当前位置:文档之家› 电路原理实验的指导书

电路原理实验的指导书

电路原理实验的指导书
电路原理实验的指导书

电路原理实验的指导书

一、实验目的

1.学会识别常用电路元件的方法。

2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法。

3.掌握实验装置上直流电工仪表和设备的使用方法。

二、原理说明

任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。

1.线性电阻器的伏安特性曲线是一条通过坐标原点的直线,如图3-1中a曲线所示,该直线的斜率等于该电阻器的电阻值。

2.一般的白炽灯在工作时灯丝处于高温状态,其灯丝电阻随着温度的升高而增大,通过白炽灯的电流越大,其温度越高,阻值也越大,一般灯泡的“冷电阻”与“热电阻”的阻值可相差几倍至十几倍,所以它的伏安特性如图3-1中b曲线所示。

3.一般的半导体二极管是一个非线性电阻元件,其特性如图3-1中c曲线。正向压降很小(一般的锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十多至几十伏时,其反向电流增加很小,粗略地可视为零。可见,二极管具有单向导电

性,但反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。4.稳压二极管是一种特殊的半导体二极管,其正向特性与

普通二极管类似,但其反向特性较特别,如图1-1中d曲线。在反向电压开始增加时,其反向电流几乎为零,但当反向电压增加到某一数值时(称为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增加,以后它的端电压将维持恒定,不再随外加的反向电压升高而增大。

三、实验内容

1.测定线性电阻器的伏安特性

按图1-2接线,调节直流稳压电源的输出电压U,从0伏开始缓慢地增加,一直到10V,记下相应的电压表和电流表的读数。

2.测定半导体二极管的伏安特性

按图1-3接线,R为限流电阻,测二极管D的正向特性时,其正向电流不得超过25mA,正向压降可在0~0.75V之间取值。特别是在0.5~0.75之间更应多取几个测量点。作反向特性实验时,只需将图1-3中的二极管D反接,且其反向电压可

加到30V左右。正向特性实验数据

反向特性实验数据

3.测定稳压二极管的伏安特性

只要将图1-3中的二极管换成稳压二极管,重复实验内容2的测量。正向特性实验数据

反向特性实验数据

四、实验注意事项

1.测二极管正向特性时,稳压电源输出应由小至大逐渐增加,应时刻注意电流表读数不得超过25mA,稳压源输出端切勿碰线短路。

2.进行不同实验时,应先估算电压和电流值,合理选择仪表的量程,勿使仪表超量程,仪表的极性亦不可接错。

五、思考题

1.线性电阻与非线性电阻的概念是什么?电阻器与二极管的伏安特性有何区别?

2.设某器件伏安特性曲线的函数式为I=f(U),试问在逐点绘制曲线时,其坐标变量应如何放置?

3.稳压二极管与普通二极管有何区别,其用途如何?七、实验报告

1.根据各实验结果数据,分别在方格纸上绘制出光滑的伏安特性曲线。(其中二极管和稳压管的正、反向特性均要求画在同一张图中,正、反向电压可取为不同的比例尺)

2.根据实验结果,总结、归纳被测各元件的特性。

3.必要的误差分析。

4.心得体会及其他。

电路原理实验指导书(2019)

电路原理实验指导书(2019) 电路基础实验指导书 天津工业大学机电学院 2019. 1 目录 实验一电路元件伏安特性的测 绘 ........................................................................... ............................ 1 实验二叠加原理的验 证 ........................................................................... .............................................. 4 实验三戴维南定理有源二端网络 等效参数的测 定 (6) 实验四 R、L、C串联谐振电路的研 究 ........................................................................... ................. 10 实验五RC一阶电路的响应测 试 ........................................................................... . (13) 实验一电路元件伏安特性的测绘 一、实验目的 1. 学会识别常用电路元件的方法。 2. 掌握线性电阻、非线性电阻元件伏安特性的逐点测试法。 3. 掌握实验装置上直流电工仪表和设备的使用方法。二、原理说明 任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数 关系I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为该元件的伏安特 性曲线。 1. 线性电阻器的伏安特性曲线是一条通过坐标原点的直线,如图1-1中a曲线所示,该直线的斜率等于该电阻器的电阻值。 2. 一般的白炽灯在工作时灯丝处于高温状态,其灯丝电阻随着温度的升高而增大, 通过白炽灯的电流越大,其温度越高,阻值也越大,一般灯泡的“冷电阻”与“热电阻” 的阻值可相差几倍至十几倍,所以它的伏安特性如图1-1中b曲线所示。

电路实验报告1--叠加原理

电路实验报告1-叠加原理的验证 所属栏目:电路实验- 实验报告示例发布时间:2010-3-11 实验三叠加原理的验证 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 高性能电工技术实验装置DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。 四、实验步骤 1.用实验装置上的DGJ-03线路, 按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V和6V,接入图中的U1和U2处。 2.通过调节开关K1和K2,分别将电源同时作用和单独作用在电路中,完成如下表格。 表3-1

3.将U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。 4.将R3(330 )换成二极管IN4007,继续测量并填入表3-2中。 表3-2 五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用EWB软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。 验证叠加定理:以I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时,I1b=-1.198mA,I1a+I1b=7.495mA,U1和U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。 对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。 六、思考题 1.电源单独作用时,将另外一出开关投向短路侧,不能直接将电压源短接置零。 2.电阻改为二极管后,叠加原理不成立。

