当前位置:文档之家› 玻璃窑炉介绍

玻璃窑炉介绍

玻璃窑炉介绍
玻璃窑炉介绍

玻璃窑炉介绍

成都东方凯特瑞环保催化剂有限责任公司(以下简称东方凯特瑞,英文缩写DKC)坐落于四川省成都市武侯工业园,是国内首家集SCR脱硝催化剂研究、开发、设计、制造、检验、销售及服务为一体的国家级高新技术企业。

公司成立于2004年,系中外合资企业,由东方锅炉股份有限公司(其控股公司是中国东方电气集团有限公司)、成都汇联住房经营管理股份有限公司、德国环保热力有限公司(Envirotherm GmbH)合资组建。

公司引进了德国环保热力有限公司(ENV)成熟的烟气脱硝催化剂设计、制造、检验技术及整条生产线,出产的蜂窝式脱硝催化剂具有国际先进水平,广泛应用于火力发电厂、化工厂、垃圾焚烧炉(脱除二恶英)、玻璃制造厂、钢铁厂、水泥厂等的烟气净化,也可为轮船、重型卡车等脱除氮氧化物(NOx)。

公司拥有催化剂性能分析系统、X射线荧光分析仪、X射线衍射分析仪、万能强度实验机、BET比表面积、气相色谱仪等先进的实验、试验设备,并从德国引进了移动式催化剂再生设备专业从事失效催化剂的评估和再生,从而最大程度地提升用户价值。

公司是质量管理体系(GB/T19001-2008)、环境管理体系(GB/T24001-2004)和职业健康与安全管理体系(GB/T28001-2001)"三标合一"管理的规范化企业。

我公司于2011年10月在福建漳州旗滨玻璃窑炉3#炉,成功运行第一条日产600 t浮法玻璃生产线SCR脱硝工程,其后2012年3月又在旗滨4#炉,日产800 t浮法玻璃生产线SCR 脱硝工程中顺利运行。

2012年4月,我公司与江苏亿金环保、浙江大学合作签订江苏华尔润集团浮法七线玻璃窑炉烟气脱硝工程技术协议。

“保护地球环境,建设和谐社会”是东方凯特瑞责无旁贷的历史使命。东方凯特瑞将秉承“励精图治,和谐发展”的企业理念,立足脱硝市场,面向环保产业,不断产出高质量的环保催化剂,不断“催化”出更为清洁的绿色能源,造福人类社会。

玻璃窑炉烟气余热发电

玻璃窑炉烟气余热回收发电 一、公司介绍 海蕲黄节能环保设备有限公司成立于2009年,是在上海蕲黄节能设备有限公司 (2004年)无法满足市场需求的基础上成立的,是国内较早开展余热回收的厂家之一,2010年被选为上海市节能协会服务产业委员会委员,并于2011年获批国家第三批节能服 务公司。通过近几年的发展,经我公司成功改造的锅炉、工业窑炉已有1000多台,公司 在锅炉及工业窑炉的余热回收利用及节能改造、纺织印染定型机的余热回收利用及节能改造、废气净化处理等领域处于国内先进水平。 公司坐落在璀璨的东方明珠——上海浦东新区,公司现有锅炉节能高级专家10名,产品研发工程师人员30多名,公司拥有国内先进生产、检测设备,拥有专业的运输、安装、售后服务队伍。公司是集锅炉余热回收、环保设备研发、设计、制造、配套、安装、调试及售后服务于一体的多元化高科技环保企业。 多年来,公司自主研发的波形给煤节能装置(国家专利号:ZL 3120.9)、热管余热蒸汽发生器(国家专利号:ZL 7839.9)在纺织印染、石油化工、金属冶炼等行业广泛运用,尤其在锅炉、玻璃窑炉、陶瓷窑炉、焦化炉、矿热炉、石灰窑炉、水泥窑炉、烧结炉、退火炉、定型机等高能耗领域,为用户创造了巨大的经济效益。由我公司承担的上海重型机械厂、上海华峰集团、上海五四助剂厂的锅炉余热回收节能改造项目被列入《2009年上海市重 点节能技术改造项目汇编》。另外公司在流化床锅炉改造、冷凝水回收、余热发电、锅炉富氧燃烧改造、烟气脱硫脱硝、除尘工程等方面也处于国内领先水平。 公司以“服务于企业,贡献于社会”为宗旨,长期致力于“电力、冶炼化工、纺织印染、造纸食品、电子电器、农业”等行业的节能降耗、锅炉余热回收、定型机余热回收、废气净化、烘干干燥等工业、农业领域的集成化治理工作,并全面开展合同能源管理(EMC) 项目的节能改造工程。 蕲黄人不断加大技术创新投入,始终采用国内领先的生产设备、生产工艺和科学管理方法,一如既往的以优质产品服务广大客户。在发展的道路上,我们始终奉行“一切为了节能、一切为了客户”的宗旨,为客户提供节能产品、节能诊断改造、节能规划与设计服务及合同能源管理项目服务,以实现企业节能增效、互惠互利、共获双赢的目标,与新老朋友携手共创辉煌的明天! 、玻璃烟气余热利用的现状及发电潜力 我国的平板玻璃工业从自主开发成功第一条浮法玻璃生产线至今,已有30 余年的发展历史,到2006 年底,我国投产的浮法玻璃生产线160余条,产量已达到4.54 亿重箱,占全球产量的40%以上。 我国在浮法玻璃生产线数量快速增长的同时,其生产线的规模和技术水平也在发展,生产规模从第一条线的90t /d发展到现在最大的900t /d o

玻璃窑炉

国外玻璃窑炉设计现状 1引言 玻璃窑炉设计实际上是综合考虑客户对玻璃窑炉投资,窑炉寿命和运行与维护成本的需求;对玻璃窑炉技术选择,节能和排放问题的设想;以及环境保护,卫生安全等相关法律规定。然后,按照一定的步骤程序提交完整的设计方案,确保窑炉所有重要的性能指标的过程。 由于全球经济相互融合,外国耐火材料企业集团不断以合资、独资、控股等方式进入中国市场,中国耐火材料企业也要走出去。即使在国内,企业最终面临的竞争对手也必然是外国企业。我国虽于2006年9月取消了包括耐火材料等产品的出口退税政策,但是参与国际竞争对激励耐火材料企业提高工艺技术和生产效率,提高耐火原料资源的利用率,强化社会节约意识,控制资源消耗等均起到积极推动作用。如果企业在未知国际化市场资源的情况下,贸然参与竞争是危险的。为此,从合同管理、工程设计和计算机仿真设计三个方面,介绍国外玻璃窑炉设计现状,有助于国内企业开拓窑炉耐火材料出口渠道,稳步进入国际市场。 2玻璃窑炉设计合同管理 国外玻璃窑炉设计代表性的合同管理程序流程如图1所示,它表示出窑炉设计者必须处理的典型问题。 该管理流程有利于客户在招投标过程及合同签署前。获得所有供决策的信息,特别是涉及投标预算编制中有关设备、建筑材料和工程成本的详尽计算数值,尽管这类信息的收集要牵涉到合同签署后的一些程序。

