当前位置:文档之家› 常微分方程 稳定性理论

常微分方程 稳定性理论

常微分方程 稳定性理论
常微分方程 稳定性理论

§6.4 李雅普诺夫第二方法上一节我们介绍了稳定性概念,但是据此来判明系统解的稳定性,其应用范围是极其有限的.

李雅普诺夫创立了处理稳定性问题的两种方法:第一方法要利用微分方程的级数解,在他之后没有得到大的发展;第二方法是在不求方程解的情况下,借助一个所谓的李雅普诺夫函数)(x V 和通过微分方程所计算出来的导数

dt

x dV )

(的符号性质,就能直接推断出解的稳定性,因此又称为直接法.本节主要介绍李雅普诺夫第二方法.

为了便于理解,我们只考虑自治系统 )(x F dt

dx

=n R x ∈ (6.11)

假设T n x F x F x F ))(,),(()(1 =在{}

K x R x G n ≤∈=上连续,满足局部利普希茨条件,且

O O F =)(.

为介绍李雅普诺夫基本定理,先引入李雅普诺夫函数概念. 定义6.3 若函数

R G x V →:)(

满足0)(=O V ,)(x V 和

i

x V

??),,2,1(n i =都连续,且若存在K H ≤<0,使在{}

H x x D ≤=上)0(0)(≤≥x V ,则称)(x V 是常正(负)的;若在D 上除O x ≠外总有

)0(0)(<>x V ,则称)(x V 是正(负)定的;既不是常正又不是常负的函数称为变号函数.

通常我们称函数)(x V 为李雅普诺夫函数.易知: 函数2

22

1x x V +=在),(21x x 平面上为正定的; 函数 )(2

22

1x x V +-=在),(21x x 平面上为负定的; 函数222

1x x V -=在),(21x x 平面上为变号函数;

函数 2

1x V =在),(21x x 平面上为常正函数. 李雅普诺夫函数有明显的几何意义. 首先看正定函数),(21x x V V =.

在三维空间),,(21V x x 中, ),(21x x V V =是一个位于坐标面21Ox x 即0=V 上方的曲面.它与坐标面21Ox x 只在一个点,即原点)0,0,0(O 接触(图6-1(a)).如果用水平面

C V =(正常数)与),(21x x V V =相交,并将截口垂直投影到21Ox x 平面上,就得到一组一个套一个的闭曲线族C x x V =),(21 (图6-1(b)),由于),(21x x V V =连续可微,且

0)0,0(=V ,故在021==x x 的充分小的邻域中, ),(21x x V 可以任意小.即在这些邻域中

存在C 值可任意小的闭曲线C V =.

对于负定函数),(21x x V V =可作类似的几何解释,只是曲面),(21x x V V =将在坐标面21Ox x 的下方.

对于变号函数),(21x x V V =,自然应对应于这样的曲面,在原点O 的任意邻域,它既有在21Ox x 平面上方的点,又有在其下方的点.

定理6.1 对系统(6.11),若在区域D 上存在李雅普诺夫函数)(x V 满足 (1) 正定;

(2)

)(1

)

11.5(x F x V

dt

dV i n

i i

=??=常负,

(a)

(b)

图 6-1

则(6.11)的零解是稳定的.

图 6-2

证明 对任意)(0H <>εε,记

{}

ε==Γx x

则由)(x V 正定、连续和Γ是有界闭集知

0)(min >=Γ

∈x V b x

由0)(=O V 和)(x V 连续知存在0>δ(εδ<),使当δ≤x 时, b x V <)(,于是有δ≤x 时,

,),,(00ε

0t t ≥

(6.12)

若上述不等式不成立,由εδ<≤x 和),,(00x t t x 的连续性知存在01t t >,当[)10,t t t ∈时,

,),,(00ε

b x t t x V ≥)),,((001

(6.13)

另一方面,由条件(2)知

0dt

)

) x , t ,(t x (00≤dV 在[]10,t t 上成立,即[]10,t t t ∈时,

b x V x t t x V <≤)()),,((000

自然有b x t t x V <)),,((001.这与(6.13)矛盾,即(6.12)成立. (图6-2为n=2的情况.)

例 1 考虑无阻尼线性振动方程

02..

=+x x ω

(6.14)

的平衡位置的稳定性.

解 把(6.14)化为等价系统

????-==x

y y

x 2

.

.ω (6.15)

(6.14)的平衡位置即(6.15)的零解.作V 函数

)1

(21),(222y x y x V ω

+=)

)15.5(.

2

.

)

15.5()1

(y y x x dt

dV

?+

?=ω

即),(y x V 正定, 0)

15.5(≤dt

dV .于是由定理6.1 知(6.15)的零解是稳定的,即(6.14)的平衡

位置是稳定的.

引理 若)(x V 是正定(或负定)的李雅普诺夫函数,且对连续有界函数)(t x 有 0))((lim =∞

→t x V t

则O t x t =∞

→)(lim .

证明由读者自己完成.

定理 6.2 对系统(6.11),若区域D 上存在李雅普诺夫函数)(x V 满足 (1) 正定;

(2)

)(1

)

11.5(x F x V

dt

dV i n

i i

=??=负定, 则(6.11)的零解渐近稳定.