清华大学电路原理第三次仿真实验报

清华大学电路原理第三次仿真实验报

————————————————————————————————作者:————————————————————————————————日期:

[文档标题] 班级:电13 姓名:苗键强 学号:2011010645 日期:2013年1月11日

实验名称: 一、利用运算放大器的正反馈设计占空比可调的脉冲序列发生器; 二、利用运算放大器构成的脉冲序列发生器和积分器构成三角波发生器。 实验任务: 一、设计占空比可调的脉冲序列发生器 要求: (1)给出电路原理图,分析占空比可调的原因。 (2)给出仿真电路图。 (3)给出示波器 Expand 方式下整个示波器界面,分别给出占空比为 20%和70%时的脉冲序列波形和对应的电容电压波形。 二、利用运算放大器构成的脉冲序列发生器和积分器构成三角波发生器 要求: (1)给出电路原理图,分析三角波产生的原因。 (2)给出仿真电路图。 (3)给出示波器 Expand 方式下整个示波器界面,要求同时显示脉冲序列和三角波的波形。 理论分析及仿真电路: 一、设计占空比可调的脉冲序列发生器 通过Multisim仿真,设计电路图如下: 在此电路图中,通过计算可知,脉冲序列周期为:

T=2 U 滞 U 输出 CR5up+2 U 滞 U 输出 CR5down=2 U 滞 U 输出 CR5(1) 因而,占空比为: η=R5up R5 (2) 得到示波器示数如下: 当R5up R5 =0.2时,得到示波器示数如下: 其占空比为 η=46.154 223.932 =20.6% 当R5up R5 =0.7时,得到示波器示数如下:

叠加原理 实验报告范文(含数据处理)

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 叠加原理实验报告范文 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 高性能电工技术实验装置DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。 四、实验步骤 1.用实验装置上的DGJ-03线路,按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V和6V,接入图中的U1和U2处。 2.通过调节开关K1和K2,分别将电源同时作用和单独作用在电路中,完成如下表格。 表3-1

3.将U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。 4.将R3(330 )换成二极管IN4007,继续测量并填入表3-2中。 表3-2 五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用EWB软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。 验证叠加定理:以I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时, I1b=-1.198mA,I1a+I1b=7.495mA,U1和U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。 对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。

电路原理交流实验箱实验指导书

一、概述 交流电路实验箱是根据“电工基础”“电路原理”“电路分析”等课程所开发设计的强电类典型实验项目而设计的。版面设有Y型和△型变化法的三相灯组负载,日光灯实验组件,单相铁心变压器,电流互感器,R L C元件组,三相四线输入接线端子,三相电流插座,三相双掷开关及各种带绝缘护套的连接插头线,数字交流电压表、数字交流电流表、智能型多功能数字功率、功率因数表等。设计合理紧凑,操作方便。 二、技术性能指标 1、工作电源:三相四线AC380V±10%50Hz <180V A 2、使用环境条件:温度-10℃-40℃ 湿度<80% 3、实验箱外型尺寸:520mm×390mm×180mm 4、数字交流电压表: 三位半LED数码管显示,测量范围AC0~450V,精度0.5级。 5、数字交流电流表: 三位半LED数码管显示,测量范围AC0~2A,精度0.5级。 6、智能数字功率、功率因数表: 可测试:视在功率、有功功率、无功功率、电流、电压、频率、功率因数,精度0.5级。 6.1产品的主要性能特点: 本仪表可应用于交流功率或直流功率的测量与控制。 6.2、五位LED数码管显示,前四位显示测量参数,从0.01~99.99W到1~9999KW,六档量程自动转换,最小分辨力为0.01W(10mW),末位数码管显示测量参数的单号符号。 6.3、视在功率、有功功率、无功功率、电流、电压、频率、功率因数等参数通过按钮可轮换显示。 6.4、仪表具有上、下限报警控制功能,内置继电器及蜂鸣器;用户可根据需要自行选择设置视在功率、电流、电压报警。

三、操作方法及说明 1、将该仪器三相电源插头插入三相电源插座。插入前,要先检查电源应是三相四线380V。接入后面板上三相电源接线端子带电,方可引出使用。使用时要从保险管右边“U、V、W、N”引出。 2、打开仪表部分船形开关,仪表带电工作,方可使用,电压、电流表使用时正确接入即可;功率、功率因数使用说明如下。 仪表的面板上设有5个LED指示灯、3个设定控制按狃(分别为K4、K1、K2、K3)、1个蜂鸣器自锁开关K4。 High 指示灯亮:表示上限报警控制信号输出状态。 Low 指示灯亮:表示下限报警控制信号输出状态。 有功指示灯亮:表示仪表显示读数以KW(千瓦)为单位。 无功指示灯亮:表示仪表显示读数为无功功率。 K1键为在设定状态下为功能设定键及确认键。 K2键在设定状态下为左右移位键(←→);在测量状态为视在功率、有功功率、无功功率显示功能选择键。 K3在设定状态下为数字设定键和功能转换键(↑↓);在测量状态下为功率、电压、电流、频率、功率因数显示功能选择键。 显示部分: 末位数码管为被测参数符号指示管,“P”表示功率,“H”表示频率,“C”表示功率因数,“A”表示电流,“V”表示电压。 1、在功率测量状态下,如果功率值超过9999W,仪表的●KW指示灯亮,此时仪表显示读数以KW(千瓦)为单位。