合同管理要求工程文件清晰规范,所有文件诸如图纸、会议记录和概算必须归档便于查询。设计公司利用数据管理系统,集中存储一个工程的所有信息,通过内部电子通讯系统(局域网)等数据共享的管理方式,让专业人员随时查找工程设计数据、工程进度、专业衔接与改进方案,保证工程进展顺畅,避免差错的产生。 3玻璃窑炉的工程设计 玻璃窑炉工程技术因素如窑炉熔化率、能耗及其窑龄,财务因素如投资成本、风险和清偿期限,以及燃料污染程度与燃烧技术的选择等生态环保因素,它们相互关联、互为因果。窑炉工程设计因而需经历一个反复比较、筛选的过程。在国外,该工程设计的许多部分仍建立在经验的基础上。但是,数学模型和测试手段的发展对玻璃窑炉工程设计中工艺参数的检验作用正在增强。表1所列是国外玻璃窑炉设计中应用的有关方法。 客户生产需求理论设计与实验方法 玻璃质量经验,数模仿真,颗粒示踪,气泡示踪排放经验,数模仿真,实验 节能热平衡计算 窑龄经验,试验室试验,无损探伤成本比较经济核算每个玻璃窑炉的熔化系统设计和技术选择取决于客户对玻璃生产数量和质量的需要。通常,在该设计阶段开始利用数学模型进行检验。有关窑炉实际运行性能的详尽知识的积累是数模合理设定的关键,数学模型的精度通过对颗粒示踪方法在模型和实际窑池中结果的比较加以验证。 滞留时间是颗粒示踪方法结果之一,该参数具常规可靠性,能用于预先评估所能获得的玻璃质量。数学模型近年来己发展至预测玻璃中气泡的变化过程。需要指出的是数学模型不能用于设计改变很小的窑炉,玻璃窑炉运行中几个不确定变量的影响足以左右数模的计算精度。数模计算即趋势分析,利用数学模型可以研究确定玻璃窑炉设计显著改善所产生的重大变化。图2所示为数学模型仿真中典型的颗粒示踪路径,其滞留时间较短。 预测玻璃窑炉排放级别的数学模型仍在开发之中,这类数学模型将来对窑炉设计的支持作用会不断增

一窑四线平拉玻璃熔窑设计

摘要介绍了260~300td一窑四线平拉玻璃熔窑的设计情况,包括:熔化部设计,分支通路的布置原则,分支通路长度尺寸的设计,全窑池底结构形式和不同池深的窑底结构处理。 关键词平拉玻璃熔窑设计 天津玻璃厂是我国采用平拉工艺(格法)生产平板玻璃的重点骨干企业。该厂于1986年全套引进了比利时格拉威伯尔公司(Glaverbe1)的平拉玻璃生产技术及主要设备。建设初期为一窑二线,并留有可热接第三线的接口。后来在不停产的情况下,成功地热接了第三线,建成了国内第一条一窑三线的平拉玻璃生产线。长期稳定地生产2 mm厚优质薄玻璃,工厂取得了良好的经济效益,同时为国内多家平拉玻璃企业提供了技术支持。 随着天津市城市建设的发展和环境保护的要求,该生产线所在的地理位置已被规划为商住区,玻璃厂需要搬迁到新址。由于原一窑三线已经完成了两个窑期近17年的运行,拆后可利用的设施已不多,以及要扩大生产能力的考虑,工厂决定新建一条一窑四线平拉玻璃生产线。设计熔化能力260~300t/d,燃料为重油,窑龄8年,玻璃原板宽 度4000 mm,耐火材料立足于全部国产,现将有关设计情况介绍如下: 1 熔化部设计 在80年代引进的一窑三线平拉玻璃熔窑,从窑型尺寸到各部位细部结构看,该熔窑的熔化部在现在看来仍是一座200 t/d级的技术比较先进的熔窑。本次工厂搬迁需要新建同样技术先进的一窑四线,熔化能力为260~300 t/d的熔窑,并要积极采用近年来的各项熔窑新技术。 本设计确定一窑四线平拉玻璃熔窑的熔化部,采用近年来在国内浮法玻璃熔窑上广泛采用的熔化部结构形式,并以某建成投产多年的300 t/d浮法线熔窑做为参照,进行熔化部设计。 1.1 熔化部主要尺寸的确定 按照熔化部的池宽尺寸计算公式: B=9000+ (P-300) ×7 求得该熔窑(按P=300 t/d)的熔化部池宽为:B=9 000 mm。 对于浮法玻璃熔窑来说,熔化部和熔化区的长宽比分别为:K1=3~3.3;K2=1.8~2.0。对于平拉玻璃熔窑来说,为了保证长通路末端玻璃液的成形温度,这两个比值要取得小一些,初步设定熔化部的长宽比为:K1=2.9;熔化区的长宽比为:K2=1.85。计算出熔化部和熔化区池长的初步尺寸: 熔化部池长:L=9 000×2.9=26100 mm, 熔化区池长:Ll=9 000×1.85=16650 mm。

玻璃窑炉节能改造项目可行性研究报告

玻璃窑炉节能改造项目可行性研究报告

目录 1 概况 (1) 1.1 项目名称 (1) 1.2 项目承办单位及负责人 (1) 1.3 项目建设地点 (1) 1.4 项目背景 (1) 1.5 可行性研究报告的编制依据和原则 (5) 1.6 可行性研究范围 (5) 1.7 改造工程总体目标 (6) 1.8 项目投资及主要数据 (6) 2 承办单位基本情况 (8) 2.1 公司基本情况 (8) 2.2 近几年的经营情况 (9) 2.3 项目前期工作 (9) 3 改造地点及建设条件 (10) 3.1 改造地点 (10) 3.2 建设条件 (10) 4 改造的必要性 (14) 4.1 国家节能减排政策的要求 (14) 4.2 工业窑炉存在的问题及改造的方向 (15) 4.3 电机系统运行存在的问题及改造的方向 (16) 4.4 康盛公司玻璃瓶罐生产系统耗能现状及改造的必要性 (17) 4.5 改造后的效果 (18) 5 主要原辅材料及燃料的供应 (19) 5.1 主要原辅材料及供应 (19) 5.2 燃料的供应 (19)