证明 由定理 6.1 知(6.11)的零解是稳定的.取-

δ为定理6.1 的证明过程中的δ,于是当-

≤δx 时, )),,((00x t t x V 单调下降.若00=x ,则由唯一性知O x t t x ≡),,(00,自然有

O x t t x t =+∞

→),,(lim 00

不妨设00≠x .由初值问题解的唯一性,对任意t , .),,(00O x t t x ≠从而由)(x V 的正定性

知0)),,((00>x t t x V 总成立,那么存在0≥a 使 a x t t x V t =+∞

→)),,((lim 00

假设0>a ,联系到)),,((00x t t x V 的单调性有 )()),,((000x V x t t x V a << 对0t t >成立.从而由0)(=O V 知存在,0>h 使0t t ≥时

ε<<),,(00x t t x h

(6.16)

成立.

由条件(2)有

0m a x <=≤≤dt

dV

M x h ε

故从(6.16)知

M dV ≤dt

)

) x , t ,(t x (00

对上述不等式两端从0t 到0t t >积分得

)()()),,((0000t t M x V x t t x V -≤- 该不等式意味着

-∞=+∞

→)),,((lim 00x t t x V t

矛盾.故0=a ,即

0)),,((lim 00=+∞

→x t t x V t

由于零解是稳定的,所以),,(00x t t x 在[]+∞,0t 上有界,再由引理知O x t t x t =+∞

→),,(lim 00.定

理证毕.

例 2 证明方程组

??

???-++=-++-=)1()1(2

2.

22.y x y x y y x x y x

(6.17)

的零解渐近稳定.

证明 作李雅普诺夫函数

)(2

1),(22

y x y x V += 有

)17.5(.

.)

17.5()(y y x x dt

dV

+=

)1)((2222-++=y x y x 在区域{}

1),(22<+=y x y x D 上),(y x V 正定,

)

17.5(dt

dV 负定,故由定理 6.2 知其零解渐

近稳定.

最后,我们给出不稳定性定理而略去证明.

定理 6.3 对系统(6.11)若在区域D 上存在李雅普诺夫函数)(x V 满足

(1)

)(1)

11.5(x F x V

dt

dV i n

i i

=??=正定; (2) )(x V 不是常负函数, 则系统(6.11)的零解是不稳定的.

6.3 平面自治系统的基本概念本节考虑平面自治系统

?????==),(),(..y x Q y y x P x

(6.18)

以下总假定函数),(),,(y x Q y x P 在区域

H y H x D <<,:, )(+∞≤H

上连续并满足初值解的存在与唯一性定理的条件.

常微分方程在数学建模中的应用.

微分方程应用 1 引言 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题. 因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介 通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助. 建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节. 3 常微分方程模型 3.1 常微分方程的简介

微分方程稳定性分解

带有时滞的动力系统的运动稳定性 分五部分内容,第一部分是Понтрягин定理,给出解实部、虚部的形式;第二部分分析了线性系统的一般性质、特征方程重根时解的表示和解的指数估计;第三部分讨论解的存在唯一性;第四部分探讨解的表达式;第五部分给出Фрид定理。以此说明特征方程根的实部的符号可以用以判断带有时滞的线性系统的稳定性。 直接法的基本定理 一、Понтрягин定理 要讨论的常系数线性系统的滞量τ为常数,所指的滞后型与中立型系统分别为1()()n i ij j ij j j x a x t b x t τ=??=+-??∑, 1 ()()()n i ij j ij j ij j j x a x t b x t c x t ττ=??=+-+-??∑,1,2, ,i n =0τ>, 这时,相应的特征方程分别是0ij ij ij a b e λτδλ-+-=, 0ij ij ij ij a b e c e λτλτλδλ--++-=。 对0τ=的情形0ij ij ij a b e λτδλ-+-=为一代数方程1 10n n n P P λλ -+++=。 在常微分方程解的稳定性理论中,关于特征方程()0P λ=的根的实部符号这样一个问题是极其重要的。如果给了方程组的平衡态之位置及其对应的特征多项式()P λ,则欲是平衡态的位置稳定,其充要条件是特征多项式()P λ的所有根都有负实部。 但是,现在的特征方程0ij ij ij a b e λτδλ-+-=,0ij ij ij ij a b e c e λτλτλδλ--++-=已不再是代数方程,可系统的稳定性仍然与特征根的分布紧紧联系在一起,这两个特征方程的一切根i λ都有0i Re λδ≤<时,系统 1()()n i ij j ij j j x a x t b x t τ=??=+-??∑, 1 ()()()n i ij j ij j ij j j x a x t b x t c x t ττ=??=+-+-??∑,1,2, ,i n =0τ>

常微分方程总结

(1) 概念 微分方程:一般,凡表示未知函数、未知函数的导数与自变量的之间关系的方程。 微分方程的阶:微分方程中所出现的未知函数的最高阶导数的阶数。如: 一阶:2dy x dx = 二阶:220.4d s dt =- 三阶:32243x y x y xy x ''''''+-= 四阶:()4410125sin 2y y y y y x ''''''-+-+= 一般n 阶微分方程的形式:()() ,,,,0n F x y y y '=。这里的()n y 是必须出现。 (2)微分方程的解 设函数()y x ?=在区间I 上有n 阶连续导数,如果在区间I 上, ()()()(),,0n F x x x x ?????'≡???? 则()y x ?=称为微分方程()(),,,,0n F x y y y '=的解。 注:一个函数有n 阶连续导数→该函数的n 阶导函数也是连续的。 函数连续→函数的图像时连在一起的,中间没有断开(即没有间断点)。 导数→导函数简称导数,导数表示原函数在该点的斜率大小。 导函数连续→原函数的斜率时连续变化的,而并没有在某点发生突变。 函数连续定义:设函数()y f x =在点0x 的某一邻域内有定义,如果()()0 0lim x x f x f x →=则称函数()f x 在点0x 连续。 左连续:()() ()000lim x x f x f x f x --→== 左极限存在且等于该点的函数值。 右连续:()() ()000lim x x f x f x f x ++→== 右极限存在且等于该点的函数值。 在区间上每一个点都连续的函数,叫做函数在该区间上连续。如果是闭区间,包括端点,是指函数在右端点左连续,在左端点右连续。 函数在0x 点连续?()()()()000 0lim lim lim x x x x x x f x f x f x f x -+→→→=== 1、()f x 在点0x 有定义 2、()0 lim x x f x →极限存在

