当前位置:文档之家› ASME中国制造-标准系列化管壳式换热器的设计计算步骤

ASME中国制造-标准系列化管壳式换热器的设计计算步骤

锅炉课程设计任务书

1. 题目:《锅炉及锅炉房设备》课程设计 - 机械类工厂的蒸汽锅炉房工艺设计:三台SZL4-1.25-P型炉 2. 目的:课程设计是锅炉及锅炉房设备的重要实践教学环节,课程设计对课程的教学效果影响甚大,它不仅可以锻炼学生的实践能力,同时也可以加深学生对课堂讲授内容的理解和记忆。 3. 考核内容与方法 锅炉及锅炉房设备课程设计主要考核查阅资料的能力、计算的准确性、设计方案及绘制施工图的能力。 4. 设计具体任务 1)设计概述 2)设计原始资料 3)设计内容 3.1)热负荷计算 3.2)锅炉型号和台数的确定 3.3)水处理设备的选择及计算 3.4)汽水系统的确定及其设备选择计算 3.5)引,送风系统的确定及设备选择计算 3.6)运煤除灰渣系统的确定及设备选择计算 3.7)锅炉房设备明细表 3.8)设计主要附图 5. 参考资料: 1.《锅炉及锅炉房设备》作者:吴味隆等,中国建筑工业出版社,第一版 2.《锅炉原理》陈学俊主编,机械工业出版社, 1991年版。 3.《工业锅炉》张永照,机械工业出版社,1982年版。

4.《锅炉原理》范从振,中国电力出版社,2006年版。 5.《锅炉房工艺与设备》,刘新旺,科学出版社,2002 6.《锅炉与锅炉房设备》,奚士光、吴味隆、蒋君衍,中国建筑工业出版社,1995 7.《锅炉及锅炉房设备》,刘艳华,化学工业出版社,2010 8.《锅炉及锅炉房设备》,杜渐,中国电力出版社,2011 9.《供热工程》,贺平等,中国建筑工业出版社,2009 10..《集中供热设计手册》李善化,康慧等编中国电力出版社 11.《锅炉习题实验及课程设计》同济大学等院校著中国建筑工业出版社 12.《实用供热空调设计手册》陆耀庆主编中国建工出版社 13.《锅炉房设计规范》GB50041-92 中国机械电子工业部主编中国计划出版社 14.《城镇直埋供热管道工程技术规程》CJJ/T-98 唐山市热力总公司主编中国建 筑工业出版社 指导教师签字:2014年12 月25 日 教研室主任签字:年月日 6、课程设计摘要(中文) 热能动力设备和系统是电力生产和热能应用领域中最重要的生产系统和设备,它直接关系到生产的安全性和经济性。学生通过本专业的

管壳式换热器的设计和选用的计算步骤

管壳式换热器的设计和选用的计算步骤 设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力 。根据传热速率基本方程: 当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器 结构决定的。可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。 初选换热器的规格尺寸 初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式,重 新计算。计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。 计算管、壳程阻力在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。 核算总传热系数 分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。如果相差较多,应重新估算。 计算传热面积并求裕度 根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。即裕度为20%左右,裕度的计算式为: 某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下: 表4-18设计条件数据

管壳式换热器的有效设计外文翻译

武汉工程大学邮电与信息工程学院毕业设计(论文)外文资料翻译 原文题目:Effectively Design Shell-and-Tube Heat Exchangers 原文来源:Chemical Engineering Progress February 1998 文章译名:管壳式换热器的优化设计 姓名:xxx 学号:62021703xx 指导教师(职称):王成刚(副教授) 专业:过程装备与控制工程 班级:03班 所在学院:机电学部

管壳式换热器的优化设计 为了充分利用换热器设计软件,我们需要了解管壳式换热器的分类、换热器组件、换热管布局、挡板、压降和平均温差。 管壳式换热器的热设计是通过复杂的计算机软件完成的。然而,为了有效使用该软件,需要很好地了解换热器设计的基本原则。 本文介绍了传热设计的基础,涵盖的主题有:管壳式换热器组件、管壳式换热器的结构和使用范围、传热设计所需的数据、管程设计、壳程设计、换热管布局、挡板、壳程压降和平均温差。关于换热器管程和壳程的热传导和压力降的基本方程已众所周知。在这里,我们将专注于换热器优化设计中的相关应用。后续文章是关于管壳式换热器设计的前沿课题,例如管程和壳程流体的分配、多壳程的使用、重复设计以及浪费等预计将在下一期介绍。 管壳式换热器组件 至关重要的是,设计者对管壳式换热器功能有良好的工作特性的认知,以及它们如何影响换热设计。管壳式换热器的主要组成部分有:壳体 封头 换热管 管箱 管箱盖 管板 折流板 接管 其他组成部分包括拉杆和定距管、隔板、防冲挡板、纵向挡板、密封圈、支座和地基等。 管式换热器制造商协会标准详细介绍了这些不同的组成部分。 管壳式换热器可分为三个部分:前端封头、壳体和后端封头。图1举例了各种结构可能的命名。换热器用字母编码描述三个部分,例如,BFL 型换热器有一个阀盖,双通的有纵向挡板的壳程和固定的管程后端封头。根据结构

