当前位置:文档之家› 概率论-第十一、十二讲 关系的基本概念及合成运算

概率论-第十一、十二讲 关系的基本概念及合成运算

概率论第二章练习答案

《概率论》第二章练习答案 一、填空题: ”2x c S 1 1.设随机变量X的密度函数为f(x)= 则用丫表示对X的3次独立重复的 0 其匕 '- 观察中事件(X< -)出现的次数,则P (丫= 2)= ___________________ 。 2 2.设连续型随机变量的概率密度函数为: ax+b 0

4. 设为随机变量,E =3, E 2=11,则 E (4 10) = 4E TO =22 5. 已知X的密度为(x)二ax?"b Y 01 0 . x :: 1 1 1 (x ) =P(X?),则 3 3 6. 7. 1 1 (X〈一)= P ( X〉一)一 1 (ax b)dxjQx b) 联立解得: dx 若f(x)为连续型随机变量X的分布密度,则J[f(x)dx= ________ 1 ——'J 设连续型随机变量汕分布函数F(x)=x2/:, 丨1, x :: 0 0 岂 x ::: 1,则 P ( E =0.8 ) = _0_; P(0.2 :::: 6) = 0.99 8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度:(x)二 x _100 x2,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不0(其他) 需要更换的概率为_____ 厂100 8/27 _________ x> 100

第一讲_概率论概述

第一讲 概率论概述 1. 概率空间 定义 (概率空间)称一个三元组(,,)P ΩF 是概率空间,其中,Ω是样本空间,F 是Ω 上的一个σ代数,而P 是?上的一个概率测度。 关于σ代数 定义 (代数和σ代数)集合Ω的一个子集类?被称为代数,如果满足条件, (1) ?∈φΩ,;(2) ?∈21B B ,?∈-21B B ,?∈?i B ,2,1=i 。 如果一个代数对可列并运算封闭,则称其为σ代数。 为什么要引入σ代数? 以掷骰子为例:{1,2,3,4,5,6}Ω=,所有子集构成一个σ代数。但是,如感兴趣的问题是出现的点数是偶数还是奇数,那么考虑的事件集只有两个:{1,3,5},{2,4,6}A B ==,包含它们的最小σ代数为{,,,}A B ΩΦ?=。因此,只要限制在?上研究问题。 关于概率测度 定义 (σ代数上的概率测度)一个概率测度是满足如下条件的映射]]1,0[:→?P : (1) 可列可加性:∑∞ =∞ == 1 1)()(n n n n A P A P ,n m A A A n m n ≠=?∈?,,φ ; (2) 规一性:1)(=ΩP 。 概率测度一般化的意义:涵盖了可能出现的各种问题。 以抛硬币为例:{0,1}S =,那么直观上的概率1 ({0})({1})2 P P ==只是可能出现的情况中的一个:硬币是均匀的。硬币不均匀,则完全可能有其它选择。 例 古典概率模型。 关于可列可加性 可列的含义。 可列可加不能用于任意个集合的并:例如[0,1]Ω=,均匀投点,取每一点的概率为0,但其总和仍为1。 概率函数的一些性质 概率函数P 显然可视为可测空间上的一个测度,所以测度的许多性质也可用于概率。 序列极限意义下的连续性:可列可加性蕴涵了概率函数的连续性。 定理 若}1,{≥n A n 是单调增加序列(或减小序列),则 )lim ()(lim n n n n A P A P ∞ →∞ →=。 关于集合序列极限的定义 单调上升序列的极限:1 lim n n n n A A ∞→∞ == ;

大学数学 概率论10第10讲(第二章)

第十讲 Ch.2 随机变量及其分布 §2.4 常用离散型分布 Remark 讨论常用分布的目的及常用分布的类型 §2.4§2.5???常用离散型分布(中讨论)常用分布常用连续型分布(中讨论) 2.4.1 二项分布(以n 重伯努利试验为背景的分布) 1. 二项分布的定义与记号 记 =X “n 重伯努利试验中A 发生(即‘成功’)的次数”, 则X 为离散型..V R ,其可能值为n ,,2,1,0???.且由事件的独立性可得 n k p p C k X P k n k k n ,,2,1,0,)1()(???=-==-. 其中)(A P p =,满足10<

