当前位置:文档之家› 高中解析几何小题大题训练+详细解析

高中解析几何小题大题训练+详细解析

高中解析几何小题大题训练+详细解析
高中解析几何小题大题训练+详细解析

数学

1.(2014课标全国卷Ⅱ,10,5分)设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( )

A. B. C. D.

[答案] 1.D

[解析] 1.易知直线AB 的方程为y=,与y 2=3x 联立并消去x 得4y 2-12y-9=0.

设A(x 1,y 1),B(x 2,y 2),则

y 1+y 2=3,y 1y 2=-.S △OAB =|OF|·|y 1-y 2|=×==.

故选D.

2.(2008全国Ⅱ, 11, 5分) 等腰三角形两腰所在直线的方程分别为x+y-2=0与x-7y-4=0, 原

点在等腰三角形的底边上, 则底边所在直线的斜率为( )

A. 3

B. 2

C. -

D. - [答案] 2.A

[解析] 2.设底边所在直线的斜率为k, 由等腰三角形的底角相等及到角公式得=,

解得k=-(舍) 或k=3, 故选A.

3.(2010全国Ⅱ, 12, 5分) 已知椭圆C:+=1(a>b>0) 的离心率为, 过右焦点F 且斜率

为k(k>0) 的直线与C 相交于A 、B 两点. 若=3

, 则k=( )

A. 1

B.

C.

D. 2

[答案] 3.B

[解析] 3.解法一:由e===得

a=2b, a=c, b=.

由得(3+12k2) y2+6cky-k2c2=0.

设A(x1, y1) , B(x2, y2) , 则y1+y2=①.

y1y2=②. 由=3得y1=-3y2③.

联立①②③得k=±, 又k>0, 故k=.

解法二:由椭圆定义可得||=, ||=. 其中e为离心率, p为焦准距, α为直线AB的倾斜角.

由||=3||得=, 解得cos α=.

从而k=tan α=(k>0) .

4.(2008全国Ⅱ, 9, 5分) 设a>1, 则双曲线-=1的离心率e的取值范围是()

A. (, 2)

B. ()

C. (2, 5)

D. (2, )

[答案] 4.B

[解析] 4.e====. ∵ a>1, ∴ 0<<1, ∴ 1<1+<2, ∴

5.(2007全国Ⅱ, 11, 5分) 设F1、F2分别是双曲线-=1的左、右焦点. 若双曲线上存在点A, 使∠F1AF2=90°, 且|AF1|=3|AF2|, 则双曲线的离心率为()

A. B. C. D.

[答案] 5.B

[解析] 5.设双曲线-=1的半焦距为c.

依题意, 有解得e==.

故选B.

6.(2009全国Ⅱ, 9, 5分) 已知直线y=k(x+2) (k>0) 与抛物线C:y2=8x相交于A、B两点, F 为C的焦点. 若|FA|=2|FB|, 则k=()

A. B. C. D.

[答案] 6.D

[解析] 6.过A、B作抛物线准线l的垂线, 垂足分别为A1、B1, 由抛物线定义可知, |AA1|=|AF|, |BB1|=|BF|,

∵2|BF|=|AF|,

∴|AA1|=2|BB1|, 即B为AC的中点.

从而y A=2y B, 联立方程组消去x得y2-y+16=0, ∴??消去

y B得k=.

7.(2007全国Ⅱ, 12, 5分) 设F为抛物线y2=4x的焦点, A、B、C为该抛物线上三点, 若

++=0, 则||+||+||等于()

A. 9

B. 6

C. 4

D. 3

[答案] 7.B

[解析] 7.设A、B、C三点坐标分别为(x1, y1) 、(x2, y2) 、(x3, y3) .

由题知F(1, 0) , ∵ ++=0, ∴ x1+x2+x3=3.

根据抛物线定义, 有||+||+||

=x1+1+x2+1+x3+1=3+3=6. 故选B.

8.(2007全国Ⅱ, 11, 5分) 抛物线y2=4x的焦点为F, 准线为l, 经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A, AK⊥l, 垂足为K, 则△AKF的面积是()

A. 4

B. 3

C. 4

D. 8

[答案] 8. C

[解析] 8.∵ y2=4x, ∴ F(1, 0) , l:x=-1, 过焦点F且斜率为的直线l1:y=(x-1) 与y2=4x(x>0) 联立, 解得A(3, 2) ,

∴ AK=4, ∴ S=×4×2=4. 故选C.

9.(2013课标Ⅱ,12,5分) 已知点A(-1,0), B(1,0), C(0,1), 直线y=ax+b(a> 0) 将△ABC分割为面积相等的两部分, 则b的取值范围是()

A. (0,1)

B.

C.

D.

[答案] 9.B

[解析] 9.(1) 当直线y=ax+b与AB、BC相交时(如图1), 由得y E=, 又易知

x D=-, ∴|BD|=1+, 由S△DBE=××=得b=∈.

