当前位置:文档之家› 6 第6讲 对数与对数函数

6 第6讲 对数与对数函数

6 第6讲 对数与对数函数
6 第6讲 对数与对数函数

第6讲 对数与对数函数

1.对数

指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称.

判断正误(正确的打“√”,错误的打“×”) (1)若MN >0,则log a (MN )=log a M +log a N .( ) (2)log a x ·log a y =log a (x +y ).( )

(3)函数y =log 2x 及y =log 13

3x 都是对数函数.( )

(4)对数函数y =log a x (a >0且a ≠1)在(0,+∞)上是增函数.( )

(5)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0)且过点(a ,1),????1

a ,-1,函数图象只在第一、四象限.( )

答案:(1)× (2)× (3)× (4)× (5)√ 函数y =x ln(1-x )的定义域为( )

A .(0,1)

B .[0,1)

C .(0,1]

D .[0,1]

解析:选B .因为y =x ln(1-x ),所以?

????x ≥0,

1-x >0,解得0≤x <1.

函数f (x )=log

12

(x 2-4)的单调递增区间为( )

A .(0,+∞)

B .(-∞,0)

C .(2,+∞)

D .(-∞,-2)

解析:选D.设t =x 2-4,因为y =log 12

t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2). lg 5

2

+2lg 2-????12-1=________.

解析:lg 52+2lg 2-????12-1=lg 5-lg 2+2lg 2-2

=(lg 5+lg 2)-2=1-2=-1. 答案:-1

(教材习题改编)函数y =log

a (4-x )+1(a >0,且a ≠1)的图象恒过点________. 解析:当4-x =1即x =3时,y =log a 1+1=1. 所以函数的图象恒过点(3,1). 答案:(3,1)

对数式的化简与求值

[典例引领]

计算下列各式:

(1)lg 25+lg 2·lg 50+(lg 2)2; (2)(log 32+log 92)·(log 43+log 83).

【解】 (1)原式=(lg 2)2+(1+lg 5)lg 2+lg 52 =(lg 2+lg 5+1)lg 2+2lg 5=(1+1)lg 2+2lg 5 =2(lg 2+lg 5)=2.

(2)原式=????lg 2lg 3+lg 2lg 9????lg 3lg 4+lg 3lg 8

=????lg 2lg 3+lg 22lg 3????lg 32lg 2+lg 33lg 2=3lg 22lg 3·5lg 36lg 2=54.

[提醒] 对数的运算性质以及有关公式都是在式子中所有的对数符号有意义的前提下才成立的,不能出现log 212=log 2[(-3)×(-4)]=log 2(-3)+log 2(-4)的错误.

[通关练习]

1.(2018·湖北省仙桃中学月考)计算2log 63+log 64的结果是( ) A .log 62 B .2 C .log 63

D .3

解析:选B .2log 63+log 64=log 69+log 64=log 636=2.故选B . 2.若x log 23=1,则3x +3-

x =( )

A.53

B.52

C.32

D.23

解析:选B.因为x log 23=1, 所以log 23x =1, 所以3x =2,3-x =1

2,

所以3x +3-x =2+12=5

2

.故选B.

3.化简12lg 3249-4

3

lg 8+lg 245=__________.

解析:12lg 3249-4

3

lg 8+lg 245

=12×(5lg 2-2lg 7)-43×32lg 2+1

2(lg 5+2lg 7) =52lg 2-lg 7-2lg 2+1

2lg 5+lg 7 =12lg 2+12lg 5=12lg(2×5)=12. 答案:12

4.设2a =5b =m ,且1a +1

b =2,则m =________.

解析:因为2a =5b =m >0,所以a =log 2m ,b =log 5m ,

所以1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2.所以m 2=10,所以m =10.

答案:10

对数函数的图象及应用

[典例引领]

(1)(2018·沈阳市教学质量检测(一))函数f (x )=ln(x 2+1)的图象大致是( )

(2)(数形结合思想)当0

2时,4x

A .(0,

22

) B .(

2

2

,1) C .(1,2) D .(2,2)

【解析】 (1)函数f (x )的定义域为R ,由f (-x )=ln[(-x )2+1]=ln(x 2+1)=f (x )知函数f (x )是偶函数,则其图象关于y 轴对称,排除C ;又由f (0)=ln 1=0,可排除B ,D .故选A . (2)构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0

12]上的图象,可知f (12)22,所以a 的取值范围为(2

2

,1).