清华考研 电路原理课件 第2章 简单电阻电路的分析方法

清华大学电路原理电子课件 江辑光版 参考教材: 《电路原理》(第2版)清华大学出版社,2007年3月江辑光刘秀成《电路原理》清华大学出版社,2007年3月于歆杰朱桂萍陆文娟《电路》(第5版)高等教育出版社,2006年5月邱关源罗先觉

简单电阻电路的分析方法简单电阻电路的分析方法 第2章 简单电阻电路的分析方法 2.1 串联电阻电路 2.1 串联电阻电路 2. 4 理想电源的串联和并联 2. 4 理想电源的串联和并联 2.5 电压源与电流源的等效转换 2.5 电压源与电流源的等效转换 2. 3 星形联接与三角形联接的电阻的等效变换 2. 3 星形联接与三角形联接的电阻的等效变换 2.6 两个电阻电路的例子 2.6 两个电阻电路的例子 本章重点 本章重点 2.2 并联电阻电路 2.2 并联电阻电路

? 本章本章重点重点重点 ? 电阻的串联、并联和串并联 返回目录

2.1 串联电阻电路 (Series Connection)

R eq =( R 1+ R 2…+R n ) =∑ R k R eq =( R 1+ R 2 + +……+R n ) =∑ R k u R R u k k eq =等效电阻等于串联的各电阻之和

例 两个电阻分压(voltage division ), 如下图所示 例 两个电阻分压(voltage division ), 如下图所示 u R R R u 2 11 1+= u R R R u 2 12 2+?=i 2 , p 2 = R 2i 2 ,? : p n = R 1 : R 2 : ?= (R 1+ R 2+ ? +R + R i 2 + ? + R i 2 返回目录

电路基础实验报告

基尔霍夫定律和叠加定理的验证 组长:曹波组员:袁怡潘依林王群梁泽宇郑勋 一、实验目的 通过本次实验验证基尔霍夫电流定律和电压定律加深对“节点电流代数和”及“回路电压代数和”的概念的理解;通过实验验证叠加定理,加深对线性电路中可加性的认识。 二、实验原理 ①基尔霍夫节点电流定律[KCL]:在集总电路中,任何时刻,对任一结点,所有流出结点的支路电流的代数和恒等于0。 ②基尔霍夫回路电压定律[KVL]:在集总电路中,任何时刻,沿任一回路,所有支路电压的代数和恒等于0。 ③叠加定理:在线性电阻电路中,某处电压或电流都是电路中各个独立电源单独作用时,在该处分别产生的电压或电流的叠加。 三、实验准备 ①仪器准备 1.0~30V可调直流稳压电源 2.±15V直流稳压电源 3.200mA可调恒流源 4.电阻 5.交直流电压电流表 6.实验电路板 7.导线

②实验电路图设计简图 四、实验步骤及内容 1、启动仪器总电源,连通整个电路,分别用导线给电路中加上直流电压U1=15v,U2=10v。 2、先大致计算好电路中的电流和电压,同时调好各电表量程。 3、依次用直流电压表测出电阻电压U AB、U BE、U ED,并记录好电压表读数。 4、再换用电流表分别测出支路电流I1、I2、I3,并记录好电流读数。 5、然后断开电压U2,用直流电压表测出电阻电压U、BE,用电流表分别测出支路电流I、1并记录好电压表读数。 6、然后断开电压U1,接通电压U2,用直流电压表测出电阻电压U、、BE,用电流表分别测出支路电流I、、1并记录好电压表读数。 7、实验完毕,将各器材整理并收拾好,放回原处。 实验过程辑录 图1 测出U AB= 图2 测出电压U BE=

电路实验指导书

实验一元件伏安特性的测试 一、实验目的 1.掌握线性电阻元件,非线性电阻元件及电源元件伏安特性的测量方法。 2.学习直读式仪表和直流稳压电源等设备的使用方法。 二、实验说明 电阻性元件的特性可用其端电压U与通过它的电源I之间的函数关系来表示,这种U与I的关系称为电阻的伏安关系。如果将这种关系表示在U~I平面上,则称为伏安特性曲线。 1.线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,该直线斜率的倒数就是电阻元件的电阻值。如图1-1所示。由图可知线性电阻的伏安特性对称于坐标原点,这种性质称为双向性,所有线性电阻元件都具有 这种特性。 -1 图 半导体二极管是一种非线性电阻元件,它的阻值随电流的变化而变化,电压、电流不服从欧姆定律。半导体二极管的电路符号用 表示,其伏安特性如图1-2所示。由图可见,半导体二极管的电阻值随着端电压的大小和极性的不同而不同,当直流电源的正极加于二极管的阳极而负极与阴极联接时, 二极管的电阻值很小,反之二极管的电阻值很大。 2.电压源 能保持其端电压为恒定值且内部没有能量损失的电压源称为理想电压源。理想电压源的符号和伏安特性曲线如图1-3(a)所示。 理想电压源实际上是存在的,实际电压源总具有一定的能量损失,这种实际电压源可以用理想电压源与电阻的串联组合来作为模型(见图1-3b)。其端口的电压与电流的关系为: s s IR U U- = 式中电阻 s R为实际电压源的内阻,上式的关系曲线如图1-3b 所示。显然实际电压源的内阻越小,其特性越接近理想电压源。 实验箱内直流稳压电源的内阻很小,当通过的电流在规定的范围内变化时,可以近似地当作理想电压源来处理。 (a) (b) i s I 1

电路原理实验 实验4-7.