图1

(2) 当直线y=ax+b与AC、BC相交时(如图2), 由S△FCG=(x G-x F) ·|CM|=得

b=1-∈(∵0< a< 1),

图2

∵对于任意的a> 0恒成立,

∴b∈∩, 即b∈. 故选B.

10.(2013课标Ⅱ,11,5分) 设抛物线C: y2=2px(p> 0) 的焦点为F, 点M在C上, |MF|=5, 若以MF为直径的圆过点(0,2), 则C的方程为()

A. y2=4x或y2=8x

B. y2=2x或y2=8x

C. y2=4x或y2=16x

D. y2=2x 或y2=16x

[答案] 10.C

[解析] 10.∵以MF为直径的圆过点(0,2), ∴点M在第一象限. 由|MF|=x M+=5得

M. 从而以MF为直径的圆的圆心N的坐标为, ∵点N的横坐标

恰好等于圆的半径, ∴圆与y轴切于点(0,2), 从而2=, 即p2-10p+16=0, 解得p=2或p=8, ∴抛物线方程为y2=4x或y2=16x. 故选C.

11. (2009全国Ⅱ, 16, 5分) 已知AC、BD为圆O:x2+y2=4的两条相互垂直的弦, 垂足为M(1,

) , 则四边形ABCD的面积的最大值为.

[答案] 11.5

[解析] 11.设圆心O到AC、BD的距离为d1、d2, 垂足分别为E、F, 则四边形OEMF为矩形, 则有+=3.

由平面几何知识知|AC|=2, |BD|=2,

∴S四边形ABCD=|AC|·|BD|

=2·≤(4-) +(4-) =8-(+) =5, 即四边形ABCD的面积的最大值为5.

12.(2010全国Ⅱ, 15, 5分) 已知抛物线C:y2=2px(p>0) 的准线为l, 过M(1, 0) 且斜率为的直线与l相交于点A, 与C的一个交点为B. 若=, 则p=.

[答案] 12.2

[解析] 12.过B作准线的垂线, 垂足为B1, x轴与准线交点为M1. 由AM=MB得

BB1=2MM1=AM=BM. 所以点M恰为抛物线的焦点, 即=1, p=2.

13. (2008全国Ⅱ, 15, 5分) 已知F为抛物线C:y2=4x的焦点, 过F且斜率为1的直线交C 于A、B两点. 设|FA|>|FB|, 则|FA|与|FB|的比值等于.

[答案] 13.3+2

[解析] 13.由题意得F(1, 0) , ∴ 直线AB的方程为y=x-1.

?x2-6x+1=0?x=3±2.

由|FA|>|FB|及抛物线定义知A点的横坐标为3+2,

B点的横坐标为3-2.

====3+2.

故填3+2.

14.(2014课标全国卷Ⅱ,20,12分)设F1,F2分别是椭圆C:+=1(a>b>0)的左,右焦点,M 是C上一点且MF2与x轴垂直.直线MF1与C的另一个交点为N.

(Ⅰ)若直线MN的斜率为,求C的离心率;

(Ⅱ)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.

[答案] 14.查看解析

[解析] 14.(Ⅰ)根据c=及题设知M,2b2=3ac.

将b2=a2-c2代入2b2=3ac,解得=或=-2(舍去).

故C的离心率为.

(Ⅱ)由题意,得原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故=4,即b2=4a.①

由|MN|=5|F1N|得|DF1|=2|F1N|.

设N(x1,y1),由题意知y1<0,

则即

代入C的方程,得+=1.②

将①及c=代入②得+=1.

解得a=7,b2=4a=28,故a=7,b=2.

15.(2009全国Ⅱ, 21, 12分) 已知椭圆C:+=1(a>b>0) 的离心率为, 过右焦点F的直

线l与C相交于A、B两点, 当l的斜率为1时, 坐标原点O到l的距离为.

(Ⅰ) 求a, b的值;

(Ⅱ) C上是否存在点P, 使得当l绕F转到某一位置时, 有=+成立?若存在, 求出所有的P的坐标与l的方程;若不存在, 说明理由.

[答案] 15.(Ⅰ) 设F(c, 0) , 当l的斜率为1时,

其方程为x-y-c=0, O到l的距离为=,

故=, c=1.

由e==, 得a=, b==.

(Ⅱ) 假设C上存在点P, 使得当l绕F转到某一位置时,

有=+成立.

由(Ⅰ) 知C的方程为2x2+3y2=6. 设A(x1, y1) 、B(x2, y2) .

(i) 当l不垂直于x轴时, 设l的方程为y=k(x-1) .

C上的点P使=+成立的充要条件是P点的坐标为(x1+x2, y1+y2) , 且2(x1+x2)

2+3(y1+y2) 2=6,

整理得2+3+2+3+4x1x2+6y1y2=6.