☆检查不合格品率为p 的一批产品中的10件,其中不合格品数~X b ),10(p ; ☆随机调查色盲率为p 的任意50个人中的色盲人数 ~Y b ),50(p ; ☆命中率为p 的射手5次射击中命中次数~Z b ),5(p . 2. 利用二项分布的分布列计算概率 例2.4.1 (题目叙述没有区分患者与健康者!换讲 .101.P 习题的第2题) 一条自动化生产线上产品一级品率为0.8,检查5件,求至少有2件一级品的概率. 解 记 X =“抽检5件产品中一级品的件数”, 则依题意可知~X b )8.0,5(,于是 (P 抽检5件中至少有2件是一级品) ()()()() ()() 5 4 11 5 5 21210110.810.80.810.80.99328 P X P X P X P X C C =≥=-<=-=-==-??--??-= 例 2.4.2 已知~X b ),2(p ,~Y b ),3(p ,若 ()5 19 P X ≥= ,求()1P Y ≥.

概率论与数理统计总复习 公式概念定理

概率论与数理统计总复习 第一章 概率论的基本概念 1. 事件的关系及运算 互不相容事件:AB =Φ 即A,B 不能同时发生。 对立事件:A B =ΩU 且AB =Φ 即A B B ==Ω- 差事件:A B - 即 A 发生但B 不发生的事件 切记: ()A B AB A AB A B B -==-=-U 2. 概率的性质 单 调 性 : 若 B A ?,则 )()()(A P B P A B P -=- 加法定理:)()()() (AB P B P A P B A P -+=Y )()()()()(AB P C P B P A P C B A P -++=Y Y )()()(ABC P CA P BC P +-- 例1 设 ,,()0.7,()0.4,A C B C P A P A C ??=-= ()0.5P AB =,求()P AB C -。 解:()()()P A C P A P AC -=- ()()P A P C =- (AC C =Q ) 故 ()()()0.70.40.3P C P A P A C =--=-= 由此 ()()()P AB C P AB P ABC -= - ()()P AB P C =- (ABC C =Q ) 0.50.30.2=-=

注:求事件的概率严禁画文氏图说明,一定要用概率的性质 计算。 3. 条件概率与三个重要公式 乘法公式 全概率公式 1()()(/)n i i i P A P B P A B ==∑ 贝叶斯公式(求事后概率) 例2、(10分)盒中有6个新乒乓球,每次比赛从其中任取两个球来用,赛后仍放回盒中,求第三次取得两个新球的概率。 解:设A i ——第2次摸出i 个新球(i =0,1,2), B ——第3次摸出两个新球 ∵ A 0,A 1,A 2构成Ω的一个划分 ∴ 由全概率公式 其中 故 ; )/()()(A B P A P AB P =()(/) (/)() i i i P B P A B P B A P A = 2 ()()(|) k k k P B P A P B A ==∑201102 244224012222 666186(),()()151515C C C C C C P A P A P A C C C ======202002 334242012222 666631 (|)(|)(|)151515 C C C C C C P B A P B A P B A C C C ======4 ()0.16 25 P B ==

