R 中的非零向量,通过非奇异线性变换β(坐标轴的平移、旋转和拉伸),可将0x 对应为新坐标系的原点,且0()f x 化为列向量 (1,0,,0)T L (简记为(1,0)T r ),其中T 表示向量的转置,0r 代表(1)n -维零向量,而微分系统可化为 (),(0,0)(1,0)T x f x f ββ==r r & (2.2) 与此同时,0x 的邻域V ,在线性变换β的作用下化为

第二章:动力学系统的微分方程模型

第二章:动力学系统的微分方程模型 利用计算机进行仿真时,一般情况下要给出系统的数学模型,因此有必要掌 握一定的建立数学模型 的方法。在动力学系统中,大多数情况下可以使用微分方程 来表示系统的动态特性,也可以通过微分方程可以将原来的系统简化为状态方程或 者差分方程模型等。在这一章中,重点介绍建系统动态问题的微分方程的基本理论 和方法。 在实际工程中,一般把系统分为两种类型,一是连续系统;其数学模型一般 是高阶微分方程;另一 种是离散系统,它的数学模型是差分方程。 § 2.1 动力学系统统基本元件 任何机械系统都是由机械元件组成的,在机械系统中有 3种类型的基本机械元 件:惯性元件、弹性元件和阻尼元件。 1惯性元件:惯性元件是指具有质量或转动惯量的元件, 惯量可以定义为使加速度 (或角加速度)产生单位变化所需要的力(或力矩)。 2弹性元件:它在外力或外力偶作用下可以产生变形的元件, 力做功来储存能量。按变形性质可以分为线性元件和非线性元件,通常等效成一弹 簧来表示。 对于线性弹簧元件,弹簧中所受到的力与位移成正比, 比例常数为弹簧刚度 k 。 F Wx 这里k 称为弹簧刚度, 级是弹簧相对于原长的变形量,弹性力的方向总是指向弹 簧的原长位移,出了弹簧和受力之间是线性关系以外,还有所谓硬弹簧和软弹簧, 它们的受力和弹簧变形之间的关系是一非线性关系。 3阻尼元件:这种元件是以吸收能量以其它形式消耗能量, 而不储存能量,可以形 象的表示为一个活塞在一个充满流体介质的油缸中运动。阻尼力通常表示为: D a R = ex 阻尼力的方向总是速度方向相反。当 1,为线性阻尼模型。否则为非线性阻 尼模型。应注意当:等于偶数情况时,要将阻尼力表示为: R - -ex | x 4 | 这里的"-”表示与速度方向相反 惯量(质量) 力(N ) 加速度(m/ s 2 ) 惯量(转动惯量) 力矩(N m ) 角加速度(rad / s 2 ) 这种元件可以通过外

相关主题
文本预览
相关文档 最新文档