又A、B在C上, 即2+3=6, 2+3=6.

故2x1x2+3y1y2+3=0. ①

将y=k(x-1) 代入2x2+3y2=6, 并化简得

(2+3k2) x2-6k2x+3k2-6=0,

于是x1+x2=, x1·x2=,

y1·y2=k2(x1-1) (x2-1) =.

代入①解得, k2=2. 此时x1+x2=.

于是y1+y2=k(x1+x2-2) =-, 即P.

因此, 当k=-时, P, l的方程为x+y-=0;

当k=时, P, l的方程为x-y-=0.

(ii) 当l垂直于x轴时, 由+=(2, 0) 知, C上不存在点P使=+成立.

综上, C上存在点P使=+成立, 此时l的方程为x±y-=0.

15.

16.(2008全国Ⅱ, 21, 12分) 设椭圆中心在坐标原点, A(2, 0) 、B(0, 1) 是它的两个顶点, 直线y=kx(k>0) 与AB相交于点D, 与椭圆相交于E、F两点.

(Ⅰ) 若=6, 求k的值;

(Ⅱ) 求四边形AEBF面积的最大值.

[答案] 16.(Ⅰ) 依题设得椭圆的方程为+y2=1,

直线AB、EF的方程分别为x+2y=2, y=kx(k>0) .

如图, 设D(x0, kx0) , E(x1, kx1) , F(x2, kx2) ,

其中x1

故x2=-x1=. ①

由=6知x0-x1=6(x2-x0) , 得

x0=(6x2+x1) =x2=,

由D在AB上知x0+2kx0=2, 得x0=.

所以=,

化简得24k2-25k+6=0, 解得k=或k=.

(Ⅱ) 解法一:根据点到直线的距离公式和①式知, 点E、F到AB的距离分别为h1==,

h2==.

又|AB|==,

所以四边形AEBF的面积为

S=|AB|(h1+h2) =··

==2≤2,

当2k=1, 即当k=时, 上式取等号.

所以S的最大值为2.

解法二:由题设, |BO|=1, |AO|=2.

设y1=kx1, y2=kx2, 由①得x2>0, y2=-y1>0,

故四边形AEBF的面积为

S=S△BEF+S△AEF=x2+2y2=

=≤=2,

当x2=2y2时, 上式取等号, 所以S的最大值为2.

16.

17.(2010全国Ⅱ, 21, 12分) 已知斜率为1的直线l与双曲线C:-=1(a>0, b>0) 相交于B、D两点, 且BD的中点为M(1, 3) .

(Ⅰ) 求C的离心率;

(Ⅱ) 设C的右顶点为A, 右焦点为F, |DF|·|BF|=17, 证明:过A、B、D三点的圆与x轴相切.

[答案] 17.(Ⅰ) 由题设知, l的方程为y=x+2. (2分)

代入C的方程, 并化简, 得(b2-a2) x2-4a2x-4a2-a2b2=0.

设B(x1, y1) 、D(x2, y2) ,

则x1+x2=, x1·x2=-, ①

由M(1, 3) 为BD的中点知=1, 故

×=1, 即b2=3a2, ②

故c==2a, 所以C的离心率e==2.

(Ⅱ) 证明:由①、②知, C的方程为3x2-y2=3a2,

A(a, 0) , F(2a, 0) , x1+x2=2, x1·x2=-<0,

故不妨设x1≤-a, x2≥a.

|BF|===a-2x1,

|FD|===2x2-a,

|BF|·|FD|=(a-2x1) (2x2-a)

=-4x1x2+2a(x1+x2) -a2=5a2+4a+8.

又|BF|·|FD|=17,

故5a2+4a+8=17,

解得a=1或a=-(舍去) .

故|BD|=|x1-x2|=·=6.

连结MA, 则由A(1, 0) , M(1, 3) 知|MA|=3, 从而MA=MB=MD, 且MA⊥x轴, 因此以M为圆心, MA为半径的圆经过A、B、D三点, 且在点A处与x轴相切. 所以过A、B、D三点的圆与x轴相切. (12分)

17.

18.(2013课标Ⅱ,20,12分)平面直角坐标系xOy中, 过椭圆M: +=1(a> b> 0) 右焦点的直线x+y-=0交M于A, B两点, P为AB的中点, 且OP的斜率为.

(Ⅰ) 求M的方程;

(Ⅱ) C, D为M上两点, 若四边形ACBD的对角线CD⊥AB, 求四边形ACBD面积的最大值.

[答案] 18.(Ⅰ) 设A(x1, y1), B(x2, y2), P(x0, y0), 则

+=1, +=1, =-1,

由此可得=-=1.

因为x1+x2=2x0, y1+y2=2y0, =,

所以a2=2b2.