【答案】 (1)A (2)B

1.若本例(2)变为:方程4x =log a x 在???

?0,1

2上有解,求实数a 的取值范围. 解:构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0

????0,12上的图象(见例题(2)解析图象),可知,只需两图象在????0,12上有交点即可,则f ???

?12≥

g ????12,即2≥log a 12,则a ≤22,所以a 的取值范围为?

???0,22. 2.若本例(2)变为:若不等式x 2-log a x <0对x ∈????0,1

2恒成立,求实数a 的取值范围. 解:由x 2-log a x <0得x 2

要使x ∈???

?0,1

2时,不等式x 2

2上的图象在f 2(x )=log a x 图象的下方即可.当a >1时,显然不成立; 当0

要使x 2

2上恒成立, 需f 1(1

2

)≤f 2????12, 所以有????122

≤log a

12,解得a ≥116,所以116≤a <1. 即实数a 的取值范围是????116,1.

利用对数函数的图象可求解的两类热点问题

(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.

(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.本例(2)充分体现四大数学思想,不等式4x

[通关练习])

1.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图所示,则下列结论成立的是( ) A .a>1,c>1 B .a>1,01 D .0

解析:选D.由对数函数的性质得00时是由函数y =log a x 的图象向左平移c 个单位得到的,所以根据题中图象可知0

2.已知函数f (x )=log a (x +b )(a >0且a ≠1)的图象过两点(-1,0)和(0,1),则log b a =________. 解析:f (x )的图象过两点(-1,0)和(0,1). 则f (-1)=log a (-1+b )=0且f (0)=log a (0+b )=1,

所以?????b -1=1,b =a ,即?

????b =2,a =2.所以log b a =1.

答案:1

3.已知函数f (x )=?

????log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a

的取值范围是________.

解析:问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合函数图象可知a >1. 答案:(1,+∞)

对数函数的性质及应用(高频考点)

对数函数的性质是每年高考的必考内容之一,多以选择题或填空题的形式考查,难度低、中、高档都有.高考对对数函数性质的考查主要有以下三个命题角度: (1)比较对数值的大小; (2)解简单的对数不等式或方程; (3)对数型函数的综合问题.

[典例引领]

角度一 比较对数值的大小

(2018·福州市综合质量检测)已知a =16ln 8,b =12

ln 5,c =ln 6-ln 2,则( )

A .a

B .a

C .c

D .c

【解析】 因为a =16ln 8,b =12ln 5,c =ln 6-ln 2,所以a =ln 2,b =ln 5,c =ln 6

2=

ln 3.又对数函数y =ln x 在(0,+∞)上为单调递增函数,由2<3<5,得ln 2

角度二 解简单的对数不等式或方程

若log a (a 2+1)

A .(0,1) B.???

?0,1

2 C.????

12,1

D .(0,1)∪(1,+∞)

【解析】 由题意得a >0且a ≠1,故必有a 2+1>2a , 又log a (a 2+1)1,所以a >1

2.综上,a ∈????12,1. 【答案】 C

角度三 对数型函数的综合问题

已知函数f (x )=log a (x +1)-log a (1-x ),a >0,且a ≠1.

(1)求f (x )的定义域;

(2)判断f (x )的奇偶性,并予以证明; (3)当a >1时,求使f (x )>0的x 的取值范围. 【解】 (1)因为f (x )=log a (x +1)-log a (1-x ),

所以?????x +1>0,1-x >0,

解得-1

故所求函数的定义域为{x |-1

证明如下:由(1)知f (x )的定义域为{x |-1

(3)因为当a >1时,f (x )在定义域{x |-10,得x +11-x >1,解得0

所以x 的取值范围是(0,1).

(1)比较对数值的大小的方法

(2)解对数不等式的函数及方法

①形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0

②形如log a x >b 的不等式,需先将b 化为以a 为底的对数式的形式. (3)解决与对数函数有关的函数的单调性问题的步骤

[通关练习]

1.(2017·高考全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)

D .(4,+∞)

解析:选D.由x 2-2x -8>0,得x <-2或x >4.因此,函数f (x )=ln(x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单

调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞),选D.

2.若f (x )=lg x ,g (x )=f (|x |),则g (lg x )>g (1)时,x 的取值范围是________.

解析:当g (lg x )>g (1)时,f (|lg x |)>f (1),由f (x )为增函数得|lg x |>1,从而lg x <-1或lg x >1,解得0

10或x >10.