6 技术方案 (20) 6.1 工艺现状 (20) 6.2 技术改造内容 (20) 6.3 本次改造主要设备明细 (26) 6.4 改造投资估算 (26) 7 总图运输、土建及辅助工程 (27) 7.1 总图 (27) 7.2 土建 (28) 7.3 给水排水及消防 (28) 7.4 电气 (31) 8 节能 (32) 8.1 用能标准及节能设计规范 (32) 8.2 能源消耗种类 (32) 8.3 节能 (32) 8.4 项目节能量计算 (34) 9 环境保护 (36) 9.1 设计依据 (36) 9.2 设计范围 (36) 9.3 主要污染源及污染物 (36) 9.4 技改后主要污染源治理措施 (37) 9.5 环境保护投资估算 (37) 10 职业安全卫生 (38) 10.1 设计依据 (38) 10.2 对职工劳动安全的主要危害点 (38) 10.3 职业安全卫生措施 (38) 10.4 职业卫生设计 (39) 10.5 职业安全卫生投资估算 (39) 11 组织结构与人员培训 (40)

[精品文档]玻璃窑炉设计技术之单元窑

[精品文档]玻璃窑炉设计技术之单元窑玻璃窑炉设计技术之单元窑 第一章单元窑 用来制造E玻璃和生产玻璃纤维的窑炉~通常采用一种称为单元窑的窑型。它是一种窑池狭长~用横穿炉膛的火焰燃烧和使用金属换热器预热助燃空气的窑炉。通过设在两侧胸墙的多对燃烧器~使燃烧火焰与玻璃生产流正交~而燃烧产物改变方向后与玻璃流逆向运动。因此在单元窑内的玻璃熔化、澄清行程长~比其它窑型在窑内停留时间长~适合熔制难熔和质量要求高的玻璃。单元窑采用复合式燃烧器~该燃烧器将雾化燃料与预热空气同时从燃烧器喷出~经烧嘴砖进入窑炉内燃烧。雾化燃料处在燃烧器中心~助燃空气从四周包围雾化燃料~能达到较好的混合。所以与采用蓄热室小炉的窑型相比~燃料在燃烧过程中更容易获得助燃空气。当空气过剩系数为1.05时能完全燃烧~通过调节燃料与助燃空气接触位臵即可方便地控制火焰长度。由于使用多对燃烧器~分别调节各自的助燃风和燃料量~则可以使全窑内纵向温度分布和炉内气氛满足玻璃熔化与澄清的要求~这也是马蹄焰窑所无法达到的。单元窑运行中没有换火操作~窑内温度、气氛及窑压的分布始终能保持稳定~这对熔制高质量玻璃有利。现代单元窑都配臵有池底鼓泡~窑温、窑压、液面及燃烧气氛实行自动控制等系统~保证了难熔的E玻璃在较高熔化率下能获取用于直接拉制玻璃纤维的优质玻璃液。所以迄今在国际上单元窑始终是E玻璃池窑拉丝的首选窑型。 单元窑与其它窑型相比的不足之处是能耗相对较高。这是因为单元窑的长宽比较大~窑炉外围散热面积也大~散热损失相对较高。采用金属换热器预热助燃空气的优点是不用换火~缺点是空气预热温度~受金属材料抗氧化、抗高温蠕变性能的

制约~一般设计金属换热器的出口空气温度为650,850?。大多数单元窑热效率在15%以内~但如能对换热器后的废气余热再予利用~其热效率还可进一步提高。 配合料在单元窑的一端投入~投料口设在侧墙的一边或两边~也有设在端墙上的。熔化好的玻璃从另一端穿过沉式流液洞流至称为通路的拉丝作业部。 第一节单元窑的结构设计 一、单元窑熔化面积的确定 单元窑熔化面积可用公式 F= G/g 2表示。式中 F—熔化面积~M, 2 g—熔化率~,t/M〃d,。 熔化率反映单元窑的设计和生产管理水平~包括原料成分、水分、质量的控制和窑炉运行的控制水平等~同时还与纤维直径有关。一般拉制纺织纱的单元22窑~g取 0.8,1.0 t/M〃d~拉制粗直径纱时可取略大一些1.5 t/M〃d。早期的技术资料表明当年的单元窑平均日产玻璃的熔化面积~可见现在已有较大进步。 二、熔池长、宽、深的确定 ,1,池长L和池宽B是根据熔化面积和熔池长宽比,L/B,来决定的。即: F B=————平方米 L/B L/B越大~投入窑炉的玻璃原料从熔化到完成澄清~其间的玻璃“行程”越长~也越有利于熔化和澄清。早期设计的单元窑熔他是很长的~日产量在8—50t/d ~,L/B,5,4。随着单元窑配合料微粉化及熔制工艺和鼓泡技术的发展与成熟~以及窑体耐火材料的质量提高和采用保温技术等措施~使熔池长宽比在3左右~也同

玻璃马蹄焰窑炉结构设计

第二章结构设计 2.1熔化部设计 2.1.1熔化率K值确定 瓶罐玻璃池窑设计K值在2.2—2.6t/m2.d为宜。熔化率取的过小,窑炉不节能,取得过大,熔化操作困难,或是达不到设计容量,本次取2.5t/(m2·d)。理由如下:目前国外燃油瓶罐玻璃窑炉熔化率均在2.2以上,而我国却在2.0左右,偏低的原因: (1)整个池窑缺少有助于强化熔融的配套设计。 (2)操作管理,设备,材料等使得窑后期生产条件恶化。 由于这些影响熔化能力的因素,现在瓶罐玻璃K值偏小。在全面改进窑炉结构和有关附属设备后,根据国内耐火材料配套情况和玻璃原料量与制备情况。采取了K=2.5 t/(m2·d)。 2.1.2熔化池设计 (1)确定来了熔化率K值:熔化部面积 100/2.5=40m2。 (2)熔化池的长、宽、深:L×B×H=8000mm×5000mm×1200mm 本设计取长宽比值为1.6。 长宽比确定后,在具体确定窑池长度时,要保证玻璃液充分熔化和澄清,并考虑到砖窑材料的质量以及燃烧火焰的情况,一般要求火焰转向点在窑长的2/3处。窑长应≥4m 。 在确定窑池宽度时,应考虑到火焰的扩展范围,此范围取决于小炉宽度、中墙宽度(两个小炉的间距,小炉的间距,既要便于热修,又不要降低火焰的覆盖面积,一般小炉之间的通道宽度取0.9~1.2 m )。窑池宽度约为2~7m。 长宽选定后,当然具体尺寸还要按照池底排砖情况(最好是直缝排砖)作出适量调整,池底一般厚为200~300m。具体的池底排列会在后面设计的选材方面进行说明。这里先不做细讲。 综上,本次选用L=8m ,B=5m。 窑池深度一般根据经验确定。池深一般在900—1200mm为宜。池深不仅影响到玻璃