概率论(计算)习题

概率论计算: 1.已知在10只晶体管中有2只次品,在其中取两次,作不施加抽样,求下列事件的概率。(1)两只都是正品?(2)两只都是次品?(3)一只是正品,一只是次品?(4)第二次取出的是次品? 解:设A1、A2表示第一、二次取到正品的事件,由等可能概型有:(1) 45 2897108)1|2()1()21(=?==A A P A P A A P (2) 45 191102)1|2()1()2,1(=?= =A A P A P A A P (3) 45 169810292108)1|2()1()1|2()1() 21()21(=???=+=+A A P A P A A P A P A A P A A P (4) 5 19110292108)1|2()1()1|2()1() 2(=???=+=A A P A P A A P A P A P 2.某电子设备制造厂所用的晶体管是由三家元件厂提供的,根据以往记录有如下数据~~~设三家工厂的产品在仓库中是均匀混合的,且无区别的标志。(1)在仓库中随机地取一只晶体管,求它是次品的概率。(2)在仓库中随机地取一只晶体管,发现是次品,问此次品是一厂产品的概率? 解:设Bi (I=1,2,3)表示任取一只是第I 厂产品的事件,A 表示任取一只是次品的事件。 (1)由全概率公式 0125 .003.005.001.080.002.05.0)3|()3()2|() 2()1|()1()(=?+?+?=++=B A P B P B A P B P B A P B P A P (2)由贝叶斯公式 24 .00125.002.015.0) () 1|()1()|1(=?== A P B A P B P A B P 3.房间里有10个人,分别佩戴从1号到10叼的纪念章,任选三人记录其纪念章的号码,求:(1)最小号码为5的概率;(2)最大号码为5的概率。 解:由等可能概型有: (1)12110 25== C C P ; (2) 1 10 24 ==C C P 4.6件产品中有4件正品和2件次品,从中任取3件,求3件中恰为1件次品的概率。 解:设6件产品编号为1,2……6,由等可能概型 5336 1224== C C C P 5.设随机变量X 具有概率密度???? ?≤>-=0, 00 , 3)(x x x ke x f 。(1)确定常数k ;(2)求P (X>0.1) 解:(1)由1)(=∞ -+∞ ?dx x f 有33 3303301==-+∞ =-+∞-??k k x d x e k dx x ke 所以(2) 7408 .0331 .0)1.0(=-+∞=>? dx x e x P 6.一大楼装有5个同类型的供水设备,调查表明,在任一时刻t ,每个设备被使用的概率为0.1,问在同一时刻(1)恰有2个设备被使用的概率是多少?(2)至多有3个设备被使用的概率是多少?(3)至少有1个设备被使用的概率是多少? 解:由题意,以X 表示任一时刻被使用的设备的台数,则X~b(5,0.1),于是 (1) 0729.039.021.025 )2(===C X P (2) 9995 .051.0559.041.045[1)]5()4([1) 3(1)3()2()1()0()3(=+-==+=-=>-==+=+=+==≤C C X P X P X P X P X P X P X P X P

《概率论与数理统计》课程练习计算题

三、解答题 1.设对于事件A 、B C 、有=)(A P 4/1)()(==C P B P ,0)()(==BC P AB P , 8/1)(=AC P ,求A 、C B 、至少出现一个的概率。 解:由于,AB ABC ?从而由性质4知,0)()(=≤AB P ABC P ,又由概率定义知 0)(≥ABC P ,所以0)(=ABC P ,从而由概率的加法公式得 )()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= 8 5 81341=-?= 2.设有10件产品,其中有3件次品,从中任意抽取5件,问其中恰有2件次品的概率是多少? 解:设A 表示:“任意抽取的5件中恰有2件次品”。则5 10)(C n =Ω。5件产品中恰有2件次品的取法共有23C 37C 种,即23)(C A n =37C 。于是所求概率为 P A n A n ()()/()==Ω23C 37C /84/355 10=C 3.一批产品共有10个正品2个次品,从中任取两次,每次取一个(有放回)。求: (1)第二次取出的是次品的概率; (2)两次都取到正品的概率; (3)第一次取到正品,第二次取到次品的概率。 解:设i A 表示:“第i 次取出的是正品”(i =1,2),则 (1)第二次取到次品的概率为 )(2121A A A A P 6 1 1221221221210=?+?= (2)两次都取到正品的概率为 )(21A A P )|()(121A A P A P =36 2512101210=?= (3)第一次取到正品,第二次取到次品的概率为 )(21A A P 36 51221210=?= 4.一批产品共有10个正品2个次品,从中任取两次,每次取一个(不放回)。求:

概率论习题及答案习题详解

222 习题七 ( A ) 1、设总体X 服从参数为N 和p 的二项分布,n X X X ,,,21 为取自 X 的一个样本,试求参数p 的矩估计量与极大似然估计量. 解:由题意,X 的分布律为: ()(1),0k N k N P X k p p k N k -??==-≤≤ ??? . 总体X 的数学期望为 (1)(1) 011(1)(1) 1N N k N k k N k k k N N EX k p p Np p p k k ----==-????=-=- ? ?-???? ∑∑ 1((1))N Np p p Np -=+-= 则EX p N = .用X 替换EX 即得未知参数p 的矩估计量为?X p N =. 设12,,n x x x 是相应于样本12,,n X X X 的样本值,则似然函数为 11 1211(,,;)()(1) n n i i i i n n x nN x n i i i i N L x x x p P X x p p x ==- ==∑ ∑??===?- ??? ∏∏ 取对数 11 1ln ln ln ()ln(1)n n n i i i i i i N L x p nN x p x ===??=+?+-?- ???∑∑∑, 11 ln (1) n n i i i i x nN x d L dp p p ==-=--∑∑.