答案:???

?0,1

10∪(10,+∞) 3.已知函数f (x )=log a (8-ax )(a >0,a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是________.

解析:当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数, 由f (x )>1恒成立,则f (x )min =log a (8-2a )>1, 解之得1

3

当01恒成立,则f (x )min =log a (8-a )>1, 即8-2a <0,所以a >4,又0

?1,8

3

对数函数图象的特点

(1)当a >1时,对数函数的图象呈上升趋势; 当0

(2)对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),????1a ,-1,函数图象只在第一、四象限.

(3)在直线x =1的右侧,当a >1时,底数越大,图象越靠近x 轴;当0

几个常用的结论

(1)函数y =log a |x |的图象关于y 轴对称.

(2)函数y =a x 与y =log a x 互为反函数,它们的图象

关于直线y =x 对称.即若f (x )的图象上有一点(a ,b ),则(b ,a )必在其反函数图象上. (3)函数f (x )=|log a x |的定义域为(0,+∞),值域为[0,+∞),在(0,1)上单调递减,在(1,

+∞)上单调递增.

易错防范

(1)在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为(0,+∞).对数函数的单调性取决于底数a 与1的大小关系,当底数a 与1的大小关系不确定时,要分01两种情况讨论.

(2)在运算性质log a M α

=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α

αlog a |M |(α∈N *,且α为偶数).

1.函数y =log 23

(2x -1)的定义域是( )

A .[1,2]

B .[1,2) C.????12,1

D.????

12,1

解析:选D .要使该函数有意义,需?????2x -1>0,log 23

(2x -1)≥0,解得:1

20且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log 2x B .1

2x

C .log 12

x

D .2x -

2

解析:选A.由题意知f (x )=log a x ,因为f (2)=1,所以log a 2=1.所以a =2.所以f (x )=log 2x . 3.若函数y =a |x |(a >0,且a ≠1)的值域为{y |0

解析:选A.函数y =a |x |(a >0,且a ≠1)的值域为{y |0

4.(2018·河南新乡模拟)设a =60.4,b =log 0.40.5,c =log 80.4,则a ,b ,c 的大小关系是( ) A .a

D .b

解析:选B.因为a =60.4>1,b =log 0.40.5∈(0,1),c =log 80.4<0,所以a >b >c .故选B. 5.(2018·河南平顶山模拟)函数f (x )=log a |x +1|(a >0,a ≠1),当x ∈(-1,0)时,恒有f (x )>0,

则( )

A .f (x )在(-∞,0)上是减函数

B .f (x )在(-∞,-1)上是减函数

C .f (x )在(0,+∞)上是增函数

D .f (x )在(-∞,-1)上是增函数

解析:选D.由题意,函数f (x )=log a |x +1|(a >0且a ≠1),则说明函数f (x )关于直线x =-1对称,当x ∈(-1,0)时,恒有f (x )>0,即|x +1|∈(0,1),f (x )>0,则0

6.已知函数y =log a (x -1)(a >0,a ≠1)的图象过定点A ,若点A 也在函数f (x )=2x +b 的图象上,则f (log 23)=________.

解析:由题意得A (2,0),因此f (2)=4+b =0,b =-4,从而f (log 23)=3-4=-1. 答案:-1

7.已知2x =3,log 48

3

=y ,则x +2y 的值为________.

解析:由2x =3,log 483=y 得x =log 23,y =log 483=12log 283,所以x +2y =log 23+log 28

3=log 28

=3. 答案:3

8.若函数f (x )=log a 2-1(2x +1)在????-1

2,0上恒有f (x )>0,则实数a 的取值范围是________. 解析:因为x ∈???

?-1

2,0, 所以2x +1∈(0,1),且log a 2-1(2x +1)>0, 所以0

9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域; (2)求f (x )在区间???

?0,3

2上的最大值. 解:(1)因为f (1)=2,所以log a 4=2(a >0,a ≠1),所以a =2.

由?????1+x >0,3-x >0,

得-1

=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], 所以当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,

故函数f (x )在????0,3

2上的最大值是f (1)=log 24=2. 10.已知f (x )=log a (a x -1)(a >0且a ≠1). (1)求f (x )的定义域; (2)判断函数f (x )的单调性.

解:(1)由a x -1>0,得a x >1,当a >1时,x >0; 当0

所以当a >1时,f (x )的定义域为(0,+∞); 当01时,设0

所以log a (ax 1-1)1时,f (x )在(0,+∞)上是增函数.