第七章 常微分方程模型的数值解法

第七章 常微分方程数值解法简介 微分方程在科学和工程技术中有很广泛的应用。许多实际问题的数学模型都可以用微分方程来描述,归结为常微分方程的定解问题;很多偏微分方程问题,也可以化为常微分方程问题来近似求解,但是求出所需的解绝非易事。实际上,除了极特殊情形外,人们不可能求出微分方程的解析解,只能用各种近似方法得到满足一定精度的近似解。在常微分方程中已经熟悉了级数解法和Picard 逐步逼近法,这些方法可以给出解的近似表达式,称为近似解析方法。另一类方法只给出解在一些离散点上的值,称为数值方法。后一类方法应用范围更广,特别适合用计算机计算,本章主要介绍常用的常微分方程数值解法。 7.1实际问题的微分方程模型 函数是事物的内部联系在数量方面的反映,如何寻找变量之间的函数关系,在实际应用中具有重要意义。在许多实际问题中,往往不能直接找出变量之间的函数关系,但是有时却容易找出变量的改变量之间的关系,从而建立描述问题的微分方程模型。 例7.1.1 将初始温度00150u C =的一碗汤放置于环境温度a u 保持为024C 的桌上,10分钟后测得汤的温度为0100C 。如果汤的温度低于055C 才可以喝,试问再过20分钟后这碗汤能喝了吗? 解:为了解决这一问题,需要了解有关热力学的一些基本规律。热量总是从温度高的物体向温度低的物体传导的;在一定的温度范围内,一个物体的温度变化速度与这个物体的温度和其所在的介质温度的差值成正比。 设物体在t 时刻的温度为()u u t =,从t t t →+?温度从()()u t u t t →+?,注意到热量总是从温度高的物体向温度低的物体传导,因而0a u u >,所以温度差 a u u -恒正,又因物体将随时间而逐渐冷却;则温度的改变量为: ()()(())a u u t t u t k u t t u t ?=+?-=-+?-? 两边除以t ?,并令0t ?→得温度变化速度为: ()a du k u u dt =-- 这里0k >是比例常数。从而得出描述物体冷却过程的微分方程模型为: 0()(0)a du k u u dt u u ?=--???=? (7.1.1) 容易求出这个一阶微分方程初值问题的解为:

微分方程稳定性理论简介

第五节 微分方程稳定性理论简介 这里简单介绍下面将要用到的有关内容: 一、 一阶方程的平衡点及稳定性 设有微分方程 ()dx f x dt = (1) 右端不显含自变量t ,代数方程 ()0f x = (2) 的实根0x x =称为方程(1)的平衡点(或奇点),它也是方程(1)的解(奇解) 如果从所有可能的初始条件出发,方程(1)的解()x t 都满足 0lim ()t x t x →∞ = (3) 则称平衡点0x 是稳定的(稳定性理论中称渐近稳定);否则,称0x 是不稳定的(不渐近稳定)。 判断平衡点0x 是否稳定通常有两种方法,利用定义即(3)式称间接法,不求方程(1)的解()x t ,因而不利用(3)式的方法称直接法,下面介绍直接法。 将()f x 在0x 做泰勒展开,只取一次项,则方程(1)近似为: 0'()()dx f x x x dt =- (4) (4)称为(1)的近似线性方程。0x 也是(4)的平衡点。关于平衡点0x 的稳定性有如下的结论: 若0'()0f x <,则0x 是方程(1)、(4)的稳定的平衡点。 若0'()0f x >,则0x 不是方程(1)、(4)的稳定的平衡点 0x 对于方程(4)的稳定性很容易由定义(3)证明,因为(4)的一般解是 0'()0()f x t x t ce x =+ (5) 其中C 是由初始条件决定的常数。

二、 二阶(平面)方程的平衡点和稳定性 方程的一般形式可用两个一阶方程表示为 112212 () (,)()(,) dx t f x x dt dx t g x x dt ?=??? ?=?? (6) 右端不显含t ,代数方程组 1212 (,)0 (,)0f x x g x x =?? =? (7) 的实根0012 (,)x x 称为方程(6)的平衡点。记为00 012(,)P x x 如果从所有可能的初始条件出发,方程(6)的解12(),()x t x t 都满足 101lim ()t x t x →∞ = 20 2lim ()t x t x →∞ = (8) 则称平衡点00 012(,)P x x 是稳定的(渐近稳定);否则,称P 0是不稳定的(不渐 近稳定)。 为了用直接法讨论方法方程(6)的平衡点的稳定性,先看线性常系数方程 11112 22122 () ()dx t a x b x dt dx t a x b x dt ?=+??? ?=+?? (9) 系数矩阵记作 1 12 2a b A a b ??=???? 并假定A 的行列式det 0A ≠ 于是原点0(0,0)P 是方程(9)的唯一平衡点,它的稳定性由的特征方程 det()0A I λ-= 的根λ(特征根)决定,上方程可以写成更加明确的形式: 2120()det p q p a b q A λλ?++=? =-+??=? (10) 将特征根记作12,λλ,则