又由题意知, M的右焦点为(, 0), 故a2-b2=3.

因此a2=6, b2=3.

所以M的方程为+=1.

(Ⅱ) 由解得或

因此|AB|=.

由题意可设直线CD的方程为y=x+n, 设C(x3, y3), D(x4, y4). 由得3x2+4nx+2n2-6=0.

于是x3,4=.

因为直线CD的斜率为1, 所以|CD|=|x4-x3|=. 由已知, 四边形ACBD的面积S=|CD|·|AB|=. 当n=0时, S取得最大值, 最大值为.

所以四边形ACBD面积的最大值为.

18.

解析几何专题训练理科用

解析几何专项训练 班级 学号 成绩 (一)填空题 1、若直线m my x m y mx 21=++=+与平行,则m =_-1____. 2、若直线2+=kx y 与抛物线x y 42 =仅有一个公共点,则实数=k 1 ,02 3、若直线l 的一个法向量为()2,1n =,则直线l 的倾斜角为 arctan2π- (用反三角函数值表示) 4、已知抛物线2 0x my +=上的点到定点(0,4)和到定直线4y =-的距离相等,则 m = -16 5、已知圆C 过双曲线 116 92 2=-y x 的一个顶点和一个焦点,且圆心C 在此双曲线上,则圆心C 到双曲线中心的距离是 16 3 6、已知直线1l :210x y +-=,另一条直线的一个方向向量为(1,3)d =,则直线1l 与2l 的夹角是 4 π 7、已知直线:0l ax by c ++=与圆1:2 2 =+y x O 相交于A 、B 两点,3||=AB , 则OA ·OB = 12 - 8、若直线m 被两平行线1:10l x y -+=与2:30l x y -+=所截得线段的长为22,则 直线m 的倾斜角是 0015,75 . 9、若经过点(0,2)P 且以()1,d a =为方向向量的直线l 与双曲线132 2 =-y x 相交于 不同两点A 、B ,则实数a 的取值围是 2215,3a a <≠ . 10、(理科)设曲线C 定义为到点)1,1(--和)1,1(距离之和为4的动点的轨迹.若将曲线

C 绕坐标原点逆时针旋转 45,则此时曲线C 的方程为__22 142 y x +=___________. 11、等腰ABC ?中,顶点为,A 且一腰上的中线长为3,则 三角形ABC 的面积的最大值 2 12、如图,已知OAP ?的面积为S ,1OA AP ?=. 设||(2)OA c c =≥,3 4 S c =,并且以O 为中心、A 为焦点的椭 圆经过点P .当||OP 取得最小值时,则此椭圆的方程为 22 1106 x y += . (二)选择题 13、“2a =”是“直线210x ay +-=与直线220ax y +-=平行”的( B )条件 (A )充要;(B )充分不必要;(C )必要不充分;(D )既不充分也不必要 14、如果i +2是关于x 的实系数方程02 =++n mx x 的一个根,则圆锥曲线 12 2=+n y m x 的焦点坐标是( D )(A))0,1(±; (B))1,0(±; (C))0,3(± ;(D))3, 0(± 15、已知:圆C 的方程为0),(=y x f ,点),(00y x P 不在圆C 上,也不在圆C 的圆心上, 方程0),(),(:'00=-y x f y x f C ,则下面判断正确的是……( B ) (A) 方程'C 表示的曲线不存在; (B) 方程'C 表示与C 同心且半径不同的圆; (C) 方程'C 表示与C 相交的圆; (D) 当点P 在圆C 外时,方程'C 表示与C 相离的圆。 16、若双曲线221112211:1(0,0)x y C a b a b -=>>和双曲线22 2222222 :1(0,0)x y C a b a b -=>>的 焦点相同,且12a a >给出下列四个结论:①2222 1221a a b b -=-; ②1221 a b a b >; ③双曲线1C 与双曲线2C 一定没有公共点; ④2121b b a a +>+;其中所有正确的结论 序号是( B )A. ①② B, ①③ C. ②③ D. ①④ y P x o A

解析几何(大题)

21.(本小题满分12分)[2017皖南八校]如图,点()2,0A -,()2,0B 分别为椭圆 ()22 22:10x y C a b a b +=>>的左右顶点,,,P M N 为椭圆C 上非顶点的三点,直线 ,AP BP 的斜率分别为12,k k ,且121 4 k k =- ,AP OM ∥,BP ON ∥. (1)求椭圆C 的方程; (2)判断OMN △的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由. 【答案】(1)2 2:14 x C y +=;(2)定值1. 【解析】(1)22 1,1144 2,AP BP b k k b a a ?=?=-??=??=? ,椭圆22:14x C y +=. (2)设直线MN 的方程为y kx t =+,()11,M x y ,()22,N x y , ()222 22 , 4184401,4 y kx t k x ktx t x y =+???+++-=?+=??, 122841 kt x x k +=-+,2122 44 41t x x k -=+, ()()1212121212121211 404044 y y k k y y x x kx t kx t x x x x ?=- ??=-?+=?+++=, ()()2 2121241440k x x kt x x t ++++=, ()22 22222448414402414141t kt k kt t t k k k ?? -+-+=?-= ?++?? , ()() ()( )2 2 2 2 1 2 1 2 1 2114MN k x x k x x x x ??= +-= ++-??