实验4-7 电阻,电感,电容元件阻抗特性的测定 一、实验目的 1. 熟悉交流阻抗的测量方法,验证电阻,感抗,容抗与频率之间的关系,测定R ~ f(电阻-频率),X L ~ f(感抗-频率)和X C ~ f(容抗-频率)特性曲线及电路元件参数对响应的影响。 2.加深理解R,L,C元件端电压与电流的相位关系,学会测量阻抗角的方法。 二、电路图(按照个人数据表填写下图的元件值) 图4-7-1 RLC阻抗频率特性的仿真电路 图4-7-2 R阻抗频率特性的实测电路

三、仿真测量R 、L 、C 元件阻抗频率特性 1. 按照个人数据表填写下表左边的元件值,取样电阻为r=100Ω,测量时用万用表(毫伏表),将测量的U R 、U L 、U C 有效值填入表4-7-1。 2. 计算公式 3R i r 1051U U I -?-= 电阻测量电路中有:R r I I = R R I U R =∴ 32L 2i r 1051 U U I -?-= 电感测量电路中有:L r I I = L L L I U X =∴ 32 C 2i r 1051 U U I -?-= 电容测量电路中有:C r I I = C C C I U X =∴ 3. 从表4-7-1中任选1个频点,将电阻、电容和电感的仿真图分别插入到报告中指定位置。 图4-7-3 频点为5kHz 时电阻上U R 的电压 图4-7-4 频点为5kHz 时电感上U L 的电压

表4-7-1 R、L、C元件阻抗频率特性的测定输入电压U P-P=4V(有效值U i=2.83V) 4. 用Excels将仿真数据生成R、L、C阻抗频率特性图

2013年清华大学电路原理考研真题

2013年清华大学电路原理考研真题 1、(1)理想变压器+并联谐振:理想变压器的副边借有并联的电感与电容,告诉了电感与电容支路的电流表读数相等,由这个条件可求出电路工作的频率值,再代入原边的电感值计算得到原边电路的阻抗,最后求出原边电流;(2)卷积:是一个指数函数和一个延时正比例函数的卷积,直接用公式计算即可,可以把指数函数选作先对称后平移的项,这样只需分三个时间段进行讨论即可; 2、三相电路:(1)电源和负载均为星形连接,且三相对称,直接抽单相计算线电流;(2)共B接法的二表法测电路的三相有功功率,要画图和计算两块功率表的读数,注意的读数为负数;(3)当A相负载对中性点短路后求各相电源的有功,先用节点法求出各相电流,再计算各相电源的有功功率; 3、理想运放的问题:共有2级理想运放,其中第一级为负反馈,第二级为正反馈,解答时先要判断出这一信息,然后(1)求第一级的输出,因为第一级运放是负反馈,故可以用“虚断”和“虚短”,得到输出(实为一个反向比例放大器);(2)求第二级的输出,因为是正反馈,所以“虚断”仍成立,但“虚短”不成立,不过,由正反馈的性质,运放要么工作在正向饱和区,要么工作在反向饱和区,即输出始终为,故可以假设输出为其中一个饱和电压,比较反相输入端和非反相输入端的电压值即可确定第二级的输出(实为一个滞回比较器); 4、一阶电路的方框图问题:动态元件是电容,它接在方框左端,首先告诉了方框右端支路上的电流的零输入响应,由此可得从电容两端看入的入端电阻,即为从方框左端看入的Thevenin等效电阻,其次可得到时刻的电量,画出这个等效电路图;然后改变电容值,改变电容的初始电压值,并在方框右端的支路上接上一个冲激电压源,求电容电压的响应:可以利用叠加定理,分解为零输入响应和零状态响应分别求解,零输入响应可根据前述Thevenin等效电阻直接写出,零状态响应可以先用互易定理(因为方框内的元件全是线性电阻,满足互易定理)结合前述“时刻的电量,画出这个等效电路图”得到左端的短路电流,再由Thevenin等效电阻进而得到从电容两端向右看入的Thevenin等效电路,然后先求阶跃响应,再求导得到冲激源作用下的冲激响应;最后叠加得到全响应; 5、列写状态方程:含有一个压控电流源的受控源,有2个电容和1个电感,用直接法,最后消去非状态变量即可得解答; 6、含有互感的非正弦周期电路(15分):(1)求电感电流,互感没有公共节点,无法去耦等效,只能用一般方法解,该题的电源有2种频率,有3个网孔,2个电感和1个电容,最关键的是左下角网孔的电源是电流源,因此可以设出电感电流的值,再由KCL表示出剩余支路的电流,最后对某一个网孔列写KVL,解方程即可得到要求的电感电流的值,只需列写一个方程,但要注意正确地写出互感电压的表达式;(2)求电流源发出的功率,由第一问的解求出电流源两端的电压,即可得到解答; 7、含有理想二极管的二阶电路:需要判断理想二极管何时关断、何时导通,这是解题的关键。从0时刻开始,二极管关断,电路是一个二阶电路,求出电感电流的响应,直到二极管的端电压一直由增大到零,这就是所求临界点,即电感电流达到最大值的时间节点,此后二极管导通,左右两部分电路是2个独立的一阶电路。因此(1)电路可以分为2个工作时间段,分别画出前述的二阶等效电路