223 令 ln 0d L dp =,解得p 的极大似然估计值为 11?n i i x n p N ==∑. 从而得p 的极大似然估计量为 11?n i i X X n p N N ===∑. 2,、设n X X X ,,,21 为取自总体X 的一个样本,X 的概率密度为 2 2,0(;)0, x x f x θ θθ?<,求θ的矩估计. 解:取n X X X ,,,21 为母体X 的一个样本容量为n 的样本,则 20 22 ()3 x EX xf x dx x dx θ θθ+∞ -∞ ==? =? ? 3 2 EX θ?= 用X 替换EX 即得未知参数θ的矩估计量为3 ?2 X θ =. 3、设12,,,n X X X 总体X 的一个样本, X 的概率密度为 ?? ?? ?≤>=--0 ,0, 0, );(1x x e x x f x α λαλαλ 其中0>λ是未知参数,0>α是已知常数,求λ的最大似然估计. 解:设12,,,n x x x 为样本12,,,n X X X 的一组观测值,则似然函数为

概率论套练习题及答案

《概率论与数理统计》 同步练习册 学号________ 姓名________ 专业________ 班级________ 广东省电子技术学校继续教育部 二O一O年四月

练习一 一、选择题 1.设A ,B ,C 表示三个随机事件,则A B C 表示 (A )A ,B ,C 中至少有一个发生; (B )A ,B ,C 都同时发生; (C )A ,B ,C 中至少有两个发生; (D )A ,B ,C 都不发生。 2. 已知事件A ,B 相互独立,且P(A)=0.5,P(B)=0.8,则P (A B )= (A) 0.65 ; (B) 1.3; (C)0.9; (D)0.3。3.设X ~B (n ,p ),则有 (A )E (2X -1)=2np ; (B )E (2X +1)=4np +1; (C )D (2X +1)=4np (1-p )+1; (D )D (2X -1)=4np (1-p )。 4.X 的概率函数表(分布律)是 xi -1 0 1 pi 1/ 4 a 5/12 则a =( ) (A )1/3; (B )0; (C )5/12; (D )1/4。 5.常见随机变量的分布中,数学期望和方差一定相等的分布是 (A )二项分布; (B )标准正态分布; (C )指数分布; (D )泊松分布。 二、填空题 6.已知:A={x|x<3} ,B={x|2a 有(1)-= -=-2 1)(1)(a F a F ? a dx x p 0 )(; (2)P (1 )(2)-=ξ。

概率论一二章习题详解

习题一 (A ) 1. 用三个事件,,A B C 的运算表示下列事件: (1),,A B C 中至少有一个发生; (2),,A B C 中只有A 发生; (3),,A B C 中恰好有两个发生; (4),,A B C 中至少有两个发生; (5),,A B C 中至少有一个不发生; (6),,A B C 中不多于一个发生. 解:(1)A B C (2)ABC (3) ABC ABC CAB (4) AB BC CA (5) A B C (6) AB BC C A 2. 在区间[0,2]上任取一数x , 记 1 {| 1},2 A x x =<≤ 13 {| }42 B x x =≤≤,求下列事件的表达式: (1)AB ; (2)AB ; (3) A B . 解:(1){|1412132}x x x ≤≤<≤或 (2)? (3){|014121x x x ≤<<≤或 3. 已知()0.4,()0.2,()0.1P A P BA P CAB ===,求()P A B C .

解:0.2()()P A P AB =-, 0.1()(())()()()()()() P C AB P C A B P C P CA CB P C P CA P CB P ABC -=-=-=--+ ()()()()()()()()P A B C P A P B P C P AB P BC P CA P ABC =++---+ =0.40.20.10.7++= 4. 已知()0.4,()0.25,()0.25P A P B P A B ==-=,求()P B A -与 ()P AB . 解:()()()0.25P A B P A P AB -=-=, ()0.15P AB =, ()()()0.250.150 P B A P B P AB -=-=-=, ()()1()() ()P A B P A B P A P B P A B ==--+ 10.40.250.150.5=--+= 5.将13个分别写有,,,,,,,,,,,,A A A C E H I I M M N T T 的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN ”的概率. 解:2322248 13!13! p ????= = 6. 从一批由45件正品、5件次品组成的产品中任取3件产品,求其中恰好有1件次品的概率. 解:12 5453 5099 392 C C p C == 7. 某学生研究小组共有12名同学,求这12名同学的生日都集中在第二季度(即4月、5月和6月)的概率. 解: 12 12312 p =: 8. 在100件产品中有5件是次品,每次从中随机地抽取1件,取后不放回,求第三次才取到次品的概率. 解:设i A 表示第i 次取到次品,1,2,3i =,