类似地,当0

1.若函数f (x )=log a ????x 2+32x (a >0,a ≠1)在区间????1

2,+∞内恒有f (x )>0,则f (x )的单调递增区间为( ) A .(0,+∞) B .(2,+∞) C .(1,+∞)

D .(1

2

,+∞)

解析:选A.令M =x 2+3

2x ,当x ∈????12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =????x +342

-916,因此M 的单调递增区间为????-34,+∞.又x 2+32x >0,所以x >0或x <-3

2

.所以函数f (x )的单调递增区间为(0,+∞).

2.函数f (x )=|log 2x |,若0

D .(5,+∞)

解析:选D.画出f (x )=|log 2x |的图象如图:

因为0

所以|log 2b |=|log 2a |+1,所以log 2b =-log 2a +1, 所以log 2(ba )=1,所以ab =2. 所以y =a +2b =a +4

a

(0

因为y =a +4a 在(0,1)上为减函数,所以y >1+4

1=5,

所以a +2b 的取值范围为(5,+∞),故选D.

3.若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为________. 解析:令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,

1]上递减,则有?????g (1)>0,a ≥1,即?

????2-a >0,

a ≥1,解得1≤a <2,即a ∈[1,2).

答案:[1,2)

4.函数f (x )=log 2x ·log

2(2x )的最小值为________.

解析:显然x >0,所以f (x )=log 2x ·log 2(2x )=

12log 2x ·log 2(4x 2)=1

2

log 2x ·(log 24+2log 2x )=log 2x +(log 2x )2

=????log 2x +122

-14≥-14

.

当且仅当x =22时,有f (x )min =-14

. 答案:-1

4

5.已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12

x .

(1)求函数f (x )的解析式; (2)解不等式f (x 2-1)>-2.

解:(1)当x <0时,-x >0,则f (-x )=log 12

(-x ).

因为函数f (x )是偶函数, 所以f (-x )=f (x )=log 12

(-x ),

所以函数f (x )的解析式为f (x )=?????log 12x ,x >0,

0,x =0,

log 1

2

(-x ),x <0.

(2)因为f (4)=log 12

4=-2,f (x )是偶函数,

所以不等式f (x 2-1)>-2转化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2-1|<4,解得-5

6.设f (x )=|lg x |,a ,b 为实数,且0

?

?

a +

b 2,求证:a ·b =1,a +b 2>1.

解:(1)由f (x )=1,得lg x =±1, 所以x =10或1

10

.

(2)证明:结合函数图象,由f (a )=f (b )可判断a ∈(0,1),b ∈ (1,+∞),

从而-lg a =lg b ,从而ab

=1.

又a +b 2=1b +b 2

令φ(b )=1

b

+b (b ∈(1,+∞)),任取1

因为φ(b 1)-φ(b 2)=(b 1-b 2)·???

?1-1b 1b 2<0, 所以φ(b 1)<φ(b 2),

所以φ(b )在(1,+∞)上为增函数. 所以φ(b )>φ(1)=2.所以a +b

2>1.

第6讲 对数与对数函数

第6讲对数与对数函数 一、选择题 1.(2015·四川卷)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的() A.充分必要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 解析因为y=log2x在(0,+∞)上单调递增,所以当a>b>1时,有log2a>log2b>log21=0; 当log2a>log2b>0=log21时,有a>b>1. 答案 A 2.(2017·石家庄模拟)已知a=log23+log23,b=log29-log23,c=log32,则a,b,c的大小关系是() A.a=bc C.ab>c 解析因为a=log23+log23=log233=3 2log23>1,b=log29-log23= log233=a,c=log320,且a≠1)的图象如图所示,则下列函数图象正确的是()

解析 由题意y =log a x (a >0,且a ≠1)的图象过(3,1)点,可解得a =3.选项A 中,y =3-x =? ? ? ??13x ,显然图象错误;选项B 中,y =x 3,由幂函数图象可知正确;选项C 中,y =(-x )3=-x 3,显然与所画图象不符;选项D 中,y =log 3(-x )的图象与y =log 3x 的图象关于y 轴对称,显然不符.故选B. 答案 B 4.已知函数f (x )=???log 2x ,x >0,3-x +1,x ≤0, 则f (f (1))+f ? ????log 312的值是( ) A.5 B.3 C.-1 D.7 2 解析 由题意可知f (1)=log 21=0, f (f (1))=f (0)=30+1=2, f ? ? ? ??log 312=3-log 312+1=3log 32+1=2+1=3, 所以f (f (1))+f ? ? ? ??log 312=5. 答案 A 5.(2016·浙江卷)已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( ) A.(a -1)(b -1)<0 B.(a -1)(a -b )>0 C.(b -1)(b -a )<0 D.(b -1)(b -a )>0 解析 ∵a >0,b >0且a ≠1,b ≠1.