《常微分方程》课程大纲

《常微分方程》课程大纲 一、课程简介 课程名称:常微分方程学时/学分:3/54 先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。 面向对象:本科二年级或以上学生 教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。 二、教学内容和要求 常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数) 第一章基本概念(2,0) (一)本章教学目的与要求: 要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方

向场),定解问题等基本概念。本章教学重点解释常微分方程解的几何意义。 (二)教学内容: 1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。 2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。 3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。 4.常微分方程所讨论的基本问题。 第二章初等积分法(4,2) (一)本章教学目的与要求: 要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。 本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。并通过习题课进行初步解题训练,提高解题技巧。 (二)教学内容: 1. 恰当方程(积分因子法); 2. 分离变量法 3. 一阶线性微分方程(常数变易法) 4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)

常微分方程的建模训练

常微分方程的建模训练 各位同学: 欢迎大家开始《高等数学》课程的第二阶段的学习。本次辅导材料是关于建立微分方程的模型,主要目的有2个。一是开阔大家的视野,二是练习如何将一个实际问题用数学语言描述出来,也就是平时讲的建模,这是一个理工科学生的最重要的基本功之一。希望大家努力掌握之。 建立微分方程的途径主要有: 1)根据问题的性质,利用相应学科已经知道的客观规律,比如研究物体的运动,在已知外力的情况下,可运用著名的牛顿第二定律;研究热力学问题,可以用热力学定律,研究电路问题就可以用电路的基尔霍夫定律等。 2)对于一些没有明显规律可用时,可以考虑应用微元法(上学期学习积分时已经学习过),这时,需要考虑的是在自变量[,d] +的微段d x中,函数的增 x x x 量的微分表达式。 本次材料包括的题目不少,你可能没有太多的时间做。没有关系,可以边学边做,或有空时做,拳不离手,曲不离口,功夫是逐渐炼成的。要注意的是,对一个确定的问题,仅仅列出微分方程是不够的,还要有一组初始条件或边界条件,才能使微分方程的通解具体化,称为一个对应与问题本身的特解!如何列出这样的条件,也需要训练你的观察能力,因为很多题目中,这些条件常隐含在题目的叙述中。 本次练习不要求你去求解这些方程,但随着我们课堂的进度,当你学会微分方程的求解后,你再去求解它们。 好,开始吧! 1. 有一类物质具有放射性,根据观察,放射性元素的质量随时间推移而逐渐减少,这种现象称为衰变。由实验测定,每一时刻放射性元素镭的衰变率(即质量减少的速率)与该时刻 λ>。求镭的衰变规律。 的镭的质量成正比,比例系数0 又由经验判断,镭经过1600年后,只剩下原始量的一半,求镭的质量R与时间t的函数关系。 2. 物理上把已知物体质量和外力的条件下,求物体的运动规律的问题称为动力学问题。物 s t来表示。 体的运动可用它的位移量() 已知物体质量为m的物体在外力F的作用下沿外力的方向作直线运动。试根据下列提供的外力特点,求物体的运动规律: 1)外力为地球重力; 2)外力为与其速度的平方成反比的阻力; 3)外力为与其位移成正比,但方向相反的弹性恢复力;

4微分方程的解及解的稳定性

第四讲 微分方程解的稳定性 上一讲,我们利用最大值原理讨论了新古典经济增长模型,得到了两个方程,一个是状态变量的转移方程,另一个是欧拉方程。这两个方程构成了包含状态变量和控制变量的二元一次方程组。 []δα--=-) ()()()()(1 t k t c t k t k t k []δραα--=-1 )() ()(t k t c t c 这个方程组是一个非线性微分方程组,一般情况下,非线性方程组不存在解析解,即方程组的解不能用初等函数来表示。因此,他们的性质需要借助其他方法来了解。 微分方程:变量为导数的方程叫做微分方程。 常微分方程:只有一个自变量的微分方程叫做常微分方程。 偏微分方程:有两个或两个以上自变量的方程叫做偏微分方程。 微分方程的阶:微分方程中变量的导数最高阶叫做方程的阶。 线性方程:方程的形式是线性的。 例如,方程0)()()()(321=+++t x t y a t y a t y a 是一个二阶线性常微分方程。 又如,索洛-斯旺模型的基本方程是一个非线性方程: ())()()(t k t k s t k ?-=δα 再如,拉姆齐模型的动态是下列微分方程组的解: []δα--=-) ()()()()(1 t k t c t k t k t k []δραα--=-1 )() ()(t k t c t c 一、 一阶微分方程 一阶微分方程可以用下面的方程表示 ),(y x f dx dy = (1.1) 其中,函数R R R f →?:是连续可微函数。 最简单的微分方程是

)(x f dx dy = (1.2) 它的解可表示为不定积分: ?+=c dx x f y )( (1.3) 其中,?dx x f x F )()(=表示任意一个被被积函数,c 为任意常数。当然,我们也可以确定任意一个被积函数,例如,令??x dt t f dx x f x F 0)()()(==, 则(2.2)的不定 积分可表示为 ?+x c dt t f y 0)(= 这时,不定积分仍然代表无穷多条曲线,如果给出初始条件0)0(y y =, 则,上面微分方程的解就是 ?+x y dt t f y 00)(= (1.4) 二、 常见的一阶微分方程解法 1. 一阶线性微分方程 一阶线性微分方程的一般形式为 )()(x g y x p dx dy =+ (2.1) 边界条件(即初始条件)0)0(y y =。 为求解线性微分方程,在方程的两边同乘以?x dt t p 0)(ex p , 则方程的左边为 dx dt t p y d y dt t p x p dt t p dx dy x x x ??? ???= ?+???0 00)(exp )(exp )()(exp 所以 ??? ??=??? ?????x x dt t p x g dx dt t p y d 00)(exp )()(exp (2.2) 方程(2.2)的解为 ?? ????+? ?? ????? ??-=???c dt t p x g dt t p y x x x 000)(exp )()(exp (2.3) 2. 可分离变量的微分方程