概率论练习题与解析

概率论练习题与解析

十、概率论与数理统计 一、填空题 1、设在一次试验中,事件A 发生的概率为 p 。现进行n 次独立试验,则A 至少发生一 次的概率为n p )1(1--;而事件A 至多发生一 次的概率为1)1()1(--+-n n p np p 。 2、 三个箱子,第一个箱子中有4个黑球1 个白球,第二个箱子中有3个黑球3个白球, 第三个箱子有3个黑球5个白球。现随机地 取一个箱子,再从这个箱子中取出1个球,这个球为白球的概率等于 。已知取出 的球是白球,此球属于第二个箱子的概率为 。 解:用i A 代表“取第i 只箱子”,i =1,2,3,用 B 代表“取出的球是白球”。由全概率公式 ?=?+?+?=++=120 53853163315131) |()()|()()|()()(332211A B P A P A B P A P A B P A P B P 由贝叶斯公式

?=?==5320120 536331)()|()()|(222B P A B P A P B A P 3、 设三次独立试验中,事件A 出现的概率 相等。若已知A 至少出现一次的概率等于 19/27,则事件A 在一次试验中出现的概率为 。 解:设事件A 在一次试验中出现的概率为 )10(<

概率学经典计算题

1. (袋中有红球6个, 白球4个, 从中取两次, 每次任取一个, 作不放回抽样. 设事件A 表示 “第一次取的是红球”, 事件B 表示 “第二次取的是白球”, 用B A ,表示下列事件, 并求其概率: 1)两个都是红球; 2)两球中,白球和红球各有一个; 3)第二次取的是红球. 解:1) 262101 ()3C P AB C ==................................................(5’) 2) 11462 108 ()15C C P AB C ==.....................................................(10) 3)1124662 103 ()5 A A A P B A +==......................................................(15’) 2.(7分) 某宾馆大楼有3部电梯,通过调查,知道某时刻T ,各电梯正在 运行的概率均为0.8,求:(1) 在此时刻恰有一台电梯运行的概率; (2) 在此时刻至少有一台电梯运行的概率. 解: (1) 096.02.08.032 =??=P 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。(3’) (2) 992.02.013=-=P 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。(7’) 3.(8分)某工厂有甲、乙、丙三个车间生产同一种产品,如果每个车间的次品率分别为6%,3%,2%,已知甲、乙、丙三个车间的产量分别占总产量的25%,25% ,50% 。现从全厂产品中任取一件产品,求取到的为次品的概率。 解:设123,,A A A 分别表示“取到的产品为甲、乙、丙车间生产的” B 表示“取到的产品为次品”,则 123()25%,() 25%,()50%P A P A P A === 123(|)6%,(|)3%,(|)2%P B A P B A P B A ===。 。。。。。。。。。。。。。。。。(3’) 由全概率公式,所求概率为 3 1()()(|) i i i P B P A P B A ==∑ 25%6%25%3%50%2%=?+?+? 3.06%=。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。(8’) 4. (8分) 设随机变量X 在区间],0[π上服从均匀分布,求随机变量