锅炉课程设计计算表

漏风系数和过量空气系数 (3)确定锅炉的基本结构 采用单锅筒∏型布置,上升烟道为燃烧室及凝渣管。水平烟道布置两级悬挂对流过热器。布置两级省煤器及两级管式空气预热器。 整个炉膛全部布满水冷壁,炉膛出口凝渣管簇由锅炉后墙水冷壁延伸而成,在炉膛出口处采用由后墙水冷壁延伸构成的折焰角,以使烟气更好的充满炉膛。采用光管水冷壁。对流过热器分两级布置,由悬挂式蛇形管束组成,在两级之间有锅炉自制冷凝水 喷水减温装置,由进入锅炉的给水来冷却饱和蒸汽制成凝结水,回收凝结放热量后再进入省煤器。 省煤器和空气预热器采用两级配合布置,以节省受热面,减少钢材消耗量。 锅炉采用四根集中下降管,分别供水给12组水冷壁系统。 燃烧方式采用四角布置的直流燃烧器。 根据煤的特性选用中速磨煤机的负压直吹系统次风 序号 名称 漏风系数 符号 出口过量空气系数 符号 计算公式 1 制粉系统 0.1 △a ZF 2 炉膛 0.05 △a L a L ' ' 3 屏、凝渣管 0 △a PN a PN '' +' 'a L △a PN 5 低温过热器 0.025 △a DG a DG ' ' +' 'a GG △a DG 6 高温省煤器 0.02 △a SS a SS '' ?+''a D G a SS 7 高温空气预热 器 0.05 △a SK a SK ' ' +''a SS △a SK 8 低温省煤器 0.02 △a XS a XS ' ' +' 'a SK △a XS 9 低温预热器 0. 05 △ a XK a XK ' ' +' 'a XS △a XK

图1.1 锅炉本体结构简图 第一章、辅助计算 1、1锅炉的空气量计算 在负压下工作的锅炉机组,炉外的冷空气不断漏入炉膛和烟道内,致使炉膛和烟道各处的空气量、烟气量、温度和焓值相应的发生变化。 对于炉膛和烟道各处实际空气量的计算称为锅炉的空气平衡量、在锅炉热力计算中,常用过量空气系数来说明炉膛和烟道的实际空气量。 锅炉空气量平衡见表1 1、2燃料燃烧计算 1)燃烧计算: 需计算出理论空气量、理论氮容积、RO2容积、理论干烟气容积、理论水蒸汽容积等。计算结果见表

管壳式换热器设计 课程设计

河南理工大学课程设计管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 (2) 第二章管壳式换热器简介 (3) 第三章设计方法及设计步骤 (5) 第四章工艺计算 (6) 4.1 物性参数的确定 (6) 4.2核算换热器传热面积 (7) 4.2.1传热量及平均温差 (7) 4.2.2估算传热面积 (9) 第五章管壳式换热器结构计算 (11) 5.1换热管计算及排布方式 (11) 5.2壳体内径的估算 (13) 5.3进出口连接管直径的计算 (14) 5.4折流板 (14) 第六章换热系数的计算 (20) 6.1管程换热系数 (20) 6.2 壳程换热系数 (20) 第七章需用传热面积 (23) 第八章流动阻力计算 (25) 8.1 管程阻力计算 (25) 8.2 壳程阻力计算 (26) 总结 (28)

第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。 设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃

第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于它的高度可靠性和广泛的适应性,至今仍然居于优势地位。 由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,

锅炉课程设计

一、课程设计题目:某厂锅炉房工艺设计 二、设计目的 课程设计是锅炉及锅炉房设备课程的主要教学环节之一。通过课程设计,了解锅炉房工艺设计内容、程序和基本原则,学习设计计算方法和步骤,提高设计计算和制图能力,巩固所学的理论知识和实际知识,并学习运用这些知识解决锅炉房工程设计中的实际问题。 三、设计原始资料: 1、热负荷资料 项目用汽量/(t/h) 用汽参数凝结水 回收率% 同时 使用系数最大平均压力/MPa 温度 采暖用汽 6.10 0.4 饱和65 1.0 生产用汽 4.80 2.5 0.5 饱和20 0.8 生活用汽0.60 0.15 0.3 饱和0 0.3 2、煤质资料: 元素分析成分:C ar(C y)=65.65%, H ar(H y)=2.64%, O ar(O y)=3.19%, N ar(N y)=0.99%, S ar(S y)=0.51% ,A ar(A y)=19.02%, M a r(W y)=8.00% . 煤的干燥无灰基挥发分:Vdaf(Vr)=7.85%, 接受基低位发热量Qnet,v,ar(Qydw)=24426KJ/Kg 查文献[1]表2-10,得该煤属Ⅲ类无烟煤(WⅢ)。 3、水源资料: 以自来水为水源,供水水温13℃,供水压力0.5MPa (1)总硬度:YD=5.2mmol /L (2)永久硬度:YD T=2.1mmol /L (3)暂时硬:YD T=3.1 mmol /L (4)总碱度:JD=2.1mmol /L (5)PH值:PH=7.4 (6)溶解氧:6.5~10.9mg/L (7)悬浮物:0 mg/L (8)溶解固形物:420 mg/L 四、设计内容与要求 1、热负荷计算 包括最大计算热负荷和年热负荷的计算。对于具有季节性负荷的锅炉房,应分别以采暖