A1-1-10对数的概念与性质

2. 2.1第一课时 对数的概念教案 【教学目标】 1.理解对数的概念,能够进行对数式与指数式的互化 2.渗透应用意识,培养归纳思维能力和逻辑推理能力,提高数学发现能力【教学重难点】 重点:对数的概念 难点:对数概念的理解. 【教学过程】 一、预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。 二、情景导入、展示目标。 (一)复习引入: 1庄子:一尺之棰,日取其半,万世不竭(1)取4次,还有多长?(2)取多少次,还有0.125尺? 2假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍? 抽象出:1. =?,=0.125x=? 2. =2x=? 也是已知底数和幂的值,求指数你能看得出来吗?怎样求呢? (二)新授内容: 定义:一般地,如果 的b 次幂等于N, 就是 ,那么数 b 叫做 以 a 为底 N 的对数,记作 ,a 叫做对数的底数,N 叫做真数 例如: ; ; 探究:⑴负数与零没有对数(∵在指数式中 N > 0 ) ⑵, ∵对任意 且 , 都有 ∴ 同样易知: ⑶对数恒等式 如果把 中的 b 写成 , 则有 421??? ??x ?? ? ??21?()x %81+?()1,0≠>a a a N a b =b N a =log 1642=?216log 4=100102 =?2100log 10=242 1=?2 12log 4= 01.0102 =-?201.0log 10-=01log =a 1log =a a 0>a 1≠a 10 =a 01log =a 1log =a a N a b =N a log N a N a =log

对数与对数函数

对数与对数函数 【考纲要求】 1. 理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数,了解对数在简化运算中的作用 2.理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点.会画底数为2,10, 1 2 的对数函数的图象 3.体会对数函数是一类重要的函数模型; 4.了解指数函数x y a =与对数函数log a y x =互为反函数(0,1a a >≠). 【基础再现】 1.对数的定义 如果______________,那么数b 叫做以a 为底N 的对数,记作__________,其中____叫做对数的底数,____叫做真数. 2.对数的性质与运算法则 (1)对数的性质(a >0且a ≠1) ①a log a N =____; ②log a 1=____; ③log a a N =____; ④log a a =____. (2)对数的重要公式 ①换底公式:log a N =________________(a ,c 均大于零且不等于1); ②log a b =1 log b a ,推广log a b ·log b c ·log c d =________. (3)对数的运算法则 如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=__________________; ②log a M N =____________; 3对数函数的定义:函数)1,0(log ≠>=a a x y a 且称对数函数 4对数函数的图像及性质

5 指、对函数的关系 ③log a M n=__________(n ∈R); ④log am M n= n m log a M. 【例题选讲】 例1 ⑴27 log 9 ,⑵81 log 43 ,⑶()()3 2 log 3 2 - + ,⑷625 log 34 5 例2 ⑴ = ⑵2 5 log()a -= ⑶ 3 log1= = ⑷2 (lg5)lg2lg50 +?=. ⑸()2 151515 log5log45log3 ?+ 例4 ⑴已知 3 log2a =,35 b=用a b ,表示log

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解 1.对数: (1) 定义:如果,那么称为,记作,其中称为对数的底,N称为真数. ①以10为底的对数称为常用对数,记作___________. ②以无理数为底的对数称为自然对数,记作_________. (2) 基本性质: ①真数N为 (负数和零无对数);②;③; ④对数恒等式:. (3) 运算性质: ① log a(MN)=___________________________; ② log a=____________________________; ③ log a M n= (n∈R). ④换底公式:log a N= (a>0,a≠1,m>0,m≠1,N>0) ⑤ . 2.对数函数: ①定义:函数称为对数函数,1) 函数的定义域为( ;2) 函数的值域为; 3) 当______时,函数为减函数,当______时为增函数; 4) 函数与函数互为反函数. ② 1) 图象经过点( ),图象在;2) 对数函数以为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴); 4) 函数y=log a x与的图象关于x轴对称. ③函数值的变化特征: ①②③①②③ 例1 计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg. 解:(1)方法一利用对数定义求值设=x,则(2+)x=2-==(2+)-1,∴x=-1.方法二利用对数的运算性质求解 = =(2+)-1=-1.

