当前位置:文档之家› 数值分析

数值分析

曲线拟合

6.1.2 曲线拟合问题

仍然是已知x 1 … x m ; y 1 … y m , 求一个简单易

算的近似函数f (x )来拟合这些数据。

但是①m 很大;

②y i 本身是测量值,不准确,即y i ≠f (x i )

这时没必要取f (x i ) = y i , 而要使ρi =f (x i ) -y i 总体上尽可能地小。

这种构造近似函数的方法称为曲线拟合,f (x )称为拟合函数

称为“残差”

◆使最小|)(|max 1i i m

i y x P -≤≤较复杂,

P284◆使最小∑=-m

i i i y x P 1

|)(|不可导,求解困难,P283◆使最小∑=-m

i i i y x P 12

|)(|“使ρi =P (x i ) -y i 尽可能地小”有不同的准

线性拟合问题

6.2.1 ||.||2 意义下的线性拟合(线性最小二乘问题)

确定拟合函数,对于一组数据(x i , y i ) (i = 1, 2, …, m ) 使得

达到极小,这里n <=m 。

1122()()()...()

n n f x c x c x c x ???=+++2

22

211||||[()]m m i

i i i i r y f x ρ====-∑∑Denote:

12()(),1,2,()i i i i m x x i n x ???????

??Φ==??????

122221212()()()()()()[,,,]()()

()n n n m m n m x x x x x x A x x x ???????????????=ΦΦΦ=?????? 111222,,m m n y c y c b r x y c ρρρ??????????

????????===????????????????

?? 2

2222211

||||[()]||||

m m i i i i i r y f x b Ax ρ====-=-∑∑称方程组Ax=b 为超定方程组

E 实际上是c 0, c 1, …, c n 的多元函

数,在E 的极值点应有

0,0,...,j

E j n c ?==?22

12112

11(,,...,)[()][()]

m m n i

i i i i m n i j j i i j E c c c y f x y c x ρ?======-=-∑∑∑∑11,

m m

jk ji ki ji i i i b g y ???====∑∑记

c 1,c 2,…,c n 的方程组

121111122222121,11,21,111

2......n n n n n n n n n n n n nn b b c g b b b c g b b b b c g b c g b b -----????????????????????????=???????????????????????? 法方程组(或正规方程组)

1数据

t i 0 20 40 60 80 100 f i81.4 77.7 74.2 72.4 70.3 68.8

线性最小二乘问题

设A是m×n阶矩阵(m>n), 称线性方程组 Ax=b (1)

为超定方程组; 这里x∈R n,b∈R m.

如果A的秩r(A)=n, 称A为列满秩矩阵.

记残向量r=b-Ax,考虑确定一个向量x,

使‖r‖2 2=‖b-Ax‖2 2, 达到最小的问题称为线性最小二乘问题,这样的x称为方程组(1)的最小二乘解.

最小二乘解的存在惟一性结论1 :设A是m×n阶矩阵,x∈R n, b∈R m.

由线性方程组理论可知,线性方程组

Ax=b (24)

有解的充分必要条件是

r (A)= r (A|b). (25)

6.3.7 假设方程组(24)有解,令x是其一个解. 那么,方程组(24)的所有解的集合为{x}+N(A). 方程组(24)有惟一解的充分必要条件是null(A)=0. 这里,null (A)表示A的核子空间的维数.

: 首先证明任意的向量y∈{x}+N(A)都是方程组(24)的解.

事实上,将y记为y=x+z,

其中z∈N(A),即Az=0,x∈{x}. 因此,

Ay=Ax+Az=b, 即y满足方程组(24).

反过来,若y满足方程组(24),有

Ay-Ax =A(y-x)= 0,

即y-x∈N(A).

记y=x+(y-x),从而有y∈{x}+N(A).

惟一性. 因为齐次方程组Ax=0有惟一零解的

充分必要条件是A为满秩矩阵,即null (A)=0.

6.3.8 当m>n时,超定方程组(1)的最小二乘解总是存在的. 最小二乘解惟一的充分必要条件是

null (A)=0.

证: 记b=b 1+b 2,其中b 1∈R(A),b 2∈N(A T).

对任意x ∈R n , Ax ∈R(A), b 1-Ax ∈R(A). 因此,

‖r ‖22=‖b-Ax ‖22=‖(b 1-Ax)+b 2‖22.

由定理6.3.3的推论1和定理6.3.2,

‖r ‖22=‖b 1-Ax ‖22+‖b 2‖22.

要使‖r ‖22达到最小等价于确定x ,使‖b 1-

Ax ‖22

为0,即求方程组Ax=b 1的解x.

因为b 1,Ax, b 1-Ax 都是R(A)中的向量,因此,

可以

把b 1看成由A 的列向量线性表示,即b 1=Ax.

换句话说,方程组Ax=b 1的解总是存在的,从而

方程

组(1)的最小二乘解也总是存在的.

惟一性的证明可直接由定理6.3.7得到.

正交性的有关性质

在线性代数欧氏空间理论中,将R 3中两个向量x,y 之间的夹角φ满足的关系式

x T y=‖x ‖2‖y ‖2cosφ (2)

推广到R n . 设x,y ∈R n ,由Cauchy 不等式

-1≤≤1 从而得到R n 中两个向量之间的夹角为φ= arccos (3) 22T

x y x y 22T

x y x y

6.3.1设x, y是R n中的向量,x与y正交的充分必要条件为xTy=0.