玻璃窑炉烟气量计算

焦炉气,又称焦炉煤气。是指用几种烟煤配制成炼焦用煤,在炼焦炉中经过高温干馏后,在产出焦炭和焦油产品的同时所产生的一种可燃性气体,是炼焦工业的副产品。焦炉气是混合物,其产率和组成因炼焦用煤质量和焦化过程条件不同而有所差别,一般每吨干煤可生产焦炉气300~350m3(标准状态)。其主要成分为氢气(55%~60%)和甲烷(23%~27%),另外还含有少量的一氧化碳(5%~8%)、C2以上不饱和烃(2%~4%)、二氧化碳(%~3%)、氧气%~%))、氮气(3%~7%)。其中氢气、甲烷、一氧化碳、C2以上不饱和烃为可燃组分,二氧化碳、氮气、氧气为不可燃组分。 两炉用一个烟囱排烟,烟囱内径3600mm,一炉一昼夜燃烧煤气20000Nm3,煤气含硫(硫化氢)小于1000mg/Nm3,一昼夜烧玻璃原料75t,原材料由石英砂、长石、碳酸钠、硼砂等原料组成,原材料含水率6%,窑炉压力+,一条窑配备一个助燃风机,助燃风机功率为,风量1500~1800m3/h,全压为5000Pa,转速2900,烟道为砖圈,从地下接入烟囱,烟气入烟囱温度为400℃,压力为500Pa,烟囱高度40m。 以下为烟气量计算过程: -反应计算 煤气燃烧发生的主要化学发应: 2H2 + O2 = 2H2O CH4 + 2O2 = CO2 + 2H2O 2CO + O2 = 2CO2 2H2S + 3O2 = 2SO2+2H2O H2O(液)+热量= H2O(气)(原料中的水气化) 入口空气和煤气温度按20℃计算, 为便于计算,根据煤气成分含量对各组分进行计算: 氢气含量按57%计算(体积分数); 甲烷含量按27%计算(体积分数); 一氧化碳含量按8%计算(体积分数); 二氧化碳为3%计算(体积分数) 氮气含量按5%计算(体积分数);

玻璃制品有限公司玻璃窑炉全氧助燃节能技改项目施工方案

湖州大享玻璃制品有限公司玻璃窑炉全氧助燃节能技改项目 施工方案 编制: 审核: 批准: 昆山正兴深冷工程有限公司二0一三年十月二十号

目录 1、工程概况 2、工程特点 3、实物工程量 4、编制依据 5、工程目标 6、施工组织机构 7、施工方法 8、质量体系及质保措施 9、安全体系及保证措施 10、施工机具使用计划 11、劳动力使用计划 12、交工资料表式

1.工程概况 本工程为湖州大享玻璃制品有限公司向厂区内输送氧气的管道安装工程,地点在湖州市大享路1号,大享玻璃制品有限公司厂区内。管道为DN 40碳钢管20米,设计压力为0.7Mpa。 2.工程特点 2.1.管道数量较少。 2.2管道皆为20#,标准为国标GB/T8163-2008,采用全氩焊接,管路按照GB50235-97检测。 2.3工程施工工序齐全,高空作业多,交叉作业多。 3.主要实物工程量 工程工程量一览表 4.编制依据

5.工程目标 5.1.质量目标 合格率为100%,优良率达到95%以上,杜绝质量事故的发生。 5.2.工期目标 工期为20个工作日。 5.3.安全目标 杜绝伤亡事故的发生,一般事故率小于千分之一点五。

6.项目组织机构 6.1该工程按项目法组织施工,按照“公司服务控制,项目授权管理,专业施工保障,各方通力协作”的项目管理模式,达到高效组合和优化生产要素,严格按照以ISO9002模式为标准建立的质量保证体系实施,确保对业主的承诺实现,详见组织机构图。 项目部管理网络图 7.施工方法

7.1工艺管道安装 管道安装施工程序图如下: 管道安装施工程序图 7.1.1.管道的切割 本工程管道皆为碳钢管,大口径少(最大为DN40),管道宜采用机械切割,并打好坡口,其质量应符合下面要求: 切口表面应平整、切割平面倾斜偏差为管子口径的1%,但不超过3mm.管道坡口应按下表进行: 7.1.2管道的焊接 在管道施焊前,按工艺评定编制焊接工艺卡,并经主管部

我国玻璃窑炉能耗限额指导指标

我国玻璃窑炉能耗限额指导指标 2011 年05 月01 日 中国节能协会玻璃窑炉专业委员会 中节协玻窑委(2008)第05号 我国玻璃窑炉能耗限额指导指标 各玻璃企事业单位: 我国“十一五”发展规划中对各行业节能、降耗、环境保护的要求。为贯彻和落实“十一五”规划中对玻璃行业提出节能(GDP)20%的目标,中国节能协会玻璃窑炉专业委员会对我国日用玻璃类、仪器玻璃类、平板玻璃类、药用玻璃类、中碱玻璃球类五大类玻璃熔制的能耗情况,进行了两年多时间的广泛调研和征集意见,制定的“我国玻璃窑炉能耗限额指导指标(建议)”,經2007年桂林全国玻璃工业节能技术交流大会讨论原则通过,现将修改定稿的“我国玻璃窑炉能耗限额指导指标”印发给你们,以期规范玻璃行业窑炉的用能和节能。各有关单位应采取有效节能措施,使自已单位的能耗达到或优于此“指标”。 各级有关部门可参照“我国玻璃窑炉能耗限额指导指标”,以指导玻璃行业的节能工作。 本文:报送国冢发改委能源办公室、国冢能源研究所、各省市发改委节能办公室。抄送各玻璃企事业单位。 中国节能协会玻璃窑炉专业委员会 2008年4月10日 各种玻璃熔制的能耗限额指导指标: 一、日用玻璃类: 1、瓶罐玻璃类: A)、高白料:(Fe2O3含量≤0.05~0.06%) (1)燃油玻璃窑炉炉(含燃天燃气炉) :每㎏玻璃液能耗≦7.3MJ

(2)燃发生炉煤气的玻璃窑炉:每㎏玻璃液能耗≦9.1MJ (约为2170Kcal,或0.31㎏标准煤) B)、普白料: (1)燃油炉(含燃天燃气炉) :每㎏玻璃液能耗≦5.9MJ (约为1400Kcal,或0.20㎏标准煤) (2)燃发生炉煤气的玻璃窑炉:每㎏玻璃液能耗≦7.6MJ (约为1820Kcal,或0.26㎏标准煤) C)、颜色料(棕色、翠綠色): (1)燃油炉(含燃天燃气炉) :每㎏玻璃液能耗≦5.3MJ (约为1260Kcal,或0.18㎏标准煤) (2)燃发生炉煤气的玻璃窑炉:每㎏玻璃液能耗≦7.3MJ (约为1750Kcal,或0.25㎏标准煤) D)、其它普通钠钙料:每㎏玻璃液能耗≦8.2MJ (约为1960Kcal,或0.28㎏标准煤) 2、器皿玻璃类: A)、机吹制器皿类:每㎏玻璃液能耗≦9.4MJ (约为2240Kcal,或0.32㎏标准煤) B)、机压制器皿类:每㎏玻璃液能耗≦8.2MJ (约为1960Kcal,或0.28㎏标准煤) 3、保温瓶、电光源玻璃类: A)、常规保温瓶类(5磅、8磅瓶):每㎏玻璃液能耗≦10.3MJ (约为2450Kcal,或0.35㎏标准煤) B)、异形保温瓶类:每㎏玻璃液能耗≦10.8MJ