第一章 概率论的基本概念练习题及答案

第一章 概率论的基本概念练习题 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件 D C B A BC C A B A AB ---+,,,,中的样本点。 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 《 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和: C B A ++,C AB +,AC B -. 6. 若事件C B A ,,满足C B C A +=+,试问B A =是否成立举例说明。 7. 对于事件C B A ,,,试问C B A C B A +-=--)()(是否成立举例说明。 8. 设 31)(=A P ,21 )(=B P ,试就以下三种情况分别求)(A B P : (1)Φ=AB , (2)B A ?, (3) 81 )(=AB P . 9. 已知41)()()(===C P B P A P ,161)()(==BC P AC P ,0 )(=AB P 求事件C B A ,,全 不发生的概率。 10. 每个路口有红、绿、黄三色指示灯,假设各色灯的开闭是等可能的。一个人骑车经过三个路口,试求下列事件的概率:=A “三个都是红灯”=“全红”; =B “全绿”; =C “全黄”; =D “无红”; =E “无绿”; =F “三次颜色相同”; =G “颜色全不相同”; =H “颜色不全相同”。 11. 设一批产品共100件,其中98件正品,2件次品,从中任意抽取3件(分三种情况:一次拿3件;每次拿1件,取后放回拿3次;每次拿1件,取后不放回拿3次),试求: (1) (1)取出的3件中恰有1件是次品的概率; (2) … (3) (2)取出的3件中至少有1件是次品的概率。 12. 从9,,2,1,0 中任意选出3个不同的数字,试求下列事件的概率: {}501与三个数字中不含=A ,{}502或三个数字中不含=A 。 13. 从9,,2,1,0 中任意选出4个不同的数字,计算它们能组成一个4位偶数的概率。 14. 一个宿舍中住有6位同学,计算下列事件的概率:

概率论与数理统计练习题及答案

A . P(A B) =P(A) B . P AB 二 P A 概率论与数理统计习题 、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中) 1. 设 X~N(1.5,4),且:?:」(1.25) =0.8944,.:」(1.75) = 0.9599,贝U P{-2

概率论的基本概念

概率论的基本概念 1.1 随机试验 1.随机现象在一定条件下具有多个可能的结果,个别几次观察中结果呈现出随机性(不确定性),在大量重复观察中结果又呈现出固有的客观规律性的自然现象称为随机现象. 随机现象的三大特点: (1)在一定条件下具有多个可能的结果,所有可能的结果已知; (2)在一次观察中,结果呈现出随机性,不能确定哪一个结果将会出现; (3)在大量的重复观察(相同条件下的观察)中,结果的出现又呈现出固有的客观规律性. 2.随机试验具有以下几个特点的实验称为随机实验,常用E 来表示 1)可以在相同的条件下重复进行; 2)试验的结果不止一个,并且能事先明确试验所有可能的结果; 3)进行一次试验之前不能确定哪一个结果会出现. 注:随机试验即可在相同条件下重复进行的针对随机现象的试验.

1.2 样本空间与随机事件 1. 样本空间与随机事件的概念 1) 样本空间 随机试验E的所有可能结果E的样本空间,记为S. 样本空间的元素,即E的每个结果,称为样本点. 样本空间依据样本点数可分为以下三类 (1)有限样本空间:样本空间中样本点数是有限的; (2)无限可列样本空间:样本空间中具有可列无穷多个样本点; (3)无限不可列样本空间:样本空间中具有不可列无穷多个样本点. 2) 随机事件一般,称随机试验E的样本空间S的任何一个子集为E的随机事件,简称为事件. 在一次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生. 注:(1):随机事件在一次试验中可能发生,也可能不发生; (2):由一个样本点构成的单点集,称为基本事件; (3):样本空间S是必然事件,空集 是不可能事件,它们两个发生与否不具有随机性,为了方便将它们两个也称为随机事件。