证:必要性. 当x与y正交,它们的夹角φ=π/2,由(2)式,有xTy=0.

充分性. 当xTy=0, 由(3)式,φ=π/2,

即x与y正交.

注:如果x与y正交,记为x⊥y

6.3.2:设x ,y ∈R n ,且x ⊥y ,那么:

‖x+y ‖22=‖x ‖22+‖y ‖22.

证:由‖x+y ‖22=(x+y)T(x+y)

= x Tx+2y Tx+y Ty

而x Ty=y Tx=0, 因此

‖x+y ‖22=‖x ‖22+‖y ‖22

注:推广到R n 中的向量组α1,α2,…,αk ,

如果αi Tαj =0 (i≠j), 称α1,α2,…,αk 是

正交向量组.

?特别地:如果‖αi ‖2=1(i=1,2,…,k),即

αi T αj =δij ,称α1,α2,…,αk

为标准正交向量组.

设U是R n中的子空间,x∈R n. 如果x与U中任意向量正交,称向量x与子空间U正交,记为x⊥U.

?设U,V是R n中两个子空间,如果任意x∈U 和任意y∈V是正交的,称子空间U与子空间V正交,记为U⊥V.

?设U,V是R n中互补的子空间. 如果U⊥V,那么称U,V互为正交补子空间,记U=V⊥或V=U⊥. 可以证明,一个子空间的正交补子空间是惟一的.

6.3.3设A 是n ×k 阶矩阵,x ∈R n, 那么下列三种情况是

等价的:

①x ⊥R(A);

②A Tx=0;

③x ∈N(A T).

这里,N(A T)={A Tx=0 , x ∈R n }称为A T的核子空间. 证:由N(A T)的定义,②与③显然等价.

下面证明①与②等价.

记A=(α1,α2,…,αk ),那么,αi ∈R(A) (i=1,2,…,k).

假设x ⊥R(A), 即αi Tx=0 (i=1,2,…,k). 从而A Tx=0 .

另一方面,如果A Tx=0, 那么有z ∈R k ,使Az=y ∈R(A). 这时,y Tx=z TA Tx=0, 即x ⊥y.

由z 的任意性,得Az 是任意的,因此x ⊥R(A).

?由这个定理,容易得到:

推论1 设A 是n ×k 阶矩阵,那么R(A)有惟一的正交补子

空间N(A T).

线性最小二乘问题

设A是m×n阶矩阵(m>n), 称线性方程组

Ax=b (1)

为超定方程组; 这里x∈R n, b∈R m.

如果A的秩 r (A) =n, 称A为列满秩矩阵. 记残向量r=b-Ax,考虑确定一个向量x,使‖r‖2 2=‖b-Ax‖2 2, 达到最小的问题称为线性最小二乘问题,这样的x称为方程组(1)的最小二乘解.

正交性的有关性质

在线性代数欧氏空间理论中,将R 3中两个向量x,y 之间的夹角φ满足的关系式

x T y=‖x ‖2‖y ‖2cosφ (2)

推广到R n . 设x,y ∈R n ,由Cauchy 不等式 -1≤≤1 从而得到R n 中两个向量之间的夹角为 φ= arccos (3)

22T

x y x y 22T

x y x y

数值分析试题(08研)

数值分析试题 一. 填空题: 1. 设A=?? ????4311,则 ||A||1 = ,||A||∞ = _______,()A ρ=_________; 2. 已知函数()y f x =的观测数据为(0,1),(1,2),(2,3,则二次Lagrange 插值多项式22()L x a bx cx =++中a = , b =_____ , c =_____; 3. 为使求积公式012()()(0)()h h f x dx A f h A f A f h -≈-++?的代数精度尽量高,则0A =_____,1A =______,2A =______,其具有代数精度为_____次; 4. 设给出(1)2,(0)1,(1)0,(0)2f f f f '-====-,可求得其三次插值多项式 233()H x a bx cx d x =+++中a =____,b =_____ ,c =______ ,d =_____; 5.对3()31f x x x =++,差商[0,1,2,3]f = ;[0,1,2,3,4]f = 。 二.已知函数()y f x =的观测数据为: 1.构造差商表,并写出Newton 插值多项式(按降幂排列); 2.用最小二乘法求形如 2y a bx cx =++的经验公式使与题目数据拟合; 3.用复化梯形公式计算4 1()f x dx ?的近似值。 三.分别用下列方法求方程3310x x +-=在[0,1]内的根使误差小于110-: 1. Newton 法(取00.4x =); 2. 试证明用简单迭代格式3/)1(31k k x x -=+求其在[0.2,0.4]内的根是收敛的。 四. 用下列各种方法求解方程组Ax b =,即 ??????????-122111221????????321x x x =???? ??????-001 1.Gauss 消元法; 2.Doolittle 分解法; 3. 写出求Ax b =的解的Jacobi 迭代格式,并取(0)(0,0,0)T x =求(3)x ; 4. 判定矩阵A 对Jacobi 迭代的收敛性,并证明你的结论。 五.1.用2段Simpson 公式(5节点)计算?511dx x 的近似值(计算中取五位有效数字); 2.若使误差不超过610-,用复化梯形公式计算上述积分至少应取多少个节点?