玻璃马蹄焰池窑课程设计说明书

玻璃马蹄焰池窑课程设 计说明书 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

玻璃窑炉及设计课程设计说明书题目:年产42200吨高白料酒瓶燃油 蓄热式马蹄焰池窑设计 学生姓名:\ 学号: 院(系):材料科学与工程学院 专业:无机非金属材料工程 指导教师: 2013年6月20日 目录

1绪论 课程设计是培养学生运用《窑炉及设计(玻璃)》课程的理论和专业知识,解决实际问题,进一步提高设计、运算、使用专业资料等能力的重要教学环节。目的是使学生受到设计方法的初步训练,逐步树立正确的设计观点,增强设计能力、创新能力和综合能力,初步掌握窑炉及其它热工设备设计的基本知识和技能,并对所学窑炉热工理论知识进行验证和深化,为将来从事生产、设计、研究及教学等方面工作打下良好的基础。同时为毕业设计(论文)奠定良好的基础。 1.1设计依据: (1)设计题目:年产42200吨高白料酒瓶燃油马蹄焰玻璃池窑的设计 (2) 原始数据: 产品规格:高白酒瓶容量550mL, 重量450g/只 行列机年工作时间及机时利用率:325 天,95% 机速:QD8行列机高白酒瓶75只/分钟 QD6行列机高白酒瓶42只/分钟 产品合格率:90% 玻璃熔化温度1430℃ 玻璃形成过程耗热量q玻=2350kJ/kg玻璃液 重油组成(质量分数%),见表1 。 1.2简述玻璃窑炉的发展历史及今后的发展动向 玻璃生产专用热工设备统称为玻璃窑炉。 玻璃窑炉是玻璃行业生产的心脏,是能源消耗的主要设备。目前我国正在运行的窑炉以火焰炉为主,能耗水平较高(一般在300~500公斤标煤/吨成品左右,

玻璃熔窑设计

目录 前言 (1) 第一章浮法玻璃工艺方案的选择与论证 (3) 1.1平板玻璃工艺方案 (3) 1.1.1有曹垂直引上法 (3) 1.1.2垂直引上法 (3) 1.1.3压延玻璃 (3) 1.1.4 水平拉制法 (3) 1.2浮法玻璃工艺及其产品的优点 (4) 1.3浮法玻璃生产工艺流成图见图1.1 (5) 图1.1 (5) 第二章设计说明 (6) 2.1设计依据 (6) 2.2工厂设计原则 (7) 第三章玻璃的化学成分及原料 (8) 3.1浮法玻璃化学成分设计的一般原则 (8) 3.2配料流程 (9) 3.3其它辅助原料 (10) 第四章配料计算 (12) 4.1于配料计算相关的参数 (12) 4.2浮法平板玻璃配料计算 (12) 4.2.1设计依据 (12) 4.2.2配料的工艺参数; (13) 4.2.3计算步骤; (13) 4.3平板玻璃形成过程的耗热量的计算 (15) 第五章熔窑工段主要设备 (20) 5.1浮法玻璃熔窑各部 (20) 5.2熔窑主要结构见表5.1 (21) 5.3熔窑主要尺寸 (21) 5.4熔窑部位的耐火材料的选择 (24) 5.4.1熔化部材料的选择见表5.3 (24) 5.4.2卡脖见表5.4 (25) 5.4.3冷却部表5.5 (25) 5.4.4蓄热室见表5.6 (25) 5.4.5小炉见表5.7 (26) 5.5玻璃熔窑用隔热材料及其效果见表5.8 (26) 第六章熔窑的设备选型 (28) 6.1倾斜式皮带输送机 (28) 6.2毯式投料机 (28)

6.3熔窑助燃风机 (28) 6.4池壁用冷却风机 (29) 6.5碹碴离心风机4-72NO.16C (29) 6.6L吊墙离心风机9-26NO11.2D (29) 6.7搅拌机 (29) 6.8燃油喷枪 (29) 6.9压缩空气罐C-3型 (29) 第七章玻璃的形成及锡槽 (30) 第八章玻璃的退火及成品的装箱 (32) 第九章除尘脱硫工艺 (33) 9.1除尘工艺 (33) 9.2烟气脱硫除尘 (33) 第十章技术经济评价 (34) 10.1厂区劳动定员见表10.1 (34) 10.2产品设计成本编制 (35) 参考文献 (38) 致谢 (39) 摘要 设计介绍了一套规模为900t/d浮法玻璃生产线的工艺流程,在设计过程中,原料方面,对工艺流程中的配料进行了计算;熔化工段方面,参照国内外的资料和经验,对窑的各部位的尺寸、热量平衡和设备选型进行了计算;分析了环境保护重要性及环保措施参考实习工厂资料,在运用相关工艺布局的基础下,绘制了料仓、熔窑、锡槽、成品库为主的厂区平面图,具体对熔窑的结构进行了全面的了解,绘制了熔窑的平面图和剖面图,还有卡脖结构图,整个设计参照目前浮法玻璃生产的主要设计思路,采用国内外先进技术,进行全自动化生产,反映了目前浮法生的较高水平。 关键词:浮法玻璃、熔窑工段、设备选型、工艺计算。

课程设计:日产8吨高硼硅玻璃窑炉设计

日产8吨的高硅硼玻璃的全电熔窑炉设计

1.前言 所谓全电容窑炉,通常是指配合料熔成导电介质后,玻璃液体本身成为电阻组件,实现玻璃的连续融化。但配合料(含有部分熟料)未熔成导电介质之前,即在烤窑阶段,仍需要气体或液体来加热。 玻璃电熔技术是目前国际上最先进的熔制工艺,是玻璃生产企业提高产品质量,降低能耗,从根本上消除环境污染的十分有效的途径。对于15t/d以下的小型玻璃熔窑来说,在电力充足和电价适中的地区,用电熔工艺生产各种玻璃制品的综合经济效益是很理想的;在电价高的地区,对于生产彩色玻璃、乳浊玻璃、硅酸盐玻璃、铅玻璃、高挥发组分玻璃或特种玻璃也是很合算的。 电熔窑炉产生的废气量少,防止空气污染;能降低挥发性配合料组分的挥发;降低因结石造成的产品损失;而且玻璃成分均匀,在整个窑炉期间可始终保持满负荷的出料量。另外它的建设投资少,占地面积小。玻璃质量好,效率高,但成本低。玻璃电熔窑炉也有耐火寿命短的缺陷,而且窑炉的用电成本和初期安装成本高。 玻璃电熔窑炉工作原理:玻璃在低温下几乎是绝缘的,但在高温下熔融的玻璃是一种良导体。玻璃电熔窑炉就是将电流引入玻璃液中,玻璃液直接通电加热,通电后两极间的玻璃液在交流电的作用下产生焦耳热,从而达到熔化和调温的目的。玻璃液之所以具有导电性,主要是因为电荷通过离子发生迁移。 导电性的难易是以电阻率ρ(Ω·cm)或其倒数σ((Ω·cm)-1)来表示,ρ值越小,则电导本领越强。玻璃在室温下为绝缘体,它的电导率约为10-13~10-15(Ω·cm)-1。如果提高温度,玻璃的电导率会急剧增加,在熔融状态可达到0.1~1(Ω·cm)-1。电熔化能用来融化几乎所有品种的玻璃以及某些呈现高阻值的硅酸盐材料。各种玻璃的电导率随其成分不同可有很大差别,对同一种玻璃,电导率则是温度的函数。在网状结构中,含有其他改良剂离子时,能降低Na+离子的迁移和玻璃的电导率。例如,加入Ca2+,Ba2+,Pb2+离子会大大增加玻璃的电导率。 玻璃的电阻率强烈依赖于温度,这是因为网状结构空穴中的改良离子,在