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(21121 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1 =+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直 线一般不重合.

高中数学平面解析几何的知识点梳理

平面解析几何 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针 方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:1 21121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=. 线段21P P 的中点是),(00y x M ,则??? ????+=+=2221 0210y y y x x x .

高中数学解析几何小题精选(带详解)

解析几何综合练习 【学习目标】 通过习题的练习,熟练答题技巧,同时进一步巩固所复习的知识点。 【重点】基础知识和基本方法的的掌握。 【使用说明与学法指导】 快速准确的解答所有习题,把答案写到指定位置,并把不会的习题做好标记,以便与老师和同学讨论。时间120分钟,分值150分。 【我的疑惑】 题号: 1.椭圆22 14 x y m + =的焦距是2,则m =( ) A .5 B .3 C .5或3 D .2 2.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( ) A .4 B C D 3.点()2,1P -为圆()2 2125x y -+=的弦AB 的中点,则直线AB 的方程为( ) A .10x y +-= B .230x y +-= C .250x y --= D .30x y --= 4.已知椭圆221(0,0)x y m n m n +=>>的长轴长为10,离心率3 5e =,则椭圆的方程是( ) A.2212516x y + =或2211625 x y += B.221169x y + =或22 1916 x y += C.221259x y + =或22 1925 x y += D. 22110025x y +=或22 125100 x y += 5.与直线32:+=x y l 平行,且与圆044222=+--+y x y x 相切的直线方程是( ) A .05=±-y x B .052=+-y x C .052=--y x D .052=±-y x 6.若m 是2和8的等比中项,则圆锥曲线2 2 1y x m +=的离心率是( ) A B 7.若直线==++=-++a y ax ay x a 则垂直与直线,01202)1(2( ) A .-2 B .0 C .-2或0 D .222± 8.已知直线()11y k x -=-恒过定点A ,若点A 在直线10mx ny +-=(,0)m n >上,则11 m n +的最小值为( ) A.2 B. 12 C.4 D.14 9.椭圆1322=+ky x 的一个焦点坐标为)10(,,则其离心率等于( ) A. 2 B. 21 C. 332 D. 2 3 10.直线3y kx =+与圆()()2 2 324x y -+-=相交于M,N k 的取值范围是( ) A.??????-0,43 B. []+∞???????-∞-,043, C. ?? ????-33,33 D. ??? ???-0,32 11.已知直线1:10l ax y -+=与2:10l x ay ++=,给出如下结论: ①不论a 为何值时,1l 与2l 都互相垂直; ②当a 变化时, 1l 与2l 分别经过定点A(0,1)和B(-1,0); ③不论a 为何值时, 1l 与2l 都关于直线0x y +=对称; ④当a 变化时, 1l 与2l 的交点轨迹是以AB 为直径的圆(除去原点). 其中正确的结论有( ) A .①③ B .①②④ C .①③④ D .①②③④

解析几何大题题型总结(1)

圆锥曲线大题训练1 (求范围)例1、已知过点A (0,1)且斜率为k 的直线l 与圆C :1)3()2(22=-+-y x 交于M 、N 两点。 (1)求k 的取值范围; (2)若12=?ON OM ,其中O 为坐标原点,求|MN | (定值问题)例2、已知椭圆C :12222=+b y a x (0>>b a )的离心率为2 2,点(2,2)在C 上。 (1)求C 的方程; (2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M 。证明:直线OM 的斜率与直线l 的斜率的乘积为定值。

例3、已知直线l 的方程为y = k ( x — 1 )(k >0),曲线C 的方程为 y 2 = 2x ,直线l 与曲线C 交于A 、B 两点,O 为坐标系原点。求证:OB OA ?错误!未找到引用源。是定值 例4、已知双曲线C :)0(122 22>>=-b a b y a x 的两条渐进线的夹角的正切值为724,点A (5,49)是C 上一点,直线l :)4(4 5>+-=m m x y 与曲线C 交于M 、N 两点。 (1)求双曲线C 的标准方程; (2)当m 的值变化时,求证:0=+AN AM k k

例5、已知椭圆C :)0(122 22>>=+b a b y a x 过A (2,0),B (0,1)两点 (1)求椭圆C 的方程及离心率 (2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值。 (轨迹方程)例6、已知点P (2,2),圆C :x 2+y 2—8y=0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点。 (1)求M 的轨迹方程; (2)当|OP|=|OM|时,求l 的方程及△POM 的面积。 例7、已知椭圆的中心在原点,焦点在x 轴上,一个顶点为B (0,-1),离心率为 36 (1)求椭圆的方程; (2)设过点A (0, 2 3)的直线l 与椭圆交于M 、N 两点,且|BM |=|BN |,求直线l 的方程。