东南大学数值分析上机题答案

数值分析上机题 第一章 17.(上机题)舍入误差与有效数 设∑=-= N j N j S 2 2 11 ,其精确值为)111-23(21+-N N 。 (1)编制按从大到小的顺序1 -1 ···1-311-21222N S N +++=,计算N S 的通用 程序; (2)编制按从小到大的顺序1 21 ···1)1(111 222-++--+ -=N N S N ,计算N S 的通用程序; (3)按两种顺序分别计算210S ,410S ,610S ,并指出有效位数(编制程序时用单精度); (4)通过本上机题,你明白了什么? 解: 程序: (1)从大到小的顺序计算1 -1 ···1-311-21222N S N +++= : function sn1=fromlarge(n) %从大到小计算sn1 format long ; sn1=single(0); for m=2:1:n sn1=sn1+1/(m^2-1); end end (2)从小到大计算1 21 ···1)1(111 2 22 -++--+-= N N S N function sn2=fromsmall(n) %从小到大计算sn2 format long ; sn2=single(0); for m=n:-1:2 sn2=sn2+1/(m^2-1); end end (3) 总的编程程序为: function p203()

clear all format long; n=input('please enter a number as the n:') sn=1/2*(3/2-1/n-1/(n+1));%精确值为sn fprintf('精确值为%f\n',sn); sn1=fromlarge(n); fprintf('从大到小计算的值为%f\n',sn1); sn2=fromsmall(n); fprintf('从小到大计算的值为%f\n',sn2); function sn1=fromlarge(n) %从大到小计算sn1 format long; sn1=single(0); for m=2:1:n sn1=sn1+1/(m^2-1); end end function sn2=fromsmall(n) %从小到大计算sn2 format long; sn2=single(0); for m=n:-1:2 sn2=sn2+1/(m^2-1); end end end 运行结果:

北京大学数值分析试题2015 经过订正

北京大学2014--2015学年第一学期 研究生期末考试试题A (闭卷考试) 课程名称:数值分析 注:计算题取小数点后四位 一、填空题(每空3分,共24分) (1) 设1 2A ?-=-?? ,则A 的奇异值为 。 (2) 设0.00013753x =为真值0.00013759T x =的近似值,则x 有 位有效数字。 (3) 设数据123,,x x x 的绝对误差为0.002,那么123x x x -+的绝对误差约为 ____ _。 (4) )x (l ,),x (l ),x (l n 10是以01,, ,,(2)n x x x n ≥为节点的拉格朗日插值基函数, 则 20 (2)()n k k k x l x =+=∑ 。 (5) 插值型求积公式 2 2 =≈∑? ()()n k k k x f x dx A f x 的求积系数之和0 n k k A ==∑ 。 其中2x 为权函数,1≥n 。 (6)已知(3,4),(0,1)T T x y ==,求Householder 阵H 使Hx ky =,其中k R ∈。 H= 。 (7) 数值求积公式 1 1 2()((0)3f x dx f f f -?? ≈ ++???? ? 的代数精度为___。 (8) 下面Matlab 程序所求解的数学问题是 。 (输入向量x , 输出S ) x =input('输入x :x ='); n=length(x ); S=x (1); for i=2:n if x (i)

东南大学数值分析上机作业汇总

东南大学数值分析上机作业 汇总 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

数值分析上机报告 院系: 学号: 姓名:

目录 作业1、舍入误差与有效数 (1) 1、函数文件cxdd.m (1) 2、函数文件cddx.m (1) 3、两种方法有效位数对比 (1) 4、心得 (2) 作业2、Newton迭代法 (2) 1、通用程序函数文件 (3) 2、局部收敛性 (4) (1)最大δ值文件 (4) (2)验证局部收敛性 (4) 3、心得 (6) 作业3、列主元素Gauss消去法 (7) 1、列主元Gauss消去法的通用程序 (7) 2、解题中线性方程组 (7) 3、心得 (9) 作业4、三次样条插值函数 (10) 1、第一型三次样条插值函数通用程序: (10) 2、数据输入及计算结果 (12)

作业1、舍入误差与有效数 设∑ =-=N j N j S 2 2 11 ,其精确值为?? ? ??---1112321N N . (1)编制按从小到大的顺序1 1 131121222-? ??+-+-=N S N ,计算N S 的通用程序; (2)编制按从大到小的顺序()1 21 11111222-???+--+-=N N S N ,计算N S 的通用程序; (3)按两种顺序分别计算642101010,,S S S ,并指出有效位数; (4)通过本上机你明白了什么? 程序: 1、函数文件cxdd.m function S=cxdd(N) S=0; i=2.0; while (i<=N) S=S+1.0/(i*i-1); i=i+1; end script 运行结果(省略>>): S=cxdd(80) S= 0.737577 2、函数文件cddx.m function S=cddx (N) S=0; for i=N:-1:2 S=S+1/(i*i-1); end script 运行结果(省略>>): S=cddx(80) S= 0.737577 3、两种方法有效位数对比