实验二 电路原理图的绘制实验报告

实验二电路原理图的绘制实验报告 一、实验目的 (1)掌握设计项目的建立和管理; (2)掌握原理图图纸参数的设置、原理图环境参数的设置; (3)掌握元器件库的装载,学会元器件、电源、接地、网络标号、总线、输入/输出端口、节点等电路元素的选取、放置等操作; (4)掌握电路元素的参数修改方法。 二、实验原理 1、创建一个新的项目文件。 在Altium Designer 10中,根据不同的设计主要有三种形式的项目文件,分别是:PCB项目文件,文件后缀为PrjPCB;FPGA项目文件,文件后缀为PrjFPG;库文件,根据电路原理图和印制电路板图设计的不同,其后缀有SchLib和PcbLib 两种。在我们实验中均建立一个PCB项目文件。 (1)执行菜单命令“文件\工程\PCB Project”,建立一个空的项目文件后的项目工作面板; (2)执行菜单命令“File\Save Project”,保存文件。 2、新建原理图文件 (1)执行菜单命令“File\New\Schematic”,在刚才建立的项目中新建原理图,默认的文件名为Sheet1.SchDoc。 (2)执行菜单命令“File\Save Project”,保存文件。 3、设置原理图选项 (1)图纸参数设定:执行菜单命令“设计\文档选项”,系统弹出文档选项对话框,在此对话框的“方块电路选项”标签页设置图纸参数。 (2)填写图纸设计信息:执行菜单命令“设计\文档选项”,系统弹出文档选项对话框,在此对话框的“参数”标签页设置图纸参数。 (3)原理图环境参数设置:执行菜单命令“工具\设置原理图参数”,系统将弹出“喜好”对话框,在此对话框的左边树状图中选择原理图选项,此选项组中有12个选项卡,它们分别是原理图参数选项、图形编辑参数选项、编译器选项、导线分割选项、默认的初始值选项和软件参数选项等,分别用于设置原理图绘制过程中的各类功能选项。

电路实验总结

电路实验总结 总结的对象是什么?总结的对象是过去做过的工作或完成的某项任务,进行总结时,要通过调查研究,努力掌握全面情况和了解整个工作过程,只有这样,才能进行全面总结,避免以偏概全。 电路实验总结一:一个长学期的电路原理,让我学到了很多东西,从最开始的什么都不懂,到现在的略懂一二。 在学习知识上面,开始的时候完全是老师讲什么就做什么,感觉速度还是比较快的,跟理论也没什么差距。但是后来就觉得越来越麻烦了。从最开始的误差分析,实验报告写了很多,但是真正掌握的确不多,到最后的回转器,负阻,感觉都是理论没有很好的跟上实践,很多情况下是在实验出现象以后在去想理论。在实验这门课中给我最大的感受就是,一定要先弄清楚原理,在做实验,这样又快又好。 在养成习惯方面,最开始的时候我做实验都是没有什么条理,想到哪里就做到哪里。比如说测量三相电,有很多种情况,有中线,无中线,三角形接线法还是Y形接线法,在这个实验中,如果选择恰当的顺序就可以减少很多接线,做实验应该要有良好的习惯,应该在做实验之前想好这个实验要求什么,有几个步骤,应该怎么安排才最合理,其实这也映射到做事情,不管做什么事情,应该都要想想目的和过程,

这样才能高效的完成。电原实验开始的几周上课时间不是很固定,实验报告也累计了很多,第一次感觉有那么多实验报告要写,在交实验报告的前一天很多同学都通宵了的,这说明我们都没有合理的安排好自己的时间,我应该从这件事情中吸取教训,合理安排自己的时间,完成应该完成的学习任务。这学期做的一些实验都需要严谨的态度。在负阻的实验中,我和同组的同学连了两三次才把负阻链接好,又浪费时间,又没有效果,在这个实验中,有很多线,很容易插错,所以要特别仔细。 在最后的综合实验中,我更是受益匪浅。完整的做出了一个红外测量角度的仪器,虽然不是特别准确。我和我组员分工合作,各自完成自己的模块。我负责的是单片机,和数码显示电路。这两块都是比较简单的,但是数码显示特别需要细致,由于我自己是一个粗心的人,所以数码管我检查了很多遍,做了很多无用功。 总结:电路原理实验最后给我留下的是:严谨的学习态度。做什么事情都要认真,争取一次性做好,人生没有太多时间去浪费。 电路实验总结二:电路实验,作为一门实实在在的实验学科,是电路知识的基础和依据。它可以帮助我们进一步理解巩固电路学的知识,激发我们对电路的学习兴趣。在