数学建模作业求解常微分方程和人口模型问题

实验报告 课程名称:数学建模 课题名称:求解常微分方程与人口模型 专业:信息与计算科学 姓名:胡家炜 班级: 123132 完成日期: 2016 年 6 月 10 日

一.求解微分方程的通解 (1). dsolve('2*x^2*y*Dy=y^2+1','x') ans = (exp(C3 - 1/x) - 1)^(1/2) -(exp(C3 - 1/x) - 1)^(1/2) i -i (2). dsolve('Dy=(y+x)/(y-x)','x') ans = x + 2^(1/2)*(x^2 + C12)^(1/2) x - 2^(1/2)*(x^2 + C12)^(1/2) (3). dsolve('Dy=cos(y/x)+y/x','x') ans = (pi*x)/2-x*log(-(exp(C25 + log(x)) - i) /(exp(C25 + log(x))*i - 1))*i (4). dsolve('(x*cos(y)+sin(2*y))*Dy=1','x') ans = -asin(x/2 + lambertw(0, -(C30*exp(- x/2 - 1))/2) + 1) (5). dsolve('D2y+3*Dy-y=exp(x)*cos(2*x)','x') ans = C32*exp(x*(13^(1/2)/2 - 3/2)) + C33*exp(-x*(13^(1/2)/2 + 3/2)) + (13^(1/2)*exp(x*(13^(1/2)/2-3/2))*exp((5*x)/2(13^(1/2)*x)/2)* (2*sin(2*x) - cos(2*x)*(13^(1/2)/2 - 5/2)))/(13*((13^(1/2)/2 - 5/2)^2 +4))-(13^(1/2)*exp(x*(13^(1/2)/2+3/2))*exp((5*x)/2 +(13^(1/2)*x)/2)*(2*sin(2*x)+cos(2*x)*(13^(1/2)/2+5/2))) /(13*((13^(1/2)/2 + 5/2)^2 + 4)) (6)dsolve('D2y+4*y=x+1+sin(x)','x') ans = cos(2*x)*(cos(2*x)/4 - sin(2*x)/8 + sin(3*x)/12 - sin(x)/4 + (x*cos(2*x))/4 - 1/4) + sin(2*x)*(cos(2*x)/8 - cos(3*x)/12 + sin(2*x)/4 + cos(x)/4 + (x*sin(2*x))/4 + 1/8) + C35*cos(2*x) + C36*sin(2*x)

常微分方程平衡点及稳定性研究38112

摘要 本文给出了微分方程稳定性的概念,并举了一些例子来说明不同稳定性定义之间的区别和联系。这些例子都是通过求出方程解析解的方法来讨论零解是否稳定。在实际问题中提出的微分方程往往是很复杂的,无法求出其解析解,这就需要我们从方程本身来判断零解的稳定性。所以我们讨论了通过Liapunov稳定性定理来判断自治系统零解的稳定性,并用类似的方法讨论了非自治系统零解的稳定性。在此基础上,讨论了一阶和二阶微分方程的平衡点及其稳定性,这对其研究数学建模的稳定性模型起到很大的作用,并且利用相关的差分方程的全局吸引性研究了具时滞的单种群模型 ()()()() () .1 1N t N t r t N t cN t ττ -- = -- 的平衡点1 x=的全局吸引性,所获结果改进了文献中相关的结论。关键词:自治系统平衡点稳定性全局吸引性

Abstract In this paper,we gived the conceptions of differential equation stability. Simultaneously a number of examples to illustrate the difference between the definition of different stability and contact. These examples are obtained by analytical solution equation method to discuss the stability of zero solution. Practical issues raised in the often very complicated differential equations, analytical solution can not be obtained, which requires us to determine from the equation itself, the stability of zero solution. So we discussed the stability theorem to determine through the stability of zero solution of autonomous systems, and use similar methods to discuss the non-zero solution of autonomous system stability. On this basis,we discuss a step and the second-step and the stability, which plays the major role to its stability of the model, and the global attractivity of the positive equilibrium 1 x=of the following delay single population model ()()()() () .1 1N t N t r t N t cN t ττ -- = -- is investigated by using the corresponding result related to a difference equation.The obtained results improve some known results in the literature. Key Words:autonomous system;equilibrium point;stability;delay;globally asymptotic stability;global attractivity

第5章 定性和稳定性理论简介(常微分方程)

第5章定性和稳定性理论简介 在十九世纪中叶,通过Liouville等人的工作,人们已经知道绝大多数微分方程不能用初等积分法求解.这个结果对微分方程理论的发展产生了极大的影响,使微分方程的研究发生了一个转折.既然初等积分法有着不可克服的局限性,那么是否可以不求微分方程的解,而从微分方程本身来推断其性质呢?定性理论和稳定性理论正是在这种背景下发展起来的.前者由法国数学家Poincare(1854-1912)在19世纪80年代所创立,后者由俄国数学家Liapunov(1857-1918)在同年代所创立.它们共同的特点就是在不求出方程解的情况下,直接根据微分方程本身的结构与特点,来研究其解的性质.由于这种方法的有效性,近一百多年以来它们已经成为常微分方程发展的主流.本章对定性理论和稳定性理论的一些基本概念和基本方法作一简单介绍. 第一讲§5.1 稳定性(Stability)概念(5课时) 一、教学目的:理解稳定、渐近稳定和不稳定的概念;掌握零解的稳 定、渐近稳定的概念;学会判定一些简单微分方程零 解的稳定和渐近稳定性。 二、教学要求:理解稳定、渐近稳定和不稳定的概念;掌握简单微分 方程零解的稳定和渐近稳定性的判定。 三、教学重点:简单微分方程零解的稳定和渐近稳定性的判定。 四、教学难点:如何把一般解的稳定性转化为零解的稳定性。 五、教学方法:讲练结合教学法、提问式与启发式相结合教学法。 六、教学手段:传统板书与多媒体课件辅助教学相结合。 七、教学过程:

1.稳定性的定义 考虑微分方程组 (,)dx f t x dt = (5.1) 其中函数(,)f t x 对n x D R ∈?和(,)t ∈-∞+∞连续,对x 满足局部Lipschitz 条件。 设方程(5.1)对初值01(,)t x 存在唯一解01(,,)x t t x ?=,而其它解记作00(,,)x x t t x = 。 现在的问题是:当01x x -很小是,差 0001(,,)(,,) x t t x t t x ?-的变化是否也很小?本章向量1 2 (,,,)T n x x x x = 的范数取 1 221n i i x x =?? = ? ?? ∑。 如果所考虑的解的存在区间是有限区间,那么这是解对初值的连续依赖性,在第二章的定理2.7已有结论。现在要考虑的是解的存在区间是无穷区间,那么解对初值不一定有连续依赖性,这就产生了Liapunov 意义下的稳定性概念。 定义 5.1 如果对于任意给定的0 ε>和00t ≥都存在0(,)0 t δδε=>, 使得只要 01x x δ -<,就有 0001(,,)(,,)x t t x t t x ?ε -< 对一切0t t ≥成立,则 称(5.1)的解01(,,)x t t x ?=是稳定的。否则是不稳定的。 定义5.2 假定01(,,)x t t x ?=是稳定的,而且存在11(0)δδδ<≤,使得只要 011x x δ-< ,就有 0001l i m ((,,) (,,))0t x t t x t t x ?→∞ -= ,则称 (5.1)的解01(,,)x t t x ?=是渐近稳定的。 为了简化讨论,通常把解01(,,)x t t x ?=的稳定性化成零解的稳定性问题.下面记00()(,,) x t x t t x =01()(,,)t t t x ??=作如下变量代换. 作如下变量代 换.

常微分方程在数学建模中的应用

北方民族大学学士学位论文 论文题目:常微分方程在数学建模中的应用 院(部)名称:信息与计算科学学院 学生姓名:马木沙 专业:信计学号:20093490 指导教师姓名:魏波 论文提交时间: 论文答辩时间: 学位授予时间: 北方民族大学教务处制

摘要 本文利用常微分方程和数学建模二者之间的联系,了解微分方程的一般理论、微分方程解的存在惟一性、微分方程的稳定性问题、通过几个典型的数学模型如:人口模型、减肥的数学模型、化工车间通风模型、传染病的传播模型及定性分析等例子来体现微分方程在数学建模中的应用. 用数学理论解决实际生活中的问题.微分方程的出现以及运用微分方程在数学建模中的应用,就是为了更好地使更多的人理解并运用数学理论,更好的解决实际生活中的问题.努力在各个领域利用并渗透数学知识的广泛运用. 关键词:常微分方程,数学建模,数学模型

Abstract In this paper, ordinary differential equations and mathematical modeling contact between the two, understand the general theory of differential equations, stability problems of the existence and uniqueness of differential equations, differential equations, several typical mathematical models such as: demographic model,example of the mathematical model of weight loss, chemical plant ventilation model, spread of infectious diseases, model and qualitative analysis to reflect the application of differential equations in mathematical modeling. found that the application of mathematical theory to study and solve problems in the actual process of the emergence of ordinary differential equations andOrdinary Differential Equations in Mathematical Modeling widely used, in order to better enable ordinary people to understand and use mathematical theory, solving real-world problems. sublimation theory by the knowledge-based transformation to the ability to type, highlight the differential equationsand differential equations in mathematical modeling efforts made outstanding and significant contribution in various fields. Keywords: ordinary differential equations, mathematical modeling, mathematical model.

常微分方程的数值解

实验4 常微分方程的数值解 【实验目的】 1.掌握用MATLAB软件求微分方程初值问题数值解的方法; 2.通过实例用微分方程模型解决简化的实际问题; 3.了解欧拉方法和龙格-库塔方法的基本思想和计算公式,及稳定性等概念。 【实验内容】 题3 小型火箭初始重量为1400kg,其中包括1080kg燃料。火箭竖直向上发射时燃料燃烧率为18kg/s,由此产生32000N的推力,火箭引擎在燃料用尽时关闭。设火箭上升时空气阻力正比于速度的平方,比例系数为m,求引擎关闭瞬间火箭的高度、速度、加速度,及火箭到达最高点的时的高度和加速度,并画出高度、速度、加速度随时间变化的图形。 模型及其求解 火箭在上升的过程可分为两个阶段,在全过程中假设重力加速度始终保持不变,g=s2。 在第一个过程中,火箭通过燃烧燃料产生向上的推力,同时它还受到自身重力(包括自重和该时刻剩余燃料的重量)以及与速度平方成正比的空气阻力的作用,根据牛顿第二定律,三个力的合力产生加速度,方向竖直向上。因此有如下二式: a=dv/dt=/m=/(1400-18t) dh/dt=v 又知初始时刻t=0,v=0,h=0。记x(1)=h,x(2)=v,根据MATLAB 可以求出0到60秒内火箭的速度、高度、加速度随时间的变化情况。程序如下: function [ dx ] = rocket( t,x ) a=[*x(2)^2)/(1400-18*t)]; dx=[x(2);a]; end ts=0:1:60;

x0=[0,0]; [t,x]=ode45(@rocket,ts,x0); h=x(:,1); v=x(:,2); a=[*(v.^2))./(1400-18*t)]; [t,h,v,a]; 数据如下: t h v a 000