国外玻璃窑炉设计现状

国外玻璃窑炉设计现状 玻璃窑炉设计实际上是综合考虑客户对玻璃窑炉投资,窑炉寿命和运行与维护成本的需求;对玻璃窑炉技术选择,节能和排放问题的设想;以及环境保护,卫生安全等相关法律规定。然后,按照一定的步骤程序提交完整的设计方案,确保窑炉所有重要的性能指标的过程。 由于全球经济相互融合,外国耐火材料企业集团不断以合资、独资、控股等方式进入中国市场,中国耐火材料企业也要走出去。即使在国内,企业最终面临的竞争对手也必然是外国企业。我国虽于2006年9月取消了包括耐火材料等产品的出口退税政策,但是参与国际竞争对激励耐火材料企业提高工艺技术和生产效率,提高耐火原料资源的利用率,强化社会节约意识,控制资源消耗等均起到积极推动作用。如果企业在未知国际化市场资源的情况下,贸然参与竞争是危险的。为此,从合同管理、工程设计和计算机仿真设计三个方面,介绍国外玻璃窑炉设计现状,有助于国内企业开拓窑炉耐火材料出口渠道,稳步进入国际市场。 2玻璃窑炉设计合同管理 国外玻璃窑炉设计代表性的合同管理程序流程如图1所示,它表示出窑炉设计者必须处理的典型问题。 该管理流程有利于客户在招投标过程及合同签署前。获得所有供决策的信息,特别是涉及投标预算编制中有关设备、建筑材料和工程成本的详尽计算数值,尽管这类信息的收集要牵涉到合同签署后的一些程序。 合同管理要求工程文件清晰规范,所有文件诸如图纸、会议记录和概算必须归档便于查询。设计公司利用数据管理系统,集中存储一个工程的所有信息,通过内部电子通讯系统(局域网)等数据共享的管理方式,让专业人

员随时查找工程设计数据、工程进度、专业衔接与改进方案,保证工程进展顺畅,避免差错的产生。 3玻璃窑炉的工程设计 玻璃窑炉工程技术因素如窑炉熔化率、能耗及其窑龄,财务因素如投资成本、风险和清偿期限,以及燃料污染程度与燃烧技术的选择等生态环保因素,它们相互关联、互为因果。窑炉工程设计因而需经历一个反复比较、筛选的过程。在国外,该工程设计的许多部分仍建立在经验的基础上。但是,数学模型和测试手段的发展对玻璃窑炉工程设计中工艺参数的检验作用正在增强。表1所列是国外玻璃窑炉设计中应用的有关方法。 每个玻璃窑炉的熔化系统设计和技术选择取决于客户对玻璃生产数量和质量的需要。通常,在该设计阶段开始利用数学模型进行检验。有关窑炉实际运行性能的详尽知识的积累是数模合理设定的关键,数学模型的精度通过对颗粒示踪方法在模型和实际窑池中结果的比较加以验证。 滞留时间是颗粒示踪方法结果之一,该参数具常规可靠性,能用于预先评估所能获得的玻璃质量。数学模型近年来己发展至预测玻璃中气泡的变化过程。需要指出的是数学模型不能用于设计改变很小的窑炉,玻璃窑炉运行中几个不确定变量的影响足以左右数模的计算精度。数模计算即趋势分析,利用数学模型可以研究确定玻璃窑炉设计显著改善所产生的重大变化。图2所示为数学模型仿真中典型的颗粒示踪路径,其滞留时间较短。 预测玻璃窑炉排放级别的数学模型仍在开发之中,这类数学模型将来对窑炉设计的支持作用会不断增强。玻璃窑炉窑龄的预测情况与此人体相似,目前的预测仍建立在试验室模拟玻璃窑炉条件下耐火材料试样蚀变试验的基础上。图3所示为超声波无损探伤设备,用于测定玻璃窑炉耐火砖的剩余厚度和辅助助熔电极的更换,对于合理延续玻璃窑炉寿命,减少玻璃池窑漏料危险具有重要作用。

玻璃马蹄焰窑炉介绍

玻璃窑炉马蹄焰池窑简介 1.熔化池结构 窑炉的熔化率主要取决于熔化温度,因为中碱和无碱玻璃球窑的熔制温度比较高,如果进一步提高熔化温度来提高熔化率,会加速对耐火材料的侵蚀,降低球质和影响炉龄。而采取鼓泡和电助熔技术可以相应提高中下层玻璃温度,促进玻璃的均化,并且提高熔化率。玻璃原料从熔化到澄清的行程也大,这有利于玻璃质量的控制和提高,而长宽比又受到小炉结构设计、火焰长度及拐弯要求的限制。池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物理化学均匀性以及窑炉的熔化率。一般池底温度在1200—1360℃之间较为合适。池底温度的提高可使熔化率提高。但池底温度高于1380℃时,需要提高池底耐火材料的质量及品种,否则会加速池底的侵蚀并降低炉龄,且会增加玻璃球的结石含量,这对后道拉丝生产是不利的,影响池底温度的决定性因素是玻璃的铁含量和玻璃气氛。当Fe2O3含量在0.25—0.3%范围内时,池深800—1200mm的玻璃球窑,其垂直温降约为15—30℃/100mm。 2.工作池 选择半圆形工作池时,其半径R决定于制球机台数与布置方式。一般工作池半径小于等于熔化池池宽,工作池深度浅于熔化池池深300—400mm。 3.投料池 为了获得稳定的玻璃质量,一般在池壁两侧设置一对投料池,随换火操作交替由火根投料。投料池中心线与窑炉池壁的距离主要决定于小炉喷火口的温度,温度越高距离可缩小。一般其距离可定在0.8—1.0m。 4.流液洞 流液洞的功能是降温和均化。采用沉式流液洞比采用直通式流液洞温降大。而均化效果受液洞高度影响较大。如高度越小则均化效果越好。所以设计流液洞宽度一般应大于其高度。在不考虑玻璃回流的情况下,玻璃流经流液洞的平均速度可取5—20m/h。 5.胸墙高度 胸墙高度应根据窑炉容积发热强度来确定,目前容积发热强度设计值一般取60—200KW/m3(相当于50—180*103kcal/N.m3),比早期的数据已有明显下降,这说明提高了胸墙高度,而且采用质量改善的耐火材料和较好的保温效果,使窑炉热损失减少,大容积空间更有利于燃料的完全燃烧和增强其容积辐射强度,有利于提高熔制质量和降低能耗。 6.小炉 小炉是球窑的关键部位,小炉喷出口角度和喷出的速度对燃料燃烧和火焰形状有重要的影响。不合理的设计会使火焰冲击胸墙和大碹,并造成不完全燃烧。燃料在球窑内的燃烧属于扩散式燃烧,助燃空气从小炉口喷出的速度、厚度及与