电路原理图设计及Hspice实验报告

电子科技大学成都学院 (微电子技术系) 实验报告书 课程名称:电路原理图设计及Hspice 学号: 姓名: 教师: 年06月15日 实验一基本电路图的Hspice仿真 实验时间:同组人员: 一、实验目的 1.学习用Cadence软件画电路图。 2.用Cadence软件导出所需的电路仿真网表。 3.对反相器电路进行仿真,研究该反相器电路的特点。 二、实验仪器设备 Hspice软件、Cadence软件、服务器、电脑 三、实验原理和内容 激励源:直流源、交流小信号源。 瞬态源:正弦、脉冲、指数、分线段性和单频调频源等几种形式。 分析类型:分析类型语句由定义电路分析类型的描述语句和一些控制语句组成,如直流分析(.OP)、交流小信号分析(.AC)、瞬态分析(.TRAN)等分析语句,以及初始状态设置(.IC)、选择项设置(.OPTIONS)等控制语句。这类语句以一个“.”开头,故也称为点语句。其位置可以在标题语句之间的任何地方,习惯上写在电路描述语句之后。 基本原理:(1)当UI=UIL=0V时,UGS1=0,因此V1管截止,而此时|UGS2|> |UTP|,所以V2导通,且导通内阻很低,所以UO=UOH≈UDD,即输出电平. (2)当UI=UIH=UDD时,UGS1=UDD>UTN,V1导通,而UGS2=0<|UTP|,因此V2截止。此时UO=UOL≈0,即输出为低电平。可见,CMOS反相器实现了逻辑非的功能. 四、实验步骤

1.打开Cadence软件,画出CMOS反相器电路图,导出反相器的HSPICE网表文件。 2.修改网表,仿真出图。 3.修改网表,做电路的瞬态仿真,观察输出变化,观察波形,并做说明。 4.对5个首尾连接的反相器组成的振荡器进行波形仿真。 5.分析仿真结果,得出结论。 五、实验数据 输入输出仿真: 网表: * lab2c - simple inverter .options list node post .model pch pmos .model nch nmos *.tran 200p 20n .dc vin 0 5 1m sweep data=w .print v(1) v(2) .param wp=10u wn=10u .data w wp wn 10u 10u 20u 10u 40u 10u 40u 5u .enddata vcc vcc 0 5 vin in 0 2.5 *pulse .2 4.8 2n 1n 1n 5n 20n cload out 0 .75p m1 vcc in out vcc pch l=1u w=wp m2 out in 0 0 nch l=1u w=wn .alter vcc vcc 0 3 .end 图像: 瞬态仿真: 网表: * lab2c - simple inverter .options list node post .model pch pmos .model nch nmos .tran 200p 20n .print tran v(1) v(2) vcc vcc 0 5 vin in 0 2.5 pulse .2 4.8 2n 1n 1n 5n 20n cload out 0 .75p m1 vcc in out vcc pch l=1u w=20u

网络原理实验指导手册

网络原理实验指导手册 实验1 RJ-45接口连线(Packet Tracer 软件的基本应用) (1) 实验2:交换原理、MAC 地址表 (10) 实验3 Hub 与Switch (14) 1、实验拓扑图: (14) 2、实验过程 (14) 3、实验指南 (15) 实验4ARP 地址解析协议 (19) 1、实验拓扑图: (19) 2、实验过程 (20) 实验1:观察ARP 报文事件 (20) 实验2、ARP 与远端网络 (21) 实验3、在实验2 的基础上PC0 再次ping PC4 (24) 实验5 IP地址配置 (26)

实验1 RJ-45接口连线(Packet Tracer 软件的 基本应用) 【实验目的】 熟练使用Packet Tracer 模拟器软件; 掌握在不同设备上采用不同方式ping 和检查MAC 表; 【实验内容】 实验拓扑图: 通过集线器网络拓扑了解PT 工作界面 关于Packet Tracer:Packet Tracer 是思科公司开发的协议模拟器,Packet Tracer(简写为PT)是一个强有力的、动态演示了在网络中使用的各种各样的协议,不论是在在实时工作模式还是在模拟器工作模式中。协议包括二层如以太网、PPP,三层如IP、ICMP、ARP,四层如TCP、UDP,路由协议也可以被跟踪演示。通过本实验练习,你能够熟悉Packet Tracer 的工作界面,学会使用已经存在的网络拓扑,并构建自己的网络拓扑图。 通过集线器网络拓扑了解PT 工作界面 第一步:运行Packet Tracer 软件,界面如图1.1 所示。

第二步:点击主界面左下角的设备区域选择相关设备。 建立如图1.3所示的网络拓扑结构图,一个集线器连接四台PC机。

电路原理实验(泰达)

电路原理实验指导书 电子信息与自动化学院

电路原理实验须知 一、实验目的和要求 电路实验是电路原理课程的重要实践性环节,实验的目的不仅要巩固和加强理解所学的知识,更重要的是要训练实验技能,培养学生动手能力,学会独立进行实验,提高分析问题、解决问题的能力,同时树立工程实践观点和严谨的科学作风。 对学生实验技能训练的具体要求是: 1.能正确使用常用的电工仪表、设备及常用的电子仪器。 2.能按电路图正确接线、查线、排除故障。 3.能准确读取实验数据,观察实验现象,测绘波形曲线。 4.能整理分析实验数据,独立写出内容完整、条理清楚、有归纳性的实验报告。 二、实验课前学生应做的准备工作 1.认真阅读实验指导书,明确实验目的,理解有关原理,熟悉实验电路、实验步骤及实验中的注意事项。 2.完成实验指导书中有关预习要求的内容。 3.做好数据记录表格等准备工作。 三、实验报告的要求 一律使用学校规定的实验报告纸认真书写,实验报告的具体内容为: 1.实验目的。 2.实验原理电路及主要仪器设备的规格与型号。 3.课前完成的预习内容,包括指导书所要求的理论计算、记录表格等。 4.整理原始记录的实验数据,并按实验指导书要求加以处理。 5.完成指导书要求的总结、问题讨论及心得体会,需要时画出实验曲线。 6.记录实验中出现的问题、现象及故障的处理分析。 四、实验规则 1.进实验室后,检查所用仪器设备是否齐全、完好。 2.严禁带电接线、拆线或改接线路,人体严禁接触线路中带电的金属部位。 3.接线完毕,要认真检查,确信无误并经指导教师检查后方可接通电源进行实验。 4.实验过程中如有异常,应立即切断主电源,保持现场,报告指导教师。 5.实验内容完成后,实验结果经指导教师认可方能拆除实验线路,并将实验器材整理好。 6.室内仪器设备不准擅自搬动调换,没有清楚仪器、仪表及设备的使用方法,不得贸然使用。若损坏仪器设备,必须立即报告教师,属于责任事故要酌情赔偿。