最新常微分方程解的稳定性(修改)

常微分方程解的稳定 性(修改)

常微分方程解的稳定性 摘要本文简要介绍了常微分方程解的稳定性理论的相关概念及其在解决微分方程相关问题的重要意义。最后,介绍用李雅普诺夫第二方法构造李雅普诺夫函数来判断常微分方程的稳定性及其在解决常微分方程的稳定性问题中的应用。 关键字:常微分方程稳定性李雅普诺夫函数 V函数构造方法

引言 常微分方程在经历了长期的求精确解的努力后逐渐停滞,庞加莱在分析的基础上引入几何方法 ,开创了常微分方程定性理论 , 同时在分析中引入几何方法 ,搭建起分析与几何之间的沟通桥梁 ,带来了微分方程研究的新突破。李雅普诺夫则在庞加莱定性分析的基础上 ,转而进入了新的稳定性研究。 如今 ,李雅普诺夫稳定性理论被普遍认为是微分方程定性理论的基本成就之一。不仅有精确的定义 ,更有严格的分析证明 ,将微分方程及稳定性理论的研究推向了新的高度。 本文论述常微分方程解的稳定性的定义及其研究常微分方程相关问题的重要思想,并用李雅普诺夫第二方法构造李雅普诺夫函数来判断常微分方程的稳定性及其在解决常微分方程的稳定性问题中的应用。

1、常微分方程稳定性 微分方程自诞生以来就一直以微分方程解的求法为研究中心。数学家在微分方程求解过程中进行了不懈的努力 ,但始终没有从根本上摆脱求确定解的桎梏 ,致使研究的道路越来越窄。 此时单纯的定量分析已不能解决问题 ,必须用一种综合化、整体化的思想加以考虑. 避开微分方程求精确解的定量方法 ,转向运用稳定性方法探求解的性质 ,从而解决常微分方程(组)的解的问题. 考虑微分方程组 (2.1) 其中函数对和连续,对 满足局部利普希茨条件。 设方程(2.1)对初值存在唯一解 , 而其他解记作 . 本文中向量的范数取 . 如果所考虑的解的存在区间是有限闭区间,那么这是解对初值的连续依赖性。现在要考虑的是解的存在区间是无穷区间,那么解对初值不一定有连续依赖性,这就产生的李雅普诺夫意义下的稳定性概念。 如果对于任意给定的和都存在 , 使得只要 就有 对一切成立,则称(2.1)的解是稳定的,否则是不稳定的。 假设是稳定的,而且存在, 使得只要

微分方程与微分方程建模法

第三章微分方程模型 3.1微分方程与微分方程建模法 微分方程知识简介 我们要掌握常微分方程的一些基础知识,对一些可以求解的微分方程及其方 程组,要求掌握其解法,并了解一些方程的近似解法。 微分方程的体系: (1)初等积分法(一阶方程及几类可降阶为一阶的方程) 一阶线性微分方程组(常系数线性微分方程组的解法) (3)高阶线性微分方程 (高阶线性常系数微分方程解法)。其中还包括了常微分方程的基本定理 0.常数变易法: 常数变易法在上面的(1) (2) (3)三部分中都出现过,它是 由线性齐次方程(一阶或高阶)或方程组的解经常数变易后求相应的非齐次 方程或方程组的解的一种方法。 1.初等积分法:掌握变量可分离方程、齐次方程的解法,掌握线性方程的解法, 掌握全微 分方程(含积分因子)的解法,会一些一阶隐式微分方程的解法(参 数法),会几类可以降阶的高阶方程的解法(恰当导数方程)。 dx f(x)g(y); M(x)N(y)dx P(x)Q(y)dy 0; 常数变易法:(1)线性方程,y p (x )y f (x ), (2)伯努里方程,y p(x)y f (x)y n , 积分因子法:化为全微分方程,按全微分方程求解。 对于一阶隐式微分方程F (x,y, y ) 0,有 参数法:(1)不含x 或y 的方程:F (x,y ) 0,F (y,y ) 0; 对于高阶方程,有 分离变量法:(1)可分离变量方程: (2)齐次方程: dy dx dy dx f(ax by C ); ux vy w