玻璃窑炉的节能

我国玻璃窑炉的节能[574] 我国玻璃窑炉的节能 王辰亚 (中国节能协会玻璃窑炉专业委员会) 前言:各级领导的关心和重视,中国节能协会玻璃窑炉专业委员会的大力推动,使我国玻璃窑炉节能技术得到了广泛的推广应用,科学节能的经营管理得到了加强,全国玻璃窑炉节能已取得了实效,节能效果显著。 玻璃窑炉的节能,实际是玻璃工业全方位综合性系统工程实施的问题,缺一不可。是玻璃工业节能技术中的一个大课题,本文将试探性的加以论述,以达到抛砖引玉的目的。 一、我国玻璃工业窑炉能耗现况: 我国大约有4000~5500座各种类型的玻璃窑炉,其中熔化面积80m2以下的中小型炉数量大约占总量的80%左右,使用燃料种类分:燃煤炉约占63%,燃油炉约占29%,天然气炉、全电熔炉等约占8%。 2008年全国玻璃产量大约为2000~3000万吨。年耗用标准煤1700~2100万吨。 其中平板玻璃产量为53192万重量箱,所用能耗折合标准煤1000万吨/年。平均能耗为7800干焦/公斤玻璃液,窑炉热效率20~25%,比国际先进指标30%≦低5%~1 0%。每年排放SO2约16万吨、烟尘1.2万吨、NOx14万吨。 玻璃熔窑在玻璃工厂中是消耗燃料最多的热工设备,一般,占全厂总能耗的80~85%左右,目前我国玻璃工业所用的主要能源是:煤、油、电和天然气等燃料。由于燃料价格几年来持续上涨,企业燃料成本逐年增加,效益锐减,在此形势下,玻璃工业根据我国能源蕴藏品种结构、分布、数量和价格等不得不做使用调整。使以前规划设计推行的使用清洁、高热值能源的思路发生了一定的变化。即近几年来企业欲争取较大效益。有不少燃油炉改成燃煤炉,以此带来不小的环境保护问题。当然这几年随着我国电力工业的发展,全氧炉、电助熔、全电熔炉有了较大的发展。 2008年日用玻璃产量1445.7万吨,如成品率平均为90%,年玻璃出料量应为1590万吨,年耗标煤557~636万吨。完成工业产值865.5亿元、出口额2.1亿美元,其单耗平均为350~400公斤标准煤/吨玻璃液,比较好的为每吨玻璃液150~250公斤标准煤(啤酒瓶、农药瓶、普通白料制品等),较差的多达900~1000公斤标准煤,二者相差3~4倍之多。又如窑炉热有效利用率先进的为25~38%,落后的只有12~22%,之间相差3~26个百分点,国外日用玻璃包装瓶熔窑单耗为110~130 kg标煤/吨玻璃液左右,劳动生产率为200~370吨/年人,熔化率2.5~3.8吨/m2·日。窑炉大都为日出料量180~250吨。热效率在48%左右。国内外差距较大。 我国改革开放以前,全国玻璃工业窑炉的炉型和技术等都比较落后,能耗很高,改革开放以后引进不少国外玻璃窑炉的先进软硬件,配合派人到国外学习参观,结合国情我们的科技工作者经过30多年的引进消化吸收,采用众多新技术创新设计出我国高效、长寿命、节能新型窑炉,使我国玻璃工业窑炉节能技术有了长足的进步,但与国际最先进技术水平比,还有一定差距,以两大玻璃行业窑炉的主要技术指标进行国内外对比,见表一。 表一国内外玻璃窑炉主要技术指标对比

玻璃窑炉设计技术之单元窑

玻璃窑炉设计技术之单元窑 第一章单元窑 用来制造E玻璃和生产玻璃纤维的窑炉,通常采用一种称为单元窑的窑型。它是一种窑池狭长,用横穿炉膛的火焰燃烧和使用金属换热器预热助燃空气的窑炉。通过设在两侧胸墙的多对燃烧器,使燃烧火焰与玻璃生产流正交,而燃烧产物改变方向后与玻璃流逆向运动。因此在单元窑内的玻璃熔化、澄清行程长,比其它窑型在窑内停留时间长,适合熔制难熔和质量要求高的玻璃。单元窑采用复合式燃烧器,该燃烧器将雾化燃料与预热空气同时从燃烧器喷出,经烧嘴砖进入窑炉内燃烧。雾化燃料处在燃烧器中心,助燃空气从四周包围雾化燃料,能达到较好的混合。所以与采用蓄热室小炉的窑型相比,燃料在燃烧过程中更容易获得助燃空气。当空气过剩系数为1.05时能完全燃烧,通过调节燃料与助燃空气接触位臵即可方便地控制火焰长度。由于使用多对燃烧器,分别调节各自的助燃风和燃料量,则可以使全窑内纵向温度分布和炉内气氛满足玻璃熔化与澄清的要求,这也是马蹄焰窑所无法达到的。单元窑运行中没有换火操作,窑内温度、气氛及窑压的分布始终能保持稳定,这对熔制高质量玻璃有利。现代单元窑都配臵有池底鼓泡,窑温、窑压、液面及燃烧气氛实行自动控制等系统,保证了难熔的E玻璃在较高熔化率下能获取用于直接拉制玻璃纤维的优质玻璃液。所以迄今在国际上单元窑始终是E玻璃池窑拉丝的首选窑型。 单元窑与其它窑型相比的不足之处是能耗相对较高。这是因为单元窑的长宽比较大,窑炉外围散热面积也大,散热损失相对较高。采用金属换热器预热助燃空气的优点是不用换火,缺点是空气预热温度,受金属材料抗氧化、抗高温蠕变性能的制约,一般设计金属换热器的出口空气温度为650~850℃。大多数单元窑热效率在15%以内,但如能对换热器后的废气余热再予利用,其热效率还可进一步提高。 配合料在单元窑的一端投入,投料口设在侧墙的一边或两边,也有设在端墙上的。熔化好的玻璃从另一端穿过沉式流液洞流至称为通路的拉丝作业部。 第一节单元窑的结构设计