东南大学 数值分析 考试要求

第一章绪论 误差的基本概念:了解误差的来源,理解绝对误差、相对误差和有效数的概念,熟练掌握数据误差对函数值影响的估计式。 机器数系:了解数的浮点表示法和机器数系的运算规则。 数值稳定性:理解算法数值稳定性的概念,掌握分析简单算例数值稳定性的方法,了解病态问题的定义,学习使用秦九韶算法。 第二章非线性方程解法 简单迭代法:熟练掌握迭代格式、几何表示以及收敛定理的内容,理解迭代格式收敛的定义、局部收敛的定义和局部收敛定理的内容。 牛顿迭代法:熟练掌握Newton迭代格式及其应用,掌握局部收敛性的证明和大范围收敛定理的内容,了解Newton法的变形和重根的处理方法。 第三章线性方程组数值解法 (1)Guass消去法:会应用高斯消去法和列主元Guass消去法求解线性方程组,掌握求解三对角方程组的追赶法。 (2)方程组的性态及条件数:理解向量范数和矩阵范数的定义、性质,会计算三种常用范数,掌握谱半径与2- 范数的关系,会计算条件数,掌握实用误差分析法。 (3)迭代法:熟练掌握Jacobi迭代法、Guass-Seidel迭代法及SOR方法,能够判断迭代格式的收敛性。 (4)幂法:掌握求矩阵按模最大和按模最小特征值的幂法。 第四章插值与逼近 (1)Lagrange插值:熟练掌握插值条件、Lagrange插值多项式的表达形式和插值余项。(2)Newton插值:理解差商的定义、性质,会应用差商表计算差商,熟练掌握Newton插值多项式的表达形式,了解Newton型插值余项的表达式。 (3)Hermite插值:掌握Newton型Hermite插值多项式的求法。 (4)高次插值的缺点和分段低次插值:了解高次插值的缺点和Runge现象,掌握分段线性插值的表达形式及误差分析过程。 (5)三次样条插值:理解三次样条插值的求解思路,会计算第一、二类边界条件下的三次样条插值函数,了解收敛定理的内容。 (6)最佳一致逼近:掌握赋范线性空间的定义和连续函数的范数,理解最佳一致逼近多项式的概念和特征定理,掌握最佳一致逼近多项式的求法。 (7)最佳平方逼近:理解内积空间的概念,掌握求离散数据的最佳平方逼近的方法,会求超定方程组的最小二乘解,掌握连续函数的最佳平方逼近的求法。

研究生数值分析试卷

2005~2006学年第一学期硕士研究生期末考试试题(A 卷) 科目名称:数值分析 学生所在院: 学号: 姓名: 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。 一、(15分)设求方程 0cos 2312=+-x x 根的迭代法 k k x x cos 3 2 41+=+ (1) 证明对R x ∈?0,均有*lim x x k k =∞ →,其中*x 为方程的根. (2) 此迭代法收敛阶是多少? 证明你的结论. 二、(12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的收敛性。 ??? ??=++-=++=-+. 022,1, 122321 321321x x x x x x x x x 三、(8分)若矩阵??? ? ? ??=a a a a A 000002,说明对任意实数0≠a ,方程组b AX =都是非病态的。(范数用∞?) 四、( 求)(x f 的Hermite 插值多项式)(3x H ,并给出截断误差)()()(3x H x f x R -=。 五、(10分)在某个低温过程中,函数 y 依赖于温度x (℃)的试验数据

为 已知经验公式的形式为 2bx ax y += ,试用最小二乘法求出 a ,b 。 六、(12分)确定常数 a ,b 的值,使积分 [ ] dx x b ax b a I 2 1 1 2 ),(?--+= 取得最小值。 七、(14分)已知Legendre(勒让德)正交多项式)(x L n 有递推关系式: ?? ? ? ???=+-++===-+),2,1()(1)(112)()(, 1)(1110 n x L n n x xL n n x L x x L x L n n n 试确定两点的高斯—勒让德(G —L )求积公式 ? -+≈1 1 2211)()()(x f A x f A dx x f 的求积系数和节点,并用此公式近似计算积分 ?=2 11 dx e I x 八、(14分)对于下面求解常微分方程初值问题 ?????==0 0)() ,(y x y y x f dx dy 的单步法: ??? ? ??? ++==++=+) ,() ,()2 121(1 21211 hk y h x f k y x f k k k h y y n n n n n n

东南大学《数值分析》-上机题

数值分析上机题1 设2 21 1N N j S j ==-∑ ,其精确值为1311221N N ??-- ?+?? 。 (1)编制按从大到小的顺序222 111 21311 N S N = +++---,计算N S 的通用程序。 (2)编制按从小到大的顺序22 21111(1)121 N S N N =+++----,计算N S 的通用程序。 (3)按两种顺序分别计算210S ,410S ,610S ,并指出有效位数。(编制程序时用单精度) (4)通过本上机题,你明白了什么? 程序代码(matlab 编程): clc clear a=single(1./([2:10^7].^2-1)); S1(1)=single(0); S1(2)=1/(2^2-1); for N=3:10^2 S1(N)=a(1); for i=2:N-1 S1(N)=S1(N)+a(i); end end S2(1)=single(0); S2(2)=1/(2^2-1); for N=3:10^2 S2(N)=a(N-1); for i=linspace(N-2,1,N-2) S2(N)=S2(N)+a(i); end end S1表示按从大到小的顺序的S N S2表示按从小到大的顺序的S N 计算结果

通过本上机题,看出按两种不同的顺序计算的结果是不相同的,按从大到小的顺序计算的值与精确值有较大的误差,而按从小到大的顺序计算的值与精确值吻合。从大到小的顺序计算得到的结果的有效位数少。计算机在进行数值计算时会出现“大数吃小数”的现象,导致计算结果的精度有所降低,我们在计算机中进行同号数的加法时,采用绝对值较小者先加的算法,其结果的相对误差较小。