⑵可解出x或y的方程:y f(x,y),x f ( y, y ); 降阶法:F(x,y(k),y(k 1), ,y(n)) F(y,y,y) 0; 恰当导数方程 一阶方程的应用问题(即建模问题) 2.一阶线性微分方程组:本部分主要内容有:一是一阶线性微分方程组的基本 理论(线性齐次、非齐次微分方程组的通解结构,刘维尔公式等),二是常系数线性微分方程组的解法(求特征根,单根与重根[待定系数法]),三是常数变易法。本部分内容与线性代数关系密切,如线性空间,向量的线性相关与线性无关,基与维数,特征方程、特征根与特征向量,矩阵的若当标准型等。 3.高阶线性微分方程:了解高阶线性微分方程的基本理论(线性齐次、非齐次 微分方程的通解结构,刘维尔公式等); n 阶线性常系数微分方程解法:(1)求常系数齐次线性微分方程基本解组的待定指数函数法;(2)求一般非齐次线性方程解的常数变易法;(3)求特殊型非齐次常系数线性方程解的待定系数法;(4)求解初值问题的拉普拉斯变换法;(5)求二阶线性方程的幂级数解法。 4.常微分方程的基本定理:常微分方程的几何解释(线素场),初值问题解的存在与唯一性定理(条件与结论),求方程的近似解(欧拉折线法与毕卡逐次逼近法),解的延展定理与比较定理、唯一性定理证明解的存在区间(如为左右无穷大),奇解与包络线,克莱罗方程。 5.常微分方程的稳定性理论:掌握稳定性的一些基本概念,以及运用特征根法判断常系数线性方程(组)的解的稳定性,运用李雅普诺夫函数法判断一般方程(组)的解的稳定性。 6.常微分方程的定性理论:掌握定性理论的一些基本概念,运用特征根法判断奇点类型,极限环。 7.差分方程。 8.偏微分方程。 二、数学建模的微分方程方法 微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学内涵。微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现

典型例题第三章一阶微分方程的解的存在定理

第三章 一阶微分方程的解的存在定理 例3-1 求方程 22y x dx dy += 满足初始条件0)0(=y 的解的逐次逼近)(),(),(321x y x y x y ,并求出h 的最大值,其中h 的意义同解的存在唯一性定理中的h 。 解 函数2 2 ),(y x y x f +=在整个平面上有意义,则在以原点为中心的任一闭矩形区域 b y a x D ≤≤,:上均满足解的存在唯一性定理的条件,初值问题?????=+=0 )0(22y y x dx dy 的解在],[h h -上存在唯一,其中)(max ),, min(22),(y x M M b a h D y x +==∈。 因为逐次逼近函数序列为 ?-+=x x n n dx x y x f y x y 0 ))(,()(10, 此时,2 200),(,0,0y x y x f y x +===,所以 0)(0=x y , ?=+=x x dx x y x x y 03 2 02 13 )]([)(, 63 3)]([)(7 032 12 2x x dx x y x x y x +=+=?, ?? +++=+=x x dx x x x x dx x y x x y 0 14 1062 2 223)3969 18929()]([)( 59535 20792633151173x x x x +++=。 现在求h 的最大值。 因为 ),, min(2 2b a b a h += 对任给的正数 b a ,,ab b a 22 2 ≥+,上式中,当 b a = 时, 2 2b a b +取得最大值 a ab b 21 2= 。

常微分方程 稳定性理论

§6.4 李雅普诺夫第二方法上一节我们介绍了稳定性概念,但是据此来判明系统解的稳定性,其应用范围是极其有限的. 李雅普诺夫创立了处理稳定性问题的两种方法:第一方法要利用微分方程的级数解,在他之后没有得到大的发展;第二方法是在不求方程解的情况下,借助一个所谓的李雅普诺夫函数)(x V 和通过微分方程所计算出来的导数 dt x dV ) (的符号性质,就能直接推断出解的稳定性,因此又称为直接法.本节主要介绍李雅普诺夫第二方法. 为了便于理解,我们只考虑自治系统 )(x F dt dx =n R x ∈ (6.11) 假设T n x F x F x F ))(,),(()(1 =在{} K x R x G n ≤∈=上连续,满足局部利普希茨条件,且 O O F =)(. 为介绍李雅普诺夫基本定理,先引入李雅普诺夫函数概念. 定义6.3 若函数 R G x V →:)( 满足0)(=O V ,)(x V 和 i x V ??),,2,1(n i =都连续,且若存在K H ≤<0,使在{} H x x D ≤=上)0(0)(≤≥x V ,则称)(x V 是常正(负)的;若在D 上除O x ≠外总有 )0(0)(<>x V ,则称)(x V 是正(负)定的;既不是常正又不是常负的函数称为变号函数. 通常我们称函数)(x V 为李雅普诺夫函数.易知: 函数2 22 1x x V +=在),(21x x 平面上为正定的; 函数 )(2 22 1x x V +-=在),(21x x 平面上为负定的; 函数222 1x x V -=在),(21x x 平面上为变号函数;

函数 2 1x V =在),(21x x 平面上为常正函数. 李雅普诺夫函数有明显的几何意义. 首先看正定函数),(21x x V V =. 在三维空间),,(21V x x 中, ),(21x x V V =是一个位于坐标面21Ox x 即0=V 上方的曲面.它与坐标面21Ox x 只在一个点,即原点)0,0,0(O 接触(图6-1(a)).如果用水平面 C V =(正常数)与),(21x x V V =相交,并将截口垂直投影到21Ox x 平面上,就得到一组一个套一个的闭曲线族C x x V =),(21 (图6-1(b)),由于),(21x x V V =连续可微,且 0)0,0(=V ,故在021==x x 的充分小的邻域中, ),(21x x V 可以任意小.即在这些邻域中 存在C 值可任意小的闭曲线C V =. 对于负定函数),(21x x V V =可作类似的几何解释,只是曲面),(21x x V V =将在坐标面21Ox x 的下方. 对于变号函数),(21x x V V =,自然应对应于这样的曲面,在原点O 的任意邻域,它既有在21Ox x 平面上方的点,又有在其下方的点. 定理6.1 对系统(6.11),若在区域D 上存在李雅普诺夫函数)(x V 满足 (1) 正定; (2) )(1 ) 11.5(x F x V dt dV i n i i ∑ =??=常负, (a) (b)

相关主题
文本预览
相关文档 最新文档