吉林大学锅炉课程设计说明书

本科生课程设计题目: 锅炉课程设计--26题 学生姓名:刘泰秀42101020 专业:热能与动力工程(热能)班级:421010班

一、设计任务 1.本次课程设计是一次虚拟锅炉设计,主要目的是为了完成一次完整的热力计算。 2.根据所提供参考图纸,绘制A0图纸2张,其目的是为掌握典型锅炉的基本机构及工作原理。 3.以《锅炉课程设计指导书》为主要参考书,以《电站锅炉原理》、《锅炉设计手册》为辅助参考资料,进行设计计算。 二、题目要求 锅炉规范: 1.锅炉额定蒸发量670t/h 2.给水温度:222 ℃ 3.过热蒸汽温度:540 ℃、压力(表压)9.8MPa 4.制粉系统:中间仓储式 5.燃烧方式:四角切线圆燃烧 6.排渣方式:固态 7.环境温度:20 ℃ 8.蒸汽流程:指导书4页 三、锅炉结构简图 设计煤种名称Car Har Oar Nar Sar Aar Mar Qar 枣庄甘霖井56.90 3.64 2.25 0.88 0.31 28.31 7.71 22362

燃烧计算表 序 号 项目名称符号单位计算公式及数据结果 1 理论空气量V0 m3/kg 0.0889*(Car+0.375*Sar)+0.265*Har- 0.0333*Oar 5.9584 2 理论氮容积V0N2 m3/kg 0.8*Nar/100+0.79*V0 4.7142 3 RO2容积VRO2 m3/kg 1.866*Car/100+0.7*Sar/100 1.0639 4 理论干烟气 容积 V0gy m3/kg V0N2+VRO2 5.7781 5 理论水蒸气 容积 V0H2O m3/kg 11.1*Har/100+1.24*Mar/100+1.61*dk *V0 0.5956 6 飞灰含量αfh 查表2-4 0.9 烟气特性表 序号名称符号单位公式结果 1 锅炉输入热量Q r kJ/kg Qr≈Qar,net22362 2 排烟温度θpy ℃先估后校140 3 排烟焓hpy kJ/kg 查焓温表1705.44 4 冷空气温度tlk ℃取用20 5 理论冷空气焓h0lk kJ/kg h0lk=(ct)kV0 157.81

标准系列化管壳式换热器的设计计算步骤(精)

标准系列化管壳式换热器的设计计算步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)计算传热量,并确定第二种流体的流量 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取经验传热系数 (7)计算传热面积 (8)查换热器标准系列,获取其基本参数 (9)校核传热系数,包括管程、壳程对流给热系数的计算。假如核算的K与原选的经验值相差不大,就不再进行校核。若相差较大,则需重复(6)以下步骤 (10)校核有效平均温度差 (11)校核传热面积 (12)计算流体流动阻力。若阻力超过允许值,则需调整设计。 非标准系列化列管式换热器的设计计算步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)计算传热量,并确定第二种流体的流量 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍(9)选取管长 (10)计算管数 (11)校核管内流速,确定管程数 (12)画出排管图,确定壳径和壳程挡板形式及数量等 (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。 甲苯立式管壳式冷凝器的设计(标准系列) 一、设计任务 1.处理能力: 2.376×104t/a正戊烷; 2.设备形式:立式列管式冷凝器。 二、操作条件 1.正戊烷:冷凝温度51.7℃,冷凝液于饱和温度下离开冷凝器; 2.冷却介质:为井水,流量70000kg/h,入口温度32℃; 3.允许压降:不大于105Pa; 4.每天按330天,每天按24小时连续运行。 三、设计要求 选择适宜的列管式换热器并进行核算。 附:正戊烷立式管壳式冷却器的设计——工艺计算书(标准系列)

锅炉房设计计算书

锅炉及锅炉房设备 课程设计 设 计 计 算 书 设计课题;某游泳池油锅炉房设计 学院:建工学院 班级:×××× 姓名:***** 学号:****** 导师:***** 日期:2013.12.29—2014.1.6