概率论与数理统计C的习题集-计算题

一、概率公式的题目 1、已知() ()()0.3,0.4, 0.5,P A P B P AB === 求 () .P B A B ? 解:() () () ()()()() () 0.70.51 0.70.60.54 P A P AB P AB P B A B P A B P A P B P AB --?= = = =+-?+- 2、已知()()()0.7,0.4,0.2,P A P B P AB === 求() .P A A B ? 解: () ()() () ()()() 0.22 0.70.29 P A A B P AB P A A B P A B P A P B P AB ??????= = = =+?+-。 3、已知随机变量(1)X P ,即X 有概率分布律{}1 (0,1,2)! e P X k k k -== =, 并记事件{}{}2,1A X B X =≥=<。 求: (1)()P A B ?; (2) ()P A B -; (3) () P B A 。解:(1)()() {}{}1 11()12,1111P A B P A B P AB P X X P X e -?=-?=-=-<≥=-==-; (2)(){}{}{}{}1()2,1210112;P A B P AB P X X P X P X P X e --==≥≥=≥=-=-==- (3)() () () {}{}{}{}{}111,201 .20122P BA P X X P X e P B A P X P X P X e P A --<<== ====<=+= 5、为了防止意外,在矿同时设两种报警系统,A B ,每种系统单独使用时,其有效的概率系统A 为0.92,系统B 为0.93,在A 失灵的条件下,B 有效的概率为0.85,求: (1)发生意外时,这两个报警系统至少有一个有效的概率;(2)B 失灵的条件下,A 有效的概率。 解:设=A “系统A 有效”,=B “系统B 有效”, ()()() 0.92,0.93,0.85P A P B P B A ===, ()()()()()()()()()()1.0.988P A B P A P B P AB P A P AB P A P A P B A ?=+-=+=+= ()()()()()()()()()()() 0.070.080.152.0.8290.07P AB P B P A P B A P B P AB P A B P B P B P B ---?= ==== 6、由长期统计资料得知,某一地区在4月份下雨(记作事件A )的概率为4 15 ,刮风(记作事件B )的概率为 715,既刮风又下雨的概率为110 ,求()()()(1);(2);(3)P A B P B A P A B ?。 解:()()()1 3 10(1)714 15 P AB P A B P B ===;

概率论的基本概念

第一章概率论的基本概念 第一节随机事件、频率与概率 一、教学目的: 1.通过本节起始课序言简介,使学生初步了解概率论简史、特色,从 而引导学生了解本课程概况及学习本课程的思想方法 2.通过本次课教学,使学生理解随机事件概念、频率与概率的概念, 了解随机试验、样本空间的概念,掌握事件的关系和运算,掌握 概率的基本性质及其运算 二、教学重点:概率的概念 三、教学难点:事件关系的分析与运算 四、教学内容: 1.序言:⑴简史⑵学法 2.§1.随机试验: ⑴实例⑵确定性现象⑶随机现象 3.§2.样本空间、随机事件: ⑴样本空间⑵随机事件⑶事件关系 与运算 4.§3. 频率与概率⑴频率定义、性质⑵概率定义、性质 五、小结: 六、布置作业: 标准化作业第一章题目 第二节古典概型、条件概率 一、教学目的: 通过本节教学使学生了解古典概型的定义,理解条件概率的概念,并能够解决一些古典概型、条件概率的有关实际问题. 二、教学重点:古典概率、条件概率计算 三、教学难点:古典概型与条件概率分析与建模 四、教学内容: 1.§4.古典概型 2.§5.条件概率(一) 五、小结: 六、布置作业: 标准化作业第一章题目 第三节乘法公式、全概率公式、Bayes公式、独立性 一、教学目的: 1.通过本节教学使学生在理解条件概率概念的基础上,掌握乘法公

式、全概率公式、Bayes公式以及能够运用这些公式进行概率计算。 2.理解事件独立性概念,掌握用独立性概念进行计算. 二、教学重点: 1.乘法公式及其使用 2.独立性概念及其应用 三、教学难点:应用公式分析与建模 四、教学内容: 1.§5.条件概率(二、三)2.§6.独立性 五、小结: 六、布置作业: 标准化作业第一章题目 第四节习题课 一、教学目的: 通过本习题课教学使学生全面系统对概率论的基本概念进一步深化,同时熟练掌握本章习题类型,从而提高学生的分析问题与解决问题的能力. 二、教学重点: 1.知识内容系统化 2.几类问题解决方法 三、教学难点:实际问题转化为相应的数学模型 四、教学内容: 1.本章知识内容体系归纳 2.习题类型: ⑴古典概型计算 ⑵事件关系与运算 ⑶条件概率计算 ⑷乘法公式、全概率公式、Bayes公式使用与计算. ⑸独立性问题的计算 五、讲练习题 第二章随机变量及其分布 第一节随机变量、离散型随机变量的概率分布 一、教学目的: 通过本节教学使学生理解随机变量的概念,理解离散型随机变量的分布及其性质,掌握二项分布、泊松分布,并会计算有关事件的概率及其分布.