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

高中数学解析几何大题专项练习.doc

解析几何解答题 2 2 x y 1、椭圆G:1(a b 0) 2 2 a b 的两个焦点为F1、F2,短轴两端点B1、B2,已知 F1、F2、B1、B2 四点共圆,且点N(0,3)到椭圆上的点最远距离为 5 2. (1)求此时椭圆G 的方程; (2)设斜率为k(k≠0)的直线m 与椭圆G相交于不同的两点E、F,Q 为EF的中点,问E、F 两点能否关于 过点P(0, 3 3 )、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 2、已知双曲线 2 2 1 x y 的左、右顶点分别为A1、A2 ,动直线l : y kx m 与圆 2 2 1 x y 相切,且与双曲 线左、右两支的交点分别为P1 (x1, y1 ), P2 ( x2 , y2) . (Ⅰ)求 k 的取值范围,并求x2 x1 的最小值; (Ⅱ)记直线P1A1 的斜率为k1 ,直线P2A2 的斜率为k2 ,那么,k1 k2 是定值吗?证明你的结论.

3、已知抛物线 2 C : y ax 的焦点为F,点K ( 1,0) 为直线l 与抛物线 C 准线的交点,直线l 与抛物线C 相交于A、 B两点,点 A 关于x 轴的对称点为 D .(1)求抛物线C 的方程。 (2)证明:点F 在直线BD 上; u u u r uu u r 8 (3)设 FA ?FB ,求BDK 的面积。.9 4、已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为中点 T 在直线OP 上,且A、O、B 三点不共线. (I) 求椭圆的方程及直线AB的斜率; ( Ⅱ) 求PAB面积的最大值.1 2 ,点 P(2,3)、A、B在该椭圆上,线段AB 的

浙江高考解析几何大题

浙江高考历年真题之解析几何大题 1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示). 解析:(Ⅰ)设椭圆方程为()22 2210x y a b a b +=>>,半焦距为c , 则2111,a MA a A F a c c =-=- ,()2 222 224 a a a c c a a b c ?-=-??? =??=+??? 由题意,得 2,3,1a b c ∴=== ,22 1.43 x y +=故椭圆方程为 (Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102 F PF PF M π <∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m = +,直线2PF 的斜率0 21 y k m =-, 002122222212002||tan 1121||1 y k k F PF k k m y m y m -∴∠= =≤= +-+-?- 2 01||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±->

2、(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,且椭圆的 离心率e= 2 3 。 (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。 解析:(Ⅰ)过 A 、B 的直线方程为 12 x y += 因为由题意得??? ????+-==+1211 2222x y b y a x 有惟一解, 即0)4 1(22222 22 =-+-+ b a a x a x a b 有惟一解, 所以22 2 2 (44)0(0),a b a b ab ?=+-=≠故442 2 -+b a =0; 又因为e 3 c =即 22234 a b a -= , 所以2 2 4a b = ;从而得22 1 2,,2 a b == 故所求的椭圆方程为22212x y += (Ⅱ)由(Ⅰ)得6c = , 所以 1266((F F ,从而M (1+4 6 ,0) 由 ?? ???+-==+1 211222 2x y y x ,解得 121,x x == 因此1(1,)2T = 因为126tan 1-= ∠T AF ,又21 tan =∠TAM ,6 2tan =∠2TMF ,得 12 6 6 1 121 62 tan -= + -= ∠ATM ,因此,T AF ATM 1∠=∠ 3、(2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S .

高中数学解析几何练习题

解析几何练习题 一选择题 1.椭圆 18 162 2=+y x 的离心率为( ) A. 31 B. 21 C. 33 D. 2 2 2.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) A. 1 2 B.1 C.2 D.4 3.设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是( ) A 28y x =- B 28y x = C 24y x =- D 24y x = 4.双曲线13 62 2=-y x 的渐近线与圆)0()3(222>=+-r r y x 相切,则r=( ) A 3 B 2 C 3 D6 5.已知直线)0)(2(>+=k x k y 与抛物线C:x y 82=相交A 、B 两点,F 为C 的焦点。若 FB FA 2=,则k= A. 31 B 32 C 32 D 3 22 6中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的 离心率为( ) C 2 D 2 7过点)0,1(且与直线022=--y x 平行的直线方程是( ) A 012=--y x B 012=+-y x C 022=-+y x D 012=-+y x 8若圆心在x O 位于y 轴左侧,且与直线x+2y=0相切,则圆O 的方程是( ) A 22(5x y += B 22(5x y += C 2 2 (5)5x y -+= D 2 2 (5)5x y ++=