锅炉及锅炉房设备课程设计计算书 一、设计题目:某游泳池油锅炉房设计 二、设计概况:该锅炉房位于杭州市下沙镇高教大学园区某游泳池地下室(见附图,地面相对标高为-4.0m),为新建锅炉房,以满足游泳池冬季空调、地板辐射采暖、平时游泳池循环水和淋浴热水系统用热。 三、原始资料: 四、热负荷计算及锅炉选型 1、热负荷计算 (1)空调用热负荷 民用及工业、企业辅助用建筑的房屋供暖耗热可用建筑平面热指标q来概算: Q=A0q Q——建筑物供暖设计耗热量,W A0——建筑面积,m2 (出自《供暖通风设计手册》P260) ①游泳池大厅: q值查《供暖通风设计手册》P261表6-29得q = 150W/ m2 A0=2160 m2 ∴Q = 2160×150 =324000 W = 278640 kcal/h ②辅助用房: q值查《供暖通风设计手册》P261表6-29得q=80W/ m2 A0=324m2 ∴Q = 324×80 = 25920 W = 22291 kcal/h (2)地板辐射采暖 属于局部地点辐射,采暖面积为650 m2。 查《采暖通风与空气调节规范》P63表3.4.13 人体所需的辐射照度与周围空气温度的

关系表,当周围空气温度为16℃时, 所需的辐射照度为81W/m ∴ 地板辐射采暖的热负荷Q=650×81=52650W=45279 kcal/h (3)淋浴热水系统 查《现代建筑设备工程设计手册》P254 可得到如下计算公式: 工业企业生活间、公共浴室等设计用水量计算: ∑ =3600 0b n q Q h r 式中 Q r ——设计用水量, q h ——卫生器热水小时用水定额(L/h )(查《现代建筑设备工程设计手册》表6.2-2) n 0——同类型卫生器数, b ——卫生器同时使用百分数,公共浴室取100% 耗热量计算公式: Q = Q r c ( t r - t l ) 式中 Q ——设计小时耗热量,W 或kcal/h c ——水的比热容, t r ——热水温度,℃ t l ——冷水温度,℃ Q r ——设计用水量, 本系统计算中:q h =300 L/h n 0=50 b=100% t r =60℃ t l =5℃ ∴Q=(300×50×100%)×4.19×(60—5)/3600 =960×103 W=826×103 kcal/h (4)游泳池循环水加热 查《给排水设计手册》第二册 室内给水排水P293 ①水面蒸发热损失: W 1= r (0.0178+0.0152V )(P b -P Z )F (kcal/h) 式中 r=581.9 kcal /kg V=0.5m/s P b =26.7mmHg P Z =15.2mmH 2O F=50×21=1050m 2 ∴W 1=581.9×(0.0178+0.0152×0.5)(26.7-15.2) ×1050=178471.64 kcal/h 1000w=860 kcal/h ②水面传导热损失: W 2=α F(t s -t q ) kcal/h =8×50×21×(27-26)=8400 kcal/h ③池壁和池底传导热损失 W 3=∑-)(t s p t t KF (kcal/h ) =1.0×(21×1.5×2+50×1.5×2+50×21)(27-26)= 1263 kcal/h ④管道设备传导热损失 管道和设备的传导热损失W 4可参照《现代建筑设备工程设计手册》第4章中热水循环管网计算方法进行计算。 为了简化计算可采用以下估算方法: W 1+ W 2+ W 3+ W 4=1.15 W 1 ⑤补给水加热耗热量

锅炉课程设计.doc

扬州大学广陵学院 锅炉及锅炉房课程设计题目:燃油锅炉房工艺设计 院(系)别土木电气工程系 专业建筑环境与能源应用工程 班级建环81301班 学号130054101 姓名白杰 指导教师刘义 二○一六年七月

目录 1.锅炉课程设计任务书 (4) 1.1.设计目的 (4) 1.2.设计任务 (4) 1.3.原始资料 (4) 1.4.设计内容和要求 (4) 2.锅炉型号和台数的选择 (6) 2.1.热负荷计算 (6) 2.2.锅炉型号和台数选择 (6) 3.水处理设备的选择及计算 (8) 3.1.决定是否要除碱 (8) 3.2.确定水处理设备生产能力 (8) 3.3.软化设备选择计算 (9) 4.给水设备和主要管道的选择计算 (11) 4.1.决定给水系统 (11) 4.2.给水泵的选择 (11) 4.3.给水箱的选择 (11) 4.4.其他水泵的选型 (11) 4.5.主要管道和阀门的选择 (12) 4.6.分气缸选择计算 (13) 4.7.换热器的选择 (13) 5.送引风系统设计 (14) 5.1.计算空气量和烟气量 (14) 5.2.决定烟、风管道截面尺寸 (14) 5.3.确定送引风系统及其布置 (15) 5.4.确定烟囱高度和断面尺寸 (15) 6.供油系统设计 (16) 6.1.供油系统的确定 (16)

6.2.贮油罐容量确定 (16) 6.3.贮油罐的计算 (16) 6.4.日用油箱的计算 (17) 6.5.油泵选择 (17) 6.6.油路设计 (17) 7.锅炉房工艺布置 (19) 7.1.锅炉房建筑 (19) 7.2.锅炉房设备布置 (19) 7.3.风烟管道和主要汽水管道布置 (19) 8.附锅炉房热力系统图、锅炉房平面图、锅炉房剖面图