华南理工大学数值分析试题-14年下-C

华南理工大学研究生课程考试 《数值分析》试卷C (2015年1月9日) 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 本试卷共八大题,满分100分,考试时间为150分钟。 一、(12分)解答下列问题: 1)设近似值0x >,x 的相对误差为δ,试证明ln x 的绝对误差近似为δ。 2)利用秦九韶算法求多项式 542()681p x x x x x =-+-+ 在3x =时的值(须写出计算形式),并统计乘法次数。 (12分)解答下列问题: 1)设()235f x x =+,求[]0,1,2f 和[]0,1,2,3f 。 2)利用插值方法推导出恒等式: 33220,0[]j j i i x j i x i j =≠=-=-∑∏ 。

(1)设{}∞ =0)(k k x q 是区间[]1,0上带权1=ρ而最高次项系数为1的正交多项式族,其中1)(0=x q ,求1()q x 和2()q x 。 (2)求形如2y a bx =+的经验公式,使它与下列数据拟合: 四、(14分)对积分()10I f x dx = ?,试 (1)构造一个以012113,,424 x x x ===为节点的插值型求积公式; (2)指出所构造公式的代数精度; (3)用所得数值求积公式计算积分1 203x dx ?的精确值; (4)指出所得公式与一般的Newton-Cotes 型公式在形式上的重要区别。

(1)设?? ????=4321A ,计算1A 、()Cond A ∞和()A ρ。 (2)用列主元Gauss 消去法解方程组: 12312315410030.112x x x ????????????=????????????-?????? 六、(13分)对2阶线性方程组 11112212112222 a x a x b a x a x b +=??+=? (11220a a ≠ ) (1)证明求解此方程组的Jacobi 迭代与Gauss-Seidel 迭代同时收敛或同时发散; (2)当同时收敛时,试比较它们的收敛速度。

2015年研数值分析A卷

武 汉 大 学 2015-2016第一学期硕士研究生期末考试试题(A 卷) 科目: 数值分析 学生所在院: 学号: 姓名: 一、(12分)设方程230x x e -=,为求其最大正根与最小正根的近似值,试分别确定两个含根区间[,]a b 和两个迭代函数()g x ,使当0[,]x a b ?时,迭代格式1()n n x g x +=分别收敛于最大正根与最小正根。 二、(12分)用杜利特尔(Doolittle )分解算法求解方程 b Ax =,其中 211625608A ????=?????? 226768b ????=?????? 三、(14分)设方程组 123121113a a x a a x a a x 轾轾轾犏犏犏犏犏犏=-犏犏犏犏犏犏臌臌臌 其中a 为常数。 (1)分别写出Jacobi 迭代格式及 Gauss-Seidel 迭代格式; (2)导出Gauss-Seidel 迭代格式收敛的充分必要条件。 四、(12分)已知 )(x f y = 的数据如下: 求)(x f 的Hermite 插值多项式)(3x H 及其余项。 五、(12分)确定常数 a ,b 的值,使积分 2 1 320(,)I a b x ax bx dx 轾=--犏臌ò 取得最小值。

六、(12 求形如 y bx x =+ 的拟合曲线。 七、(14分)(1)对初值问题 00(,)[,]()dy f t y t a b dt y t y ì??= ??í??=?? 验证改进欧拉方法(也称预估-校正法)与微分方程是相容的; (2) 用改进欧拉方法求下面方程的数值解(取步长5.0=h ): (0)1 dy dt y ?=???=? [0,1]t ∈ (取5位有效数字计算) 八、(12分)设求积公式 ∑?=≈n k k k b a x f A dx x f 1)()(为高斯型求积公式, 并记 )())(()(21n n x x x x x x x ---= ω (1)问给定的求积公式的代数精度是多少次? (2)证明: 对任意次数小于等于1-n 的多项式)(x q ,必有?=b a n dx x x q 0)()(ω; (3)证明:n k A k ,,2,1,0 =>

东南大学-数值分析上机题作业-MATLAB版

2015.1.9 上机作业题报告 JONMMX 2000

1.Chapter 1 1.1题目 设S N =∑1j 2?1 N j=2 ,其精确值为 )1 1 123(21+--N N 。 (1)编制按从大到小的顺序1 1 131121222-+ ??+-+-=N S N ,计算S N 的通用程序。 (2)编制按从小到大的顺序1 21 1)1(111222-+ ??+--+-= N N S N ,计算S N 的通用程序。 (3)按两种顺序分别计算64210,10,10S S S ,并指出有效位数。(编制程序时用单精度) (4)通过本次上机题,你明白了什么? 1.2程序 1.3运行结果

1.4结果分析 按从大到小的顺序,有效位数分别为:6,4,3。 按从小到大的顺序,有效位数分别为:5,6,6。 可以看出,不同的算法造成的误差限是不同的,好的算法可以让结果更加精确。当采用从大到小的顺序累加的算法时,误差限随着N 的增大而增大,可见在累加的过程中,误差在放大,造成结果的误差较大。因此,采取从小到大的顺序累加得到的结果更加精确。 2.Chapter 2 2.1题目 (1)给定初值0x 及容许误差ε,编制牛顿法解方程f(x)=0的通用程序。 (2)给定方程03 )(3 =-=x x x f ,易知其有三个根3,0,3321= *=*-=*x x x ○1由牛顿方法的局部收敛性可知存在,0>δ当),(0δδ+-∈x 时,Newton 迭代序列收敛于根x2*。试确定尽可能大的δ。 ○2试取若干初始值,观察当),1(),1,(),,(),,1(),1,(0+∞+-----∞∈δδδδx 时Newton 序列的收敛性以及收敛于哪一个根。 (3)通过本上机题,你明白了什么? 2.2程序