玻璃窑炉节能技术发展与应用

玻璃窑炉节能技术发展与应用 发布者: chiefway 发布时间: 2009-12-18 13:53 浏览次数:334 玻璃窑炉节能技术发展与应用 陈福赵恩录张文玲李军明 秦皇岛玻璃工业研究设计院 摘要:本文综述了玻璃窑炉节能途径,全保温技术、余热利用技术、减压澄清、富氧燃烧技术、全氧燃烧技术以及“0”号小炉全氧燃烧助熔技术。并重点介绍了全氧燃烧的机理特点,以及全氧燃烧的优点,并对其应用前景进行了展望。 关键词:玻璃窑炉,全氧燃烧,节能技术 0引言 我国平板玻璃工业已具有相当规模。到2008年9月底国内浮法玻璃生产共有186条,生产能力超过4.5亿重量箱,玻璃产能增加较快,市场竞争逐步白热化。做为玻璃主要燃料的重油,价格持续走高,在玻璃成本中所占比例越来越大。因此,降低玻璃能耗,对降低生产成本,提高企业的市场竞争力,减少环境污染,缓解能源短缺等都具有巨大意义。玻璃企业的节能是一个长期任务,国内外技术人员积极进行研究,如优化窑炉结构设计、余热利用、减压澄清、富氧燃烧、全氧燃烧电助熔等。目前很多企业已开始在生产过程中实施节能措施,新型节能技术产业化市场空间巨大。 1熔窑全保温技术 对玻璃熔窑窑体各部位施行合理的保温,是提高热效率的重要途径。窑体保温,不仅能显著地减少砌体表面向外界的热量损失,改善操作人员的工作条件,而且由于增大了窑体的热容量,有利于窑内温度制度的稳定和提高玻璃液本身的实际温度,使池内玻璃液的温度分布和流动更趋于合理。因此窑体保温已成为增大池窑出料量,提高玻璃质量和降低燃料消耗的主要措施。 窑体保温有如下优点:相同熔化率下,可降低热损耗,节约能源。池底可减少热损耗72%,池壁87%,胸墙79%,蓄热室80%,碹顶49%;能量消耗相同情况下,可提高熔化率。一般15%~20%。玻璃液平均温度提高30℃~40℃,有利于玻璃液的澄清和均化,提高玻璃液质量,使成品率提高;火焰空间热负荷降低,延长了窑顶的使用寿命,并改善了操作条件。 2余热利用技术 从蓄热室或换热室出来的烟气、工作池和供料道排出来的气体、窑体和供料道的外表散热以及低温冷却水等的热量可以回收利用。安装余热锅炉可以回收热量,节约燃料,降低烟气温度。生产的蒸汽可作燃油的雾化剂或用来预热重油,也可作为煤气发生炉的气化剂,还可以转化为电能或制造压缩空气等。 2.1余热锅炉 余热锅炉是利用窑炉烟气的余热以获得蒸汽或热水的装置。它和普通锅炉的区别是:其传热作用全部依靠对流和气体辐射,而不是依靠火焰或燃料层的辐射,因而不仅传热系数较低,而且平均温差也小,所以需要的加热面积也应较大。 500t/d级熔窑烟到总烟气量设计值(标态)约76000~80000Nm3/h。根据建设单位的要求,烟气可设计为部分通过余热锅炉,可半通过,也可以全部通过余热锅炉(烟气温度400℃~500℃)。据此选用余热锅炉的台数。常规设计选用的余热锅炉,蒸汽压力可达到1.27MPa,每台锅炉每小时可产生蒸汽4t~5t。蒸汽作为二次能源,可用于燃料油系统的加热,可作为雾化系介质,可作为厂区内采暖及生活用汽等。 2.2利用熔窑烟气余热预热玻璃配合料 利用烟气余热进行玻璃熔窑配合料预热工艺技术及装备的研究开发,有效利用烟气余热预热玻璃配合

玻璃窑炉马蹄焰池窑简介

玻璃窑炉马蹄焰池窑简介 1.结构尺寸 (1)熔化面积。 窑炉的熔化率主要取决于熔化温度,因为中碱和无碱玻璃球窑的熔制温度比较高,如果进一步提高熔化温度来提高熔化率,会加速对耐火材料的侵蚀,降低球质和影响炉龄。而采取鼓泡和电助熔技术可以相应提高中下层玻璃温度,促进玻璃的均化,并且提高熔化率。 (2)熔池长宽比。 长宽比越大,玻璃原料从熔化到澄清的行程也大,这有利于玻璃质量的控制和提高,而长宽比又受到小炉结构设计、火焰长度及拐弯要求的限制。采用高热值燃料的球窑池长可达到10mm,所以可选择较大的长宽比。而采用低热值燃料的球窑应选择较小的长宽比。一般长宽比选用范围为1.4—2.0。

(3)池深。 池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物理化学均匀性以及窑炉的熔化率。一般池底温度在1200—1360℃之间较为合适。池底温度的提高可使熔化率提高。但池底温度高于1380℃时,需要提高池底耐火材料的质量及品种,否则则会加速池底的侵蚀并降低炉龄,且会增加玻璃球的结石含量,这对后道拉丝生产是不利的,影响池底温度的决定性因素是玻璃的铁含量和玻璃气氛。当Fe2O3含量在0.25—0.3%范围内时,池深800—1200mm的玻璃球窑,其垂直温降约为15—30℃/100mm。 (3)工作池。 选择半圆形工作池时,其半径R决定于制球机台数与布置方式。一般工作池半径小于等于熔化池池宽,工作池深度浅于熔化池池深300—400mm。 (4)投料池。 为了获得稳定的玻璃质量,一般在池壁两侧设置一

对投料池,随换火操作交替由火根投料。投料池中心线与窑炉池壁的距离主要决定于小炉喷火口的温度,温度越高距离可缩小。一般其距离可定在0.8—1.0m。 (5)流液洞。 流液洞的功能是降温和均化。采用沉式流液洞比采用直通式流液洞温降大。而均化效果受液洞高度影响较大。如高度越小则均化效果越好。所以设计流液洞宽度一般应大于其高度。在不考虑玻璃回流的情况下,玻璃流经流液洞的平均速度可取5—20m/h。 (6)胸墙高度。 胸墙高度应根据窑炉容积发热强度来确定,目前容积发热强度设计值一般取60—200KW/m3(相当于50—180*103kcal/N.m3),比早期的数据已有明显下降,这说明提高了胸墙高度,而且采用质量改善的耐火材料和较好的保温效果,使窑炉热损失减少,大容积空间更有利于燃料的完全燃烧和增强其容积辐射强度,有利于提高熔制质量和降低能耗。

相关主题
文本预览
相关文档 最新文档