9若直线01-+-y x 与圆2)(22=+-y a x 有公共点,则实数a 取值范围是( ) A [-3 ,-1 ] B[ -1 , 3 ] C [ -3 ,1 ] D (- ∞ ,-3 ] U [1 ,+ ∞ ) 10若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 A 45 B 35 C 25 D 15 11.若点O 和点F 分别为椭圆3 42 2y x +的中心和左焦点,点P 为椭圆上点的任意一点,则FP OP ?的最大值为 A.2 B.3 C.6 D.8 12已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ? 的最小值为( ) A 4-+ B 3- C 4-+ D 3-+13已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线与A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A 1x = B 1x =- C 2x = D 2x =- 14设圆C 与圆x 2+(y-3)2=1外切,与直线y =0相切,则C 的圆心轨迹为 A .抛物线 B .双曲线 C .椭圆 D .圆 15已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为( ) A 34 B 1 C 54 D 74 16已知椭圆22122:1x y C a b +=(a >b >0)与双曲线22 2:14 y C x - =有公共的焦点C 2的一条渐近线与以C 1的长轴为直径的圆相交于,A B 两点.若C 1恰好将线段AB 三等分,则( ) A 2a = 132 B 2a =13 C 2 b =12 D 2 b =2 17.在平面直角坐标系xoy 中,直线0543=-+y x 与圆42 2 =+y x 相交于A 、B 两点,则弦AB 的长等于 A. B. D.1

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

空间解析几何(练习题参考答案)

1. 过点Mo (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程. 39.02=+-z y 3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离 相等. 7.)5 1,1,57(. 5.已知:→ →-AB prj D C B A CD ,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( ) A.4 B .1 C. 2 1 D .2 7.设平面方程为0=-y x ,则其位置( ) A.平行于x 轴 B.平行于y 轴 C.平行于z 轴 D.过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D.重合 9.直线 3 7423z y x =-+=-+与平面03224=---z y x 的位置关系( ) A.平行 B.垂直 C .斜交 D.直线在平面内 10.设点)0,1,0(-A 到直线?? ?=-+=+-0 720 1z x y 的距离为( ) A.5 B . 6 1 C. 51 D.8 1 5.D 7.D 8.B 9.A 10.A. 3.当m=_____________时,532+-与m 23-+互相垂直. 4 . 设 ++=2, 22+-=, 243+-=,则 )(prj c += . 4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:442 2 2 =++z y x ,它是由曲线________绕_____________旋转而成的.

高中平面解析几何 全一册

高中平面解析几何全一册 第二章圆锥曲线 第二单元圆 一、教法建议 【抛砖引玉】 本单元共有两小节,主要研究圆的标准方程和圆的一般方程。 在初中平面几何我们已经学习了圆的定义和性质,在这里我们根据圆是到定点(圆心)的距离等于定长(半径)的点的轨迹,建立了圆的标准方程:(x-a)2 + (y-b)2 = r2,它是由在直角坐标第中圆心的坐标(a、b)和半径r所确定的方程,又根据平面几何中所学圆的切线的定义和性质,由圆的标准方程研究了圆的切线方程,并由圆的标准方程解决了一些实际问题。 由于圆的标准方程实际上是一个二元二次方程,我们又研究了一般的二元二次方程与圆的方程的关系,得到了圆的一般方程,最后又研究了用待定系数法求圆的方程。 【指点迷津】 这一单元的重点是圆的标准方程和圆的一般方程,要求学生能由圆心坐标和半径长熟练地写出圆的标准方程,并能由圆的标准方程准确地写出它的圆心坐标和半径长。对于圆的一般方程,要求学生掌握它的特点,会用配方法把一般方程化为标准方程。 由于圆是平面几何中重点学习的图形,学习了圆的很多性质,特别是和圆有关的直线和线段(直线的一部分)的性质,如圆的切线,割线,弦等的性质在这一单元都会用到,教师可概括学习内容适当地复习有关性质,并启发学生在解题中运用性质,可以顺利解决有关问题。 圆的切线也是这个单元的重要内容,它主要研究了过圆上一点的圆的切线,过圆外一点的圆的切线,已知斜率的圆的切线,要求学生掌握求各种条件下切线的方法,在此基础上也可以总结出一些带规律性的东西,适当记忆,加快解题速度,特别是解选择题和填空题,如: 过圆x2 + y2 = r2上一点(x1,y1)的切线方程是x1x + y1y = r2 过圆(x-a)2 + (y-b)2 = r2上一点(x1、y1)的切线方程是(x1-a)(x-a) + (y1-b)(y -b) = r2 圆x2 + y2 = r2的斜率为k的切线的方程是y kx r k 12 =±+ 对于圆的一般方程应要求学生明确掌握,二元二次方程的一般形式 A x2 + B xy + C y2 + D x + D y + F = 0必须满足如下三个条件: (1)x2和y2项的系数相同,且不等于零,即A=C≠0 (2)不含xy项,即B = 0

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆221x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11PA 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗?证明你的结论.