07(研)数值分析

数值分析试题 2007.12 一、简答下列各题:(每题4分,共20分) 1.为了提高计算精度,求方程x 2-72x+1=0的根,应采用何种公式,为什么? 2.设??? ? ??=2112A ,求)(A ρ和2)(A Cond 。 3.设??? ? ? ??=131122321A ,求A 的LU 分解式。 4.问23221)2(x x x x ++=是不是3R 上的向量范数,为什么? 5.求数值积分公式?-≈b a a b a f dx x f ))(()(的截断误差R[?]。 二、解答下列各题:(每题8分,共56分) 1.已知线性方程组??? ??=-+=-+=-+3 53231 4321 321321x x x x x x x x x ,问能用哪些方法求解?为什么? 2.解线性方程组b Ax =的Gauss-Seidel 迭代法是否收敛?为什么?其中: ???? ? ??--=211111112A 3.设]2,0[)(4C x f y ∈=,且0)0(,0)2(,2)1(,1)0(='===f f f f ,试求)(x f 的三次插值多项式)(3x H ,并写出余项)()()(33x H x f x R -=。 4.给定离散数据 试求形如3bx a y +=的拟合曲线。 5.求区间[0,1]上权函数为x x =)(ρ的正交多项式)(0x p ,)(1x p 和)(2x p 。 6.证明求积公式: ? +++-≈3 1 ) 5 3 2(5)2(8)532(5[91)(f f f dx x f

是Gauss 型求积公式。 7. 利用2=n 的复化Simpson 公式计算计算定积分 ,并估计误差][f R 。 三、(12分)已知方程0cos 2=-x x , 1.证明此方程有唯一正根α; 2.建立一个收敛的迭代格式,使对任意初值]1,0[0∈x 都收敛,说明收敛理由和收敛阶。 3.若取初值00=x ,用此迭代法求精度为510-=ε的近似根,需要迭代多少步? 四、(12分)已知求解常微分方程初值问题: ?? ?∈=='] ,[,)(),(b a x a y y x f y α 的差分公式: ?? ??????? =++==++=+α 0121211) 32 ,32() ,()3(4y hk y h x f k y x f k k k h y y n n n n n n 1.证明:此差分公式是二阶方法; 2.用此差分公式求解初值问题1)0(,10=-='y y y 时,取步长h=0.25,所得数值解是否稳定,为什么? ?1 0sin xdx

东南大学数值分析上机解剖

第一章 一、题目 设∑ =-=N j N j S 22 1 1,其精确值为)11 123(21+--N N 。 (1)编制按从大到小的顺序1 1 131121222-+ ??+-+-=N S N ,计算SN 的通用程序。 (2)编制按从小到大的顺序1 21 1)1(111222-+ ??+--+-=N N S N ,计算SN 的通用程序。 (3)按两种顺序分别计算64210,10,10S S S ,并指出有效位数。(编制程序时用单精度) (4)通过本次上机题,你明白了什么? 二、MATLAB 程序 N=input('请输入N(N>1):'); AccurateValue=single((0-1/(N+1)-1/N+3/2)/2); %single 使其为单精度 Sn1=single(0); %从小到大的顺序 for a=2:N; Sn1=Sn1+1/(a^2-1); end Sn2=single(0); %从大到小的顺序 for a=2:N; Sn2=Sn2+1/((N-a+2)^2-1); end fprintf('Sn 的值 (N=%d)\n',N); disp('____________________________________________________') fprintf('精确值 %f\n',AccurateValue); fprintf('从大到小计算的结果 %f\n',Sn1); fprintf('从小到大计算的结果 %f\n',Sn2); disp('____________________________________________________')

研究生《数值分析》教学大纲

研究生《数值分析》教学大纲 课程名称:数值分析 课程编号:S061005 课程学时:64 学时 课程学分: 4 适用专业:工科硕士生 课程性质:学位课 先修课程:高等数学,线性代数,计算方法,Matlab语言及程序设计 一、课程目的与要求 “数值分析”课是理工科各专业硕士研究生的学位课程。主要介绍用计算机解决数学问题的数值计算方法及其理论。内容新颖,起点较高,并加强了数值试验和程序设计环节。通过本课程的学习,使学生熟练掌握各种常用的数值算法的构造原理和过程分析,提高算法设计和理论分析能力,并且能够根据数学模型,提出相应的数值计算方法编制程序在计算机上算出结果。力求使学生掌握应用数值计算方法解决实际问题的常用技巧。 二、教学内容、重点和难点及学时安排: 第一章? 数值计算与误差分析( 4学时) 介绍数值分析的研究对象与特点,算法分析与误差分析的主要内容。 第一节数值问题与数值方法 第二节数值计算的误差分析 第三节数学软件工具----MATLAB 语言简介 重点:误差分析 第二章? 矩阵分析基础( 10学时) 建立线性空间、赋范线性空间、内积空间的概念,为学习以后各章打好基础。矩阵分解是解决数值代数问题的常用方法,掌握矩阵的三角分解、正交分解、奇异值分解,并能够编写算法程序。 第一节? 矩阵代数基础