锅炉课程设计 焓值计算表格

烟气或空气温度RO2N2H2O hy0湿空气400771.88526.52626.163143.61028541.76 500994.35663.8794.853985.93835684.15 6001224.66804.12968.884850.57724829.74 7001461.88947.521148.845737.21036978.42 8001704.881093.61334.46643.047841129.12 9001952.281241.551526.047563.989431282.32 10002203.51391.71722.98500.24921437.3 11002458.391543.741925.119450.567391594.89 12002716.561697.162132.2810412.36041753.44 13002976.741852.762343.6411387.10041914.25 14003239.042008.722559.212367.81562076.2 15003503.121662779.0513357.96942238.9 16003768.82324.483001.7614356.08372402.88 17004036.312484.043229.3215363.1022567.34 18004304.72643.663458.3416372.07392731.86 19004574.062804.213690.3717387.44262898.83 20004844.229653925.618406.47223065.6 21005115.393127.534163.2519434.7493233.79 22005386.483289.224401.9820460.34983401.64

管壳式换热器设计说明书

1.设计题目及设计参数 (1) 1.1设计题目:满液式蒸发器 (1) 1.2设计参数: (1) 2设计计算 (1) 2.1热力计算 (1) 2.1.1制冷剂的流量 (1) 2.1.2冷媒水流量 (1) 2.2传热计算 (2) 2.2.1选管 (2) 2.2.2污垢热阻确定 (2) 2.2.3管内换热系数的计算 (2) 2.2.4管外换热系数的计算 (3) 2.2.5传热系数 K计算 (3) 2.2.6传热面积和管长确定 (4) 2.3流动阻力计算 (4) 3.结构计算 (5) 3.1换热管布置设计 (5) 3.2壳体设计计算 (5) 3.3校验换热管管与管板结构合理性 (5) 3.4零部件结构尺寸设计 (6) 3.4.1管板尺寸设计 (6) 3.4.2端盖 (6) 3.4.3分程隔板 (7) 3.4.4支座 (7) 3.4.5支撑板与拉杆 (7) 3.4.6垫片的选取 (7) 3.4.7螺栓 (8) 3.4.8连接管 (9) 4.换热器总体结构讨论分析 (10) 5.设计心得体会 (10) 6.参考文献 (10)

1.设计题目及设计参数 1.1设计题目:105KW 满液式蒸发器 1.2设计参数: 蒸发器的换热量Q 0=105KW ; 给定制冷剂:R22; 蒸发温度:t 0=2℃,t k =40℃, 冷却水的进出口温度: 进口1t '=12℃; 出口1 t " =7℃。 2设计计算 2.1热力计算 2.1.1制冷剂的流量 根据资料【1】,制冷剂的lgp-h 图:P 0=0.4MPa ,h 1=405KJ/Kg ,h 2=433KJ/Kg , P K =1.5MPa ,h 3=h 4=250KJ/Kg ,kg m 04427.0v 3 1=,kg m v 3 400078.0= 图2-1 R22的lgP-h 图 制冷剂流量s kg s kg h h Q q m 667 .0250 4051054 10=-= -= 2.1.2冷媒水流量 水的定性温度t s =(12+7)/2℃=9.5℃,根据资料【2】附录9,ρ=999.71kg/m 3 ,c p =4.192KJ/(Kg ·K)

管壳式换热器传热计算示例(终)-用于合并

管壳式换热器传热设计说明书 设计一列管试换热器,主要完成冷却水——过冷水的热量交换设计压力为管程(表压),壳程压力为(表压),壳程冷却水进,出口温度分别为20℃和50℃,管程过冷水进,出口温度分别为90℃和65℃管程冷水的流量为80t/h。 2、设计计算过程: (1)热力计算 1)原始数据: 过冷却水进口温度t1′=145℃; 过冷却水出口温度t1〞=45℃; 过冷却水工作压力P1=(表压) 冷水流量G1=80000kg/h; 冷却水进口温度t2′=20℃; 冷却水出口温度t2〞=50℃; 冷却水工作压力P2= Mp a(表压)。改为冷却水工作压力P2= Mp 2)定性温度及物性参数: 冷却水的定性温度t2=( t1′+ t1〞)/2=(20+50)/2=35℃; 冷却水的密度查物性表得ρ2= kg/m3; 冷却水的比热查物性表得C p2= kJ/kg.℃ 冷却水的导热系数查物性表得λ2= W/m.℃ 冷却水的粘度μ2=×10-6 Pa·s; 冷却水的普朗特数查物性表得P r2=; 过冷水的定性温度℃; 过冷水的密度查物性表得ρ1=976 kg/m3; 过冷水的比热查物性表得C p1=kg.℃; 过冷水的导热系数查物性表得λ1=m.℃; 过冷水的普朗特数查物性表得P r2; 过冷水的粘度μ1=×10-6 Pa·s。 过冷水的工作压力P1= Mp a(表压) 3)传热量与水热流量 取定换热器热效率为η=; 设计传热量: 过冷却水流量: ; 4)有效平均温差 逆流平均温差:

根据式(3-20)计算参数p、R: 参数P: 参数R: 换热器按单壳程2管程设计,查图3—8得温差校正系数Ψ=; 有效平均温差: 5)管程换热系数计算: 附录10,初定传热系数K0=400 W/m.℃; 初选传热面积: m2; 选用φ25×无缝钢管作换热管; 管子外径d0=m; 管子内径d i=×=0.02 m; 管子长度取为l=3 m; 管子总数: 取720根管程流通截面积: m2 管程流速: m/s 管程雷诺数: 湍流管程传热系数:(式3-33c) 6)结构初步设计: 布管方式见图所示: 管间距s=0.032m(按GB151,取); 管束中心排管的管数按所给的公式确定: 取20根;

锅炉毕业课程设计计算说明书

(此文档为word 格式,下载后您可任意编辑修改!) 锅炉课程设计计算说明书 第一章概述 1.1课程设计的目的 课程设计是该课程的重要教学环节之一,该课程设计是《锅炉及锅炉房设备》 课程的后续主要教学环节。通过课程设计了解锅炉房工艺设计的内容、程序和 基本原则,学习设计计算方法和步骤,提高识图和制图能力,巩固所学理论知 识,提高综合运用《锅炉与锅炉房设备》以及其它课程中所学的知识,解决锅 炉房设计实际问题的能力。 1.2课程设计原始资料 1. 2.1课程设计的题目 某纺织厂(六安市)供热锅炉房工艺设计 1.2.1 热负荷资料生产与生活为常年 性热负荷。三班制工作,年工作天数为 300天;采暖天数为124天;空调用热天 数为210天。 1.2.2燃料 (1)煤 (2 )工业分析 Wy=8.0% Ay=21.5%、Vr=31.91%、Cy=48.0%、Sy=0.5%; Qydw=21300kJkg 1.2.3水质资料 o =4.95毫克当量升 FT =2.4毫克当量升 T =2.5毫克当量升 o =2.5毫克当 量升 溶解固形物 6.2 毫克升 PH 值 7.0 1.2.4气象资料: (1) 平均风速: 冬季:2.8ms ,夏季:2.7ms ; (2) 大气压:冬 102230Pa,夏 100120 Pa ; (3) 冬季采暖室外计算温度:-1.8 C,冬季空调室外计算温度:-4.6 C ; (4) 冬季通风室外计算温度:2.6 C ; (5) 采暖用气天数:124天,空调用热天数:210天。 第二章热负荷计算及锅炉选择 总硬度 H 永久硬度 H 暂时硬度 H 总碱度 A

生物质直燃锅炉设计计算

生物质直燃锅炉设计计算 生物质直燃锅炉设计计算 3.1锅炉设计时主要的结构尺寸 1)炉膛净空尺寸:250×250×1400 2)炉排有效面积250×600,共做3块,炉排小孔4mm,开孔率40%,炉排下两侧装导轨,机械传动 3)前拱高200,长50; 4)后拱高180,长300 3)炉顶出口:天圆地方结构,出口60mm 4)点火炉门80×80,装在侧强 5)看火孔42mm 6)炉前装料斗 7)料层厚度60mm 6)炉顶装省煤器,管子18mm,前后各布置测点一个。 8)每隔300mm一个测点,测点预留孔14mm,烟囱上布置一个测点 9)支架高度800mm 10)炉膛内衬80mm厚,布置抓钉 11)整体用不锈钢外包装 12)支架高度800mm 13)整体外形长宽高:760×410×2200

3.2试验原料 本试验是采用生物质颗粒燃料(玉米秸秆颗粒燃料),是由生物质燃料成型机压制而成的。其尺寸是圆柱形,直径是8mm,燃料颗粒自然堆积密度为554.7kg/m3,其颗粒密度为1200kg/m3。 实验前用氧弹式量热仪测定玉米颗粒燃料的收到基净发热量qnet,ar , qnet,ar=15132kJ/kg。 由燃料元素分析仪分别测定其收到基中C,H,N,S,O的含量,得到: Car=44.92%,Har=5.77%,Nar=0.98%,Sar=0.21%,Oar=31.26%。 用燃料工业分析仪分别测定其收到基水分含量(Mar),收到基挥发分含量(Var),收到基固定炭含量(Far),收到基灰分含量(Aar)。如下: Mar= 9.15%,Var= 75.58%,Far= 7.56%,Aar= 7.71%。 3.3直燃锅炉设计的相关参数 1)锅炉功率要求:10 kW; 2)温度:查阅暖通空调设计指南(P63)可以得到室内空气温度在16-24℃范围内[2],在试验期间实际测得当时温度为16℃,室外环境温度t0=10℃,排烟温度tpy低于烟气露点,150℃左右 [20],tpy =165℃; 3)热负荷:查相关锅炉设计手册得炉排单位面积热负荷经验值700~1050kW/m2 [3-8],由于低温及燃料易燃尽时取上限,所以取qF= 1050 kW/m2;炉膛单位容积热负荷经验值235~350kW/m3 [3-8],