3、已知抛物线2:C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?= ,求BDK ?的面积。. 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值.

最新高三数学解析几何大题专项训练

解析几何大题专项训练 1 由于解析几何大题重点考察直线与圆锥曲线的几何性质和交叉知识的综合 2 应用,涉及的内容丰富,易于纵横联系,对于考察学生的数学素质,综合解答 3 问题的能力和继续学习能力有着重要的作用。同时,解析几何大题又是学生的 4 一大难点,经常是入题容易,出来难。因此加大解析几何大题的专题训练很有 5 必要。 6 例1、山东07年(21)(本小题满分13分)已知椭圆C 的中心在坐标原点, 7 焦点在x 轴上,椭圆C 上的点到焦点的距离的最大值为3,最小值为1. 8 (I)求椭圆C 的标准方程; 9 (II)若直线:l y kx m =+与椭圆C 相交于A,B 两点(A,B 不是左右顶点),且以10 AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标. 11 12 13 例2、湖北(本小题满分12分) 14 在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物线22x py =(0p >)15 相交于A B ,两点. 16 (I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面积的最小值; 17 (II )是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长18 恒为定值?若存在,求出l 的方程;若不存在,说明理由. 19

20 21 22 例3、(本小题满分13分)如图,设抛物线214C y mx =:(0)m >的准线与x 轴 23 交于1F ,焦点为2F ;以12F F 、为焦点,离心率12 e =的椭圆2C 与抛物线1C 在x 轴 24 上方的一个交点为P . 25 (Ⅰ)当1m =时,求椭圆的方程及其右准线的方程; 26 (Ⅱ)在(Ⅰ)的条件下,直线l 经过椭圆2C 的右焦点2F ,与抛物线1C 交于 27 12A A 、,如果 28 以线段12A A 为直径作圆,试判断点P 与圆的位置关系,并说明理由; 29 (Ⅲ)是否存在实数m ,使得△12PF F 的边长是连续的自然数,若存在,30 求出这样的实数m ;若不存在,31 请说明理由. 32 33 34 例4、(小题满分14分) 35

解析几何大题的解题技巧

目录 解析几何大题的解题技巧(只包括椭圆和抛物线) (1) 一、设点或直线 (1) 二、转化条件 (2) (1)求弦长 (2) (2)求面积 (2) (3)分式取值判断 (3) (4)点差法的使用 (4) 四、能力要求 (6) 五、补充知识 (6) 关于直线 (6) 关于椭圆: (7) 例题 (7) 解析几何大题的解题技巧(只包括椭圆和抛物线)——————————————————一条分割线——————————————— 一、设点或直线 做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。直线与曲线的两个交点一般可以设为等。对于椭圆上的唯一的动点,还可以设为。在抛物 线上的点,也可以设为。◎还要注意的是,很多点的坐标都是设而不求的。对于 一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设(m是倾斜角的余切,即斜率的倒数,下同)。如果只是过定点而且需要求与长度或面积有关的式子,可以设参数方程,其中α是直线的倾斜角。

一般题目中涉及到唯一动直线时才可以设直线的参数方程。如果直线不过定点,干脆在设直线时直接设为y=kx+m或x=my+n。(注意:y=kx+m不表示平行于y轴的直线,x=my+n不表示平行于x轴的直线)由于抛物线的表达式中不含x的二次项,所以直线设为 或x=my+n联立起来更方便。 二、转化条件 有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。下面列出了一些转化工具所能转化的条件。向量:平行、锐角或点在圆外(向量积大于0)、直角或点在圆上、钝角或点在圆内(向量积小于0),平行四边形斜率:平行(斜率差为0)、垂直(斜率积为-1)、对称(两直线关于坐标轴对称则斜率和为0,关于y=±x对称则斜率积为1(使用斜率转化一定不要忘了单独讨论斜率不存在的情况!)几何:相似三角形(依据相似列比例式)、等腰直角三角形(构造全等)有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单,三思而后行。三、代数运算转化完条件只需要算数了。很多题目都要将直线与圆锥曲线联立以便使用一元二次方程的韦达定理,但要注意并不是所有题目都需要联立。 (1)求弦长解析几何中有的题目可能需要算弦长,可以用弦长公式 ,设参数方程时,弦长公式可以简化为 (2)求面积 解析几何中有时要求面积,如果O是坐标原点,椭圆上两点A、B坐标分别为AB与x轴交于D,则(d是点O到AB的距离;第三个公式教材没 有,解要用的话需要把下面的推导过程抄一下,理解一下。)。

相关主题
文本预览
相关文档 最新文档