第二节? 线性空间 第三节? 赋范线性空间 第四节? 内积空间和内积空间中的正交系 第五节矩阵的三角分解 第六节矩阵的正交分解 第七节矩阵的奇异值分解 难点:内积空间中的正交系。矩阵的正交分解。 重点:范数,施密特(Schmidt) 正交化过程,正交多项式,矩阵的三角分解, 矩阵的正交分解。 第三章? 线性代数方程组的数值方法( 12学时) 了解研究求解线性代数方程组的数值方法分类及直接法的应用范围。高斯消元法是解线性代数方程组的最常用的直接法,也是其它类型直接法的基础。在此方法基础上加以改进,可得选主元的高斯消元法、按比例增减的高斯消元法,其数值稳定性更高。掌握用列主元高斯消元法解线性方程组及计算矩阵的行列式及逆,并且能编写算法程序。掌握矩阵的直接三角分解法:列主元LU 分解,Cholesky分解。了解三对角方程组的追赶法的分解形式及数值稳定性的充分条件。掌握矩阵条件数的定义,并能利用条件数判别方程组是否病态以及对方程组的直接方法的误差进行估计。 迭代解法是求解大型稀疏方程组的常用解法。熟练掌握雅可比迭代法、高斯- 塞德尔迭代法及SOR 方法的计算分量形式、矩阵形式,并能在计算机上编出三种方法的程序用于解决实际问题。了解极小化方法:最速下降法、共轭斜量法。迭代法的收敛性分析是研究解线性代数方程组的迭代法时必须考虑的问题。对于上述常用的迭代法,须掌握其收敛的条件。而对一般的迭代法,掌握其收敛性分析的基本方法和主要结果有助于进一步探究新的迭代法。 第一节求解线性代数方程组的基本定理 第二节高斯消元法及其计算机实现 第三节矩阵分解法求解线性代数方程组 第三节? 误差分析和解的精度改进 第四节? 大型稀疏方程组的迭代法 第五节? 极小化方法 难点:列主元高斯消元法,直接矩阵三角分解。迭代法的收敛性,雅可比迭代法,高斯-塞德尔迭代法,SOR 迭代法。

数值分析(研)试题答案

沈阳航空航天大学研究生试卷(A) 2011-2012 学年第一学期课程名称:数值分析出题人: 王吉波审核人: 一、填空题(本题40 分每空 4 分) 1.设l j (x) ( j 0 ,1, ,n) 为节点x0 , 1 , , x 的n 次基函数,则 l j ( x i ) x n 1, 0, i i j j 。 2.已知函数(x) x 1 f 2 x ,则三阶差商 f [1, 2, 3, 4] = 0 。 3.当n=3 时,牛顿- 柯特斯系数 1 (3) 3 (3) (3) C0 , C C ,则 1 2 8 8 (3) C 3 1 8 。 ( ) Bx( k) f k k 1 收敛的 4.用迭代法解线性方程组Ax=b时,迭代格式, 0,1,2 , x 充分必要条件是(B) 1或B 的谱半径小于 1 。 5.设矩阵 1 2 A ,则A 的条件数 Cond (A)2 = 3 。 2 1 6.正方形的边长约为100cm,则正方形的边长误差限不超过0.005 cm 才能使 其面积误差不超过1 2 cm 。 1 1 7.要使求积公式(0) ( ) 8. f (x)dx f A1 f x1 具有 2 次代数精确度,则 4 x 2/3 ,A1 3/4 。 1 9 18 9 - 27

18 45 0 - 45 其 中, A 8. 用杜利特尔(Doolittle )分解法分解 A LU , 9 0 126 9 27 -45 9 135 则 1 1 1 2 3 1 2 L , 1 - 2 1 0 3 U 9 18 9 9 -18 81 - 27 9 54 9

数值分析上机题(matlab版)(东南大学)

数值分析上机题(matlab版)(东南大学)

数值分析上机报告

第一章 一、题目 精确值为)1 1 123(21+--N N 。 1) 编制按从大到小的顺序 1 1 131121222-+??+-+-= N S N ,计算S N 的通用程序。 2) 编制按从小到大的顺序 1 21 1)1(111222-+??+--+-= N N S N ,计算S N 的通用程序。 3) 按两种顺序分别计算6 42 10,10, 10S S S ,并指出有效位 数。(编制程序时用单精度) 4) 通过本次上机题,你明白了什么? 二、通用程序 clear N=input('Please Input an N (N>1):'); AccurateValue=single((0-1/(N+1)-1/N+3/2)/2); Sn1=single(0); for a=2:N; Sn1=Sn1+1/(a^2-1); end Sn2=single(0); for a=2:N; Sn2=Sn2+1/((N-a+2)^2-1); end fprintf('The value of Sn using different algorithms (N=%d)\n',N); disp('____________________________________________________') fprintf('Accurate Calculation %f\n',AccurateValue); fprintf('Caculate from large to small %f\n',Sn1); fprintf('Caculate from small to large %f\n',Sn2);

西北工业大学数值分析(附答案)

西北工业大学数值分析习题集 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设 028,Y =按递推公式 1n n Y Y -= ( n=1,2,…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求 211N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =-