管壳式换热器设计讲解

目录 任务书 (2) 摘要 (4) 说明书正文 (5) 一、设计题目及原始数据 (5) 1.原始数据 (5) 2.设计题目 (5) 二、结构计算 (5) 三、传热计算 (7) 四、阻力计算 (8) 五、强度计算 (9) 1.冷却水水管 (9) 2.制冷剂进出口管径 (9) 3.管板 (10) 4支座 (10) 5.密封垫片 (10) 6.螺钉 (10) 6.1螺钉载荷 (10) 6.2螺钉面积 (10) 6.3螺钉的设计载荷 (10) 7.端盖 (11) 六、实习心得 (11) 七、参考文献 (12) 八、附图

广东工业大学课程设计任务书 题目名称 35KW 壳管冷凝器 学生学院 材料与能源学院 专业班级 热能与动力工程制冷xx 班 姓 名 xx 学 号 xxxx 一、课程设计的内容 设计一台如题目名称所示的换热器。给定原始参数: 1. 换热器的换热量Q= 35 kw; 2. 给定制冷剂 R22 ; 3. 制冷剂温度 t k =40℃ 4. 冷却水的进出口温度 '0132t C =" 0136t C = 二、课程设计的要求与数据 1)学生独立完成设计。 2)换热器设计要结构合理,设计计算正确。(换热器的传热计算, 换热面积计 算, 换热器的结构布置, 流体流动阻力的计算)。 3)图纸要求:图面整洁、布局合理,线条粗细分明,符号国家标准,尺寸标注规范,使用计算机绘图。 4)说明书要求: 文字要求:文字通顺,语言流畅,书写工整,层次分明,用计算机打印。 格式要求: (1)课程设计封面;(2)任务书;(3)摘要;(4)目录;(5)正文,包括设计的主要参数、热力计算、传热计算、换热器结构尺寸计算布置及阻力计算等设计过程;对所设计的换热器总体结构的讨论分析;正文数据和公式要有文献来源编号、心得体会等;(6)参考文献。 三、课程设计应完成的工作 1)按照设计计算结果,编写详细设计说明书1份; 2)绘制换热器的装配图1张,拆画关键部件零件图1~2张。

锅炉课程设计小结

锅炉课程设计小结 锅炉课程设计是学习《锅炉原理》的重要环节,怎样 锅炉课程设计的小结 篇一:锅炉课程设计小结经过将近三个多星期的苦战,我们小组终于完成了锅炉原理的课程设计,在此感谢老 师对我们细心的指导,在我们茫然不知所措的时候,给我们 疏导计算思路,让我们一步步的完成这项艰巨的任务。同时 也感谢一个小组的同学,在这短暂而又漫长的三个星期里, 一起吃饭,一起自习,一起攻克一项项的难关,回头再看这 个过程,在学到知识的同时也蛮有成就感的。通过课程设计,使我们把上学期学的知识有个系统的把握,进一步掌握扎实。 在此我就总结课程设计,对改变燃料特性这发面发表点 个人看法。一般情况下锅炉最好使用设计煤种或与设计煤种 接近的煤种以确保燃烧稳定。由于煤炭供应日趋多元化,对 锅炉的稳定燃烧带来很大影响。这次我们小组的煤种是高灰 的一号煤种。煤的灰份在燃烧过程中不但不会发出热量,而 且还要吸收热量。灰分含量越大,发热量越低,容易导致着 火困难和着火延迟,同时炉膛温度降低,煤的燃尽程度降低,造成的飞灰可燃物高。另外,飞灰浓度高,使锅炉受热面特 别是省煤器,空气预热器等处的磨损加剧,除尘量增加,锅 炉飞灰和炉渣物理热损失增大,降低了锅

炉的热效率。此外,高灰煤还会对锅炉的辅助设备造成影响。煤质较差时,锅炉点火和运行调节困难,难以燃烧,容易灭火,严重影响了锅炉出口温度达标。灰分大的煤燃烧后,不仅影响了除尘器和除尘效果,而且增加了除灰排灰系统的运行负荷。对工作环境和外部环境都造成了不良影响。 在此情况下,如果对原有的结构不改变,很难稳定运行,因为一 方面炉内燃烧条件改变,可能不能稳定燃烧,另一方面,尾部受热面飞灰磨损和积灰也比较大,严重影响换热,使排烟温度提高,锅炉效率下降。我提出个人的一点改进 措施:加强对锅炉的燃烧调节工作,保证煤与空气量要相 配合适,并且要充分混合接触,炉膛应尽量保持高温,以 利于燃烧。具体方面:一,在制粉系统方面改进。由于煤种是高灰的无烟煤,燃烧难度大,可适当提高磨煤细度。二,在燃烧设备上改进。可以采用分级配分直流煤粉燃烧器,同时避免二次风过早地混入一次风气流中或采用旋流 燃烧器。三,采用热风送粉,适当增大煤粉空气混合物中 一次风量,还要提高热二次风的温度,这就要在空气预热 器的布置上采用多级布置,增大与烟气的温压,提高进入 炉膛的空气的温度。此外,为了炉内煤粉稳定燃烧,可适 当减少炉内水冷壁的面积,可铺设卫燃带来实现。这样减