概率论第四讲

第2章随机变量及其分布 §1 随机变量 定义1(随机变量)设是一个概率空间,称可测函数为该空间上的一个随机变量。 例1 在箱中编号为1到20的球中不放回随机取出3个球。那么球的最大号码 是一个随机变量,其值域空间为。并且,给定值域空间中的一点,其原像对应于一个随机事件。例如,,对应于事件,,以及其所有可能的轮换。因此,可以认为本身是样本空间上的一个随机事件。以后我们经常需要讨论的是类似事件的概率。 例2考虑等候公共汽车的时间,显然。 这里必须强调,对任意的,。 定义2(分布函数)设是概率空间上的一个随机变量。对任意,称函数为分布函数。 分布函数满足如下性质 (1)是非降右连续函数;(2),。 §2 离散型随机变量及其分布律 1.离散型随机变量 离散型随机变量是一个比较特殊的情形。 定义1(离散型随机变量)如果随机变量的值域空间是一个由有限或可列个值构成的集合,就称之为离散型随机变量。 例伯努利试验;泊松分布等。 2.离散随机变量的分布律 对离散随机变量,由于其值域空间是离散的,因此其分布函数是一个阶梯函数,我们也可用另一种等价方式来刻画。 定义2 (分布律)设随机变量的值域本空间为,那么称为其分布律。 显然分布律和分布函数是相互唯一确定的。 分布律显然满足。 3. 常见的离散随机变量 (1)分布 如果,且其分布律为,,其中。 例1 抛掷硬币,出现反面时令,正面时,则其服从分布。 (2)几何分布 连续不断抛掷硬币,令是首次出现正面时已抛掷的次数。那么,其值域空间为,而分布律。 (3)二项分布 连续抛掷硬币(可以解释为伯努利试验)次。成功的次数记为,那么其值域空间为,而其分布律。 (4)泊松分布 设分布律为的随机变量。 例2如果内,某事件的发生次数。那么下面的假设是合理的: (1)在时间内,发生一次事件的概率为; (2)发生两次或两次以上事件的概率为; (3)事件发生具有独立性。 下面证明此时。 把等份,,。 那么,在假定发生事件的总数是时,其中是每个区间至多只发生一次事件的事件组成,是至少有一个区间事件发生的次数有两次或两次以上的事件组成。那么 。

概率论复习题讲解

第一章 1. 假设有两箱同种零件:第一箱内装50件,其中10件为一等品;第二箱内装30件,其中18件一等品,现从两箱中随意挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),求: (1)先取出的零件是一等品的概率; (2)在先取出的零件是一等品的条件下,第二次取出的零件仍然是一等品的概率。 解:设Ai={取到第i 个箱子},i=1,2,Bj={第j 次取到一等品},j=1,2 (1)由全概率公式 5 2301821501021)()()()()(2121111=?+?= +=A B P A P A B P A P B P (2)所求概率为) () ()(12112B P B B P B B P = ,其中 1942.029 30171821495091021)()()()()(2212121121=???+???= +=A B B P A P A B B P A P B B P 故:4856.05 21942 .0) ()()(12112≈== B P B B P B B P 2. 某段时间[t 0,t 0+t]内,t>0,证券交易所来了k 个股民的概率为t e k k t λλ-! )(,k=0,1,2……,λ >0,每个来到交易所的股民购买长虹股票的概率为p ,且各股民是否购买这种股票相互独立。 (1)求此段时间内,交易所共有r 个股民购买长虹股票的概率; (2)若已知这段时间内有r 个股民购买了长虹股票,求交易所内来了m 个股民的概率。 解:设A k ={交易所来了k 个股民},k=0,1,2,……,B={有r 个股民购买长虹股票}。 (1)由于......2,1,0,! )()(==-k e k t A P t k k λλ, ,1.....2,1,0,0)(-==r k A B P k ......1,,)1()(+=-=-r r k p p C A B P r k r r k k 故由全概率公式可得 tp r r k r r k r k k k k e r tp t e k k t p p C A B P A P B P λλλλ--∞ =∞==--==∑∑! )(!)() 1()()()(0 (2)由Bayes 公式得所求概率为 ,......1,,)! ()]1([)() ()()() 1(+=--== ---r r m e r m p t B P A B P A P B A P p t r m m m m λλ 显然,1,......1,0,0)(-==r m B A P m 3. 设一射手每次命中目标的概率为p ,现对同一目标进行若干次独立射击,直到命中目标5

相关主题
文本预览
相关文档 最新文档