数值分析第五版答案

第一章 绪论 p19 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又 1 '()n f x nx -=, 1 ||n p x nx C n n -?∴== 又 ((*))(*)r p r x n C x εε≈? 且(*)r e x 为2% ((*))0.02n r x n ε∴≈ 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又 (*)1r V ε= 故度量半径R 时允许的相对误差限为1 (*)10.333 r R ε= ?≈ 7.求方程2 5610x x -+=的两个根,使它至少具有427.982 =)。 解:2 5610x x -+= , 故方程的根应为1,228x =故 128 2827.98255.982x = ≈+= 1x ∴具有5位有效数字 211 280.0178632827.98255.982 x =-= ≈ =≈+ 2x 具有5位有效数字

9.正方形的边长大约为了100cm ,应怎样测量才能使其面积误差不超过2 1cm ? 解:正方形的面积函数为2 ()A x x = p7 当*100x =时,若(*)1A ε≤, 则21 (*)102 x ε-≤ ? 故测量中边长误差限不超过0.005cm 时,才能使其面积误差不超过2 1cm 第二章 插值法p48 1.当1,1,2 x =-时,()0,3,4f x =-, 分别用单项式基底、拉格朗日基底、牛顿基底求() f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23537623 l x l x x x x x x x =-+=---+-+=+- 2.给出()ln f x x =的数值表 用线性插值及二次插值计算的近似值。 解:由表格知,

研究生数值分析习题

1. 五个节点的Newton-Cotes 求积公式的代数精度为______,五个节点的求积公式最高代数精度为___________。(即Gauss 型求积公式) 2. 已知数值求积公式为3 11 ()[(1)4(2)(3)]3 f x dx f f f ≈++? , 则其代数精度为______。 3. 数值积分公式1 '12 ()[(1)8(0)(1)]9 f x dx f f f -≈-++?的代数 精度为_________。 4. 要使求积公式1 110 1 ()(0)()4 f x dx f A f x ≈ +?具有2次代数精度,则1x =___,1A =___。 5. 在Newton-Cotes 求积公式:() ()()()n b n i i a i f x dx b a C f x =≈-∑? 中,当系数()n i C 是负值时,公式的稳定性不能保证,所以实际应用中,当___________时的Newton-Cotes 求积公式不能使用。 ()8()7()10()6A n B n C n D n ≥≥≥≥ 6. 若用复化梯形公式计算1 0x e dx ?,要求误差不超过6 10-,利 用余项公式估计,至少用______个求积节点。 7. 对于Gauss 型求积公式3 1 ()()()b k k a k f x x dx A f x ρ=≈∑?,其中 ()x ρ为权函数,下列说法错误的是_________。

(A )该求积公式一定是稳定的; (B )3 1()k k k A f x b a ==-∑; (C )该求积公式的代数精度为5; (D )2 (35)()()0b a x x x x dx ωρ-=? ,其中3 1 ()()k k x x x ω==∏-。 8. 0{()}k k x ?∞ =是区间[0,1]上权函数 ()x x ρ=的最高系数为1的正交多项式族,其中0()1x ?=,则1 40()_______x x dx ?=?。 9. 构造代数精度最高的如下形式的求积公式,并求出其代数精度: 1 010 1 ()()(1)2 xf x dx A f A f ≈+? 10. 数值积分公式形如 1 ()()(0)(1)(0)(1)xf x dx S x Af Bf Cf Df ''≈=+++? (1)试确定参数A 、B 、C 、D ,使公式的代数精度尽量高; (2)设4 ()[0,1]f x C ∈,推导余项公式1 0()()()R x xf x dx S x =-?, 并估计误差。 11. 用8n =的复化梯形公式和复化Simpson 公式计算 1 x e d x -? 时, (1)试用余项估计其误差; (2)计算积分的近似值。

数值分析第五版全答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h A h -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 01 1431313A h A h A h -?=?? ?=?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++= 故 101()()(0)()h h f x dx A f h A f A f h --=-++? 成立。 令4 ()f x x =,则

东南大学_数值分析_第七章_偏微分方程数值解法

第七章 偏微分方程数值解法 ——Crank-Nicolson 格式 ****(学号) *****(姓名) 上机题目要求见教材P346,10题。 一、算法原理 本文研究下列定解问题(抛物型方程) 22(,) (0,0)(,0)() (0) (0,)(), (1,)() (0)u u a f x t x l t T t x u x x x l u t t u t t t T ?αβ???-=<<≤≤???? =≤≤??==<≤?? (1) 的有限差分法,其中a 为正常数,,,,f ?αβ为已知函数,且满足边界条件和初始条件。关于式(1)的求解,采用离散化方法,剖分网格,构造差分格式。其中,网格剖分是将区域{}0,0D x l t T =≤≤≤≤用两簇平行直线 (0) (0)i k x x ih i M t t k k N τ==≤≤?? ==≤≤? 分割成矩形网格,其中,l T h M N τ==分别为空间步长和时间步长。将式(1)中的偏导数使用不同的差商代替,将得到不同的差分格式,如古典显格式、古典隐格式、Crank-Nicolson 格式等。其中,Crank-Nicolson 格式具有更高的收敛阶数,应用更广泛,故本文采用Crank-Nicolson 格式求解抛物型方程。 Crank-Nicolson 格式推导:在节点(,)2 i k x t τ +处考虑式(1),有 22(,)(,)(,)222 i k i k i k u u x t a x t f x t t x τττ??+-+=+?? (2) 对偏导数 (,)2 i k u x t t τ ?+?用中心差分展开 []2311+13 1(,)(,)(,)(,) ()224k k i k i k i k i i k i k u u x t u x t u x t x t t t t ττηητ++??+=--<

相关主题
文本预览