锅炉课设热力计算电子版

课程设计任务书 一、课程设计题目: 二、课程设计任务: 1.任务: 2.已知条件: 三、原始资料 1.锅炉结构及设计参数 锅炉型号为SHL10-1.3/350-WⅢ型,如图8-1所示,炉膛内前墙、后墙、炉顶及两侧墙均布置有水冷壁,炉膛后沿烟气流程布置有凝渣管、过热器、对流管束、鳍片式铸铁省煤器和管式空气预热器。锅炉设计给水温度105℃,给水压力1.4MPa,排污率5%,冷空气温度30℃,热空气温度150℃,排烟温度180℃,炉膛出口处负压20Pa。 设计煤种为山西阳泉无烟煤,煤质资料为:C ar=65.65%,H ar=2.64%,O ar=3.19%,N ar=0.99%,S ar=0.51%,M ar=8%,A ar=19.02%,V daf=7.85%,= Q24426kJ/kg。 ar, net 锅炉受热面的设计过量空气系数及漏风系数见表8-8。设计热力计算结果见表8-9。

kJ/kg 10781.5 735.2 2229.4 图8-1 SHL10-1.37/350-W Ⅲ型锅炉本体结构简图 1-炉膛;2-烟窗及凝渣管; 3-过热器;4-对流管束; 5-省煤器,6-烟道门;7-空气预热器;8-风室;9-炉排 四、热力计算步骤 (一)辅助计算

当net ar,ar fh A a 4190 Q ≤6时,飞灰焓fh h 可忽略不计;实际烟气焓值只需要计算设备所处温度环境对应的焓值,不必全部算。

(二)炉膛热力计算 炉膛结构如图8-2所示。 图8-2 炉膛结构 AB=3320mm;BC=2280mm;CD=3850mm;DE=1970mm; EF=3340mm;FG=980mm;GH=1470mm;HI=640mm 要求学生:在图8-2中标出与尺寸相关的结构名称,如炉膛宽度、深度等。 2.炉膛的传热计算

管壳式换热器设计

课程设计 设计题目:管壳式水-水换热器 姓名 院系 专业 年级 学号 指导教师 年月日

目录 1前言 (1) 2课程设计任务书 (2) 3课程设计说明书 (3) 3.1确定设计方案 (3) 3.1.1选择换热器的类型 (3) 3.1.2流动空间及流速的确定 (3) 3.2确定物性数据 (3) 3.3换热器热力计算 (4) 3.3.1热流量 (4) 3.3.2平均传热温度差 (4) 3.3.3循环冷却水用量 (4) 3.3.4总传热系数K (5) 3.3.4计算传热面积 (6) 3.4工艺结构尺寸 (6) 3.4.1管径和管内流速 (6) 3.4.2管程数和传热管数 (6) 3.4.3平均传热温差校正及壳程数 (7) 3.4.4传热管排列和分程方法 (7) 3.4.5壳体内径 (7) 3.4.6折流板 (8) 3.4.7接管 (8) 3.5换热器核算 (8) 3.5.1热量核算 (8) 3.5.2换热器内流体的流动阻力 (12) 3 .6换热器主要结构尺寸、计算结果 (13) 3.7换热器示意图、管子草图、折流板图 (14) 4设计总结 (15) 5参考文献 (16)

1前言 在工程中,将某种流体的热量以一定的传热方式传递给他种流体的设备,成为热交换器。热交换器在工业生产中的应用极为普遍,例如动力工业中锅炉设备的过热器、省煤器、空气预测器,电厂热力系统中的凝汽器、除氧器、给水加热器、冷水塔;冶金工业中高炉的热风炉,炼钢和轧钢生产工艺中的空气和煤气预热;制冷工业中蒸汽压缩式制冷机或吸收式制冷机中的蒸发器、冷凝器;制糖工业和造纸工业的糖液蒸发器和纸浆蒸发器,都是热交换器的应用实例。在化学工业和石油化学工业的生产过程中,应用热交换器的场合更是不胜枚举。在航空航天工业中,为了及时取出发动机及辅助动力装置在运行时产生的大量热量;热交换器也是不可或缺的重要部件。 根据热交换器在生产中的地位和作用,它应满足多种多样的要求。一般来说,对其基本要求有: (1)满足工艺过程所提出的要求。热交换强度高,热损失少。在有利的平均温度下工作。 (2)要有与温度和压力条件相适应的不易遭到破坏的工艺结构,制造简单,装修方便,经济合理,运行可靠。 (3)设备紧凑。这对大型企业,航空航天、新能源开发和余热回收装置更有重要意义。 (4)保证低的流动阻力,以减少热交换器的消耗。 管壳式换热器是目前应用最为广泛的一种换热器。它包括:固定管板式换热器、U 型管壳式换热器、带膨胀节式换热器、浮头式换热器、分段式换热器、套管式换热器等。管壳式换热器由管箱、壳体、管束等主要元件构成。管束是管壳式换热器的核心,其中换热管作为导热元件,决定换热器的热力性能。另一个对换热器热力性能有较大影响的基本元件是折流板(或折流杆)。管箱和壳体主要决定管壳式换热器的承压能力及操作运行的安全可靠性。

相关主题
文本预览
相关文档 最新文档