《电路原理》实验指导书(精)

《电路原理》实验指导书 一、课程的目的、任务 本课程是电子科学、测控技术专业学生在学习电路原理课程间的一门实践性技术基础课程,其目的在于通过实验使学生能更好地理解和掌握电路基本理论,培养学生理论联系实际的学风和科学态度,提高学生的电工实验技能和分析处理实际问题的能力。为后续课程的学习打下基础。 二、课程的教学内容与要求 三.各实验具体要求 见P2 四、实验流程介绍 学生用户登陆进入实验系统的用户名为:Z+学号(如ZD205003200XX),密码:netlab 详细操作步骤见P7 五、实验报告 请各指导老师登陆该实验系统了解具体实验方法,并指导学生完成实验。学生结束实验后应完成相应的实验报告并交给指导老师。其中实验报告的主要内容包括:实验目的,实验内容,实验记录数据,数据分析与处理等。

实验一 电阻、电容、电压和电流的测量 一、实验目的 1、 了解电源、测量仪表以及数字万用表的使用方法。 2、 掌握测量电阻、电容、电压和电流的方法。 3、 了解电表量程、分辨率、准确度对测量结果的影响。 二、实验任务 1、用万用表电阻档测精密可调电阻,测量电阻R1-R4。实验数据填入下表: 表1-1 2、用万用表和数字表分别测量直流电流与电压 (1) 按图1-1接好电路,s U 为稳压电源(上限电压5V ),测量1R =510Ω、2 R =1K Ω时的1R U 、2R U ,自己确定Us 的值,需要测量3组数据。 图1-1 图1-2 (2) 按图1-2接好电路s I 为稳流电源(上限电流0.025A ),用毫安表和微安表 测量1R =2R =1k Ω时的1I 、2I 和s I ,填入下表。

电路分析 等效电源定理 实验报告

电路分析等效电源定理实验报告 一、实验名称 等效电源定理 二、实验目的 1. 验证戴维宁定理和诺顿定理的正确性,加深对该定理的理解。 2. 掌握测量有源二端网络等效参数的一般方法。 三、原理说明 1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。 戴维宁定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is等于这个有源二端网络的短路电流I SC,其等效内阻R0定义同戴维宁定理。 Uoc(Us)和R0或者I SC(I S)和R0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1) 开路电压的测量 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc。 (2)短路电流的测量 在有源二端网络输出端短路,用电流表测其短路电流Isc。 (3)等效内阻R0的测量 Uoc R0=── Isc 如果二端网络的内阻很小,若将其输出端口短路,则易损坏其内部元件,因此不宜用此法。

五、实验内容 被测有源二端网络如图5-1(a)所示,即HE-12挂箱中“戴维宁定理/诺顿定理”线路。 (a) (b) 图5-1 1. 用开路电压、短路电流法测定戴维宁等效电路的Uoc、R0。 按图5-1(a)接入稳压电源Us=12V和恒流源Is=10mA,不接入R L。测出U O c和Isc,并计算出R0(测U OC时,不接入mA表。),并记录于表1。 表1 实验数据表一 2. 负载实验 按图5-1(a)接入可调电阻箱R L。按表2所示阻值改变R L阻值,测量有源二端网络的外特性曲线,并记录于表2。 表2 实验数据表二 3. 验证戴维宁定理 把恒压源移去,代之用导线连接原接恒压源处;把恒流源移去,这时,A、B两点间的电阻即为R0,然后令其与直流稳压电源(调到步骤“1”时所测得的开路电压Uoc之值)相串联,如图5-1(b)所示,仿照步骤“2”测其外特性,对戴氏定理进行验证,数据记录于表3。 表3 实验数据表三 4. 验证诺顿定理 在图5-1(a)中把理想电流源及理想电压源移开,并在电路接理想电压源处用导线短接(即相当于使两电源置零了),这时,A、B两点的等效电阻值即为诺顿定理中R0,然后令

电路仿真实验报告

本科实验报告 实验名称:电路仿真 实验1 叠加定理的验证 1.原理图编辑: 分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(Group:Indicators, Family:VOLTMETER 或

AMMETER)注意电流表和电压表的参考方向),并按上图连接; 2. 设置电路参数: 电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源 I1为10A。 3.实验步骤: 1)、点击运行按钮记录电压表电流表的值U1和I1; 2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2; 3)、点击停止按钮记录,将直流电压源的电压值设置为12V,将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3; 4.根据叠加电路分析原理,每一元件的电流或电压可以看成是每一个独立源单独作用于电路时,在该元件上产生的电流或电压的代数和。 所以,正常情况下应有U1=U2+U3,I1=I2+I3; 经实验仿真: 当电压源和电流源共同作用时,U1=-1.6V I1=6.8A. 当电压源短路即设为0V,电流源作用时,U2=-4V I2=2A 当电压源作用,电流源断路即设为0A时,U3=2.4V I3=4.8A

所以有U1=U2+U3=-4+2.4=-1.6V I1=I2+I3=2+4.8=6.8A 验证了原理 实验2 并联谐振电路仿真 2.原理图编辑: 分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,按上图连接并修改按照例如修改电路的网络标号; 3.设置电路参数: 电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。信号源V1设置为AC=5v,Voff=0,Freqence=500Hz。 4.分析参数设置: AC分析:频率范围1HZ—100MHZ,纵坐标为10倍频程,扫描点数为10,观察输出节点为Vout响应。 TRAN分析:分析5个周期输出节点为Vout的时域响应。 实验结果: 要求将实验分析的数据保存 (包括图形和数据),并验证结果是否正确,最后提交实验报告时需要将实验结果附在实验报告后。 根据并联谐振电路原理,谐振时节点out电压最大且谐振频率为w0=1/LC=1000 10,f0=w0/2 =503.29Hz 谐振时节点out电压 * 理论值由分压公式得u=2000/(2000+10)*5=4.9751V.

[工学]电路原理实验指导册

电路原理实验指导书 绍兴文理学院数理信息学院 2011 叶森钢编制

实验一叠加原理的验证 一、实验目的 验证线性电路叠加原理的正确性,从而加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有几个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路其他各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 四、实验内容 实验电路如图2-1所示 1. 按图2-1电路接线,E 1为+6V、+12V切换电源,取E 1 =+12V,E 2 为可调直流 稳压电源,调至+6V。 2.令E 1电源单独作用时(将开关S 1 投向E 1 侧,开关S 2 投向短路侧),用直流数 字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端电压,数据记入表格中。

3. 令E 2电源单独作用时(将开关S 1 投向短路侧,开关S 2 投向E 2 侧),重复实 验步骤2的测量和记录。 4. 令E 1和E 2 共同作用时(开关S 1 和S 2 分别投向E 1 和E 2 侧),重复上述的测量 和记录。 5. 将E 2 的数值调至+12V,重复上述第3项的测量并记录。 五、实验注意事项 1.测量各支路电流时,应注意仪表的极性, 及数据表格中“+、-”号的记录。 2. 注意仪表量程的及时更换。 六、预习思考题 1. 叠加原理中E 1、E 2 分别单独作用,在实验中应如何操作?可否直接将不作 用的电源(E 1或E 2 )置零(短接)? 2. 实验电路中,若有一个电阻器改为二极管,试问叠加原理的迭加性与齐次性还成立吗?为什么? 七、实验报告 1. 根据实验数据验证线性电路的叠加性与齐次性。 2. 各电阻器所消耗的功率能否用叠加原理计算得出?试用上述实验数据,进行计算并作结论。 3. 心得体会及其他。

电路原理A实验指导书

《电路原理A》 实验指导书机械与电气工程学院

目录 前言 (2) 一、叠加原理的验证 (3) 二、戴维南定理 (6) 三、RC一阶电路的响应测试 (10) 四、正弦稳态交流电路相量的研究 (13) 五、三相交流电路电压、电流的测量 (16) 六、二端口网络测试 (19)

前言 电路原理实验面向电类专业,能使学生更好地理解和深刻地把握电学知识,在课堂讲授的基础上,训练和培养学生的动手实验技能。设置的实验项目中,有一定数量的设计性实验。 各项实验的具体要求在正文中有明确要求。各专业具体选作的实验项目根据课程实验大纲选定。 电气自动化实验中心

实验一叠加原理的验证 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 四、实验内容 实验线路如图1-1所示,用DG05挂箱的“基尔夫定律/叠加原理”线路。 图1-1 1. 将两路稳压源的输出分别调节为12V和6V,接入U1和U2处。 2. 令U1电源单独作用(将开关K1投向U1侧,开关K2投向短路侧)。用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,数据记入表1-1。

3. 令U2电源单独作用(将开关K1投向短路侧,开关K2投向U2侧),重复实验步骤2的测量和记录,数据记入表1-1。 4. 令U1和U2共同作用(开关K1和K2分别投向U1和U2侧),重复上述的测量和记录,数据记入表1-1。 5. 将U2的数值调至+12V,重复上述第3项的测量并记录,数据记入表1-1。 6. 将R5(330Ω)换成二极管1N4007(即将开关K3投向二极管IN4007侧),重复1~5的测量过程,数据记入表1-2。 7. 任意按下某个故障设置按键,重复实验内容4的测量和记录,再根据测量结果判断出故障的性质。 五、实验注意事项 1. 用电流插头测量各支路电流时,或者用电压表测量电压降时,应注意仪表的极性,正确判断测得值的+、-号后,记入数据表格。 2. 注意仪表量程的及时更换。 六、预习思考题 1. 在叠加原理实验中,要令U1、U2分别单独作用,应如何操作?可否直接将不作用的电源(U1或U2)短接置零? 2. 实验电路中,若有一个电阻器改为二极管,试问叠加原理的迭加性与齐次性还成立吗?为什么?

相关主题
文本预览
相关文档 最新文档