(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1| =lg+(1-lg)=1. (3)原式=(lg32-lg49)-lg8+lg245 = (5lg2-2lg7)-×+ (2lg7+lg5) =lg2-lg7-2lg2+lg7+lg5=lg2+lg5 =lg(2×5)= lg10=. 变式训练1:化简求值. (1)log2+log212-log242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log32+log92)·(log43+log83). 解:(1)原式=log2+log212-log2-log22=log2 (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=( 例2 比较下列各组数的大小. (1)log3与log5;(2)log1.10.7与(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.解:(1)∵log3<log31=0,而log5>log51=0,∴log3<log5. (2)方法一∵0<<1,<,∴0>, ∴, 即由换底公式可得log1.10.7<方法二作出y=与y=的图象. 如图所示两图象与x=相交可知log1.10.7<为减函数,且, ∴b>a>c,而y=2x是增函数,∴2b>2a>2c. 变式训练2:已知0<a<1,b>1,ab>1,则log a的大小关系是() B. C. D. 解: C 例3已知函数f(x)=log a x(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围. 解:当a>1时,对于任意x∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x在[3,+∞)上为增函数, ∴对于任意x∈[3,+∞),有f(x)≥log a3. 因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立. 只要log a3≥1=log a a即可,∴1<a≤3. 当0<a<1时,对于x∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f(x)=log a x在[3,+∞)上为减函数, ∴-f(x)在[3,+∞)上为增函数. ∴对于任意x∈[3,+∞)都有

2015高考数学(理)一轮题组训练:2-6对数与对数函数

第6讲 对数与对数函数 基础巩固题组 (建议用时:40分钟) 一、填空题 1.如果 ,那么x ,y,1的大小关系是________. 解析 ∵ 是(0,+∞)上的减函数,∴x >y >1. 答案 1<y <x 2.(2014·深圳调研)设f (x )为定义在R 上的奇函数,当x >0时,f (x )=log 3(1+x ),则f (-2)=________. 解析 f (-2)=-f (2)=-log 33=-1. 答案 -1 3.函数y =log 12 (3x -a )的定义域是? ????23,+∞,则a =______. 解析 要使函数有意义,则3x -a >0,即x >a 3, ∴a 3=23,∴a =2. 答案 2 4.已知f (x )=??? 2a 2,x <2,log a (x 2-1),x ≥2,且f (2)=1,则f (1)=________. 解析 ∵f (2)=log a (22-1)=log a 3=1, ∴a =3,∴f (1)=2×32=18. 答案 18 5.函数y =log a (x -1)+2(a >0,a ≠1)的图象恒过一定点是________. 解析 当x =2时y =2. 答案 (2,2) 6.(2012·重庆卷改编)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是________.

解析 a =log 23+log 23=log 233>log 22=1,b =log 29-log 23=log 233=a >1,c =log 32c . 答案 a =b >c 7.(2014·池州一模)函数y =log 2|x |的图象大致是______. 解析 函数y =log 2|x |=??? log 2x ,x >0, log 2(-x ),x <0, 所以函数图象为①. 答案 ① 8.(2013·苏州二模)若a =ln 264,b =ln 2×ln 3,c =ln 2π4,则a ,b ,c 的大小关系 是________. ①a >b >c ;②c >a >b ;③c >b >a ;④b >a >c 解析 ∵ln 6>ln π>1,∴a >c ,排除②,③;b =ln 2·ln 3<? ????ln 2+ln 322=ln 264=a ,排除④. 答案 ① 二、解答题 9.已知f (x )=log 4(4x -1). (1)求f (x )的定义域; (2)讨论f (x )的单调性; (3)求f (x )在区间???? ??12,2上的值域. 解 (1)由4x -1>0解得x >0, 因此 f (x )的定义域为(0,+∞).

带答案对数与对数函数经典例题.

经典例题透析 类型一、指数式与对数式互化及其应用 1.将下列指数式与对数式互化: (1);(2);(3);(4);(5);(6). 思路点拨:运用对数的定义进行互化. 解:(1);(2);(3);(4);(5); (6). 总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段. 举一反三: 【变式1】求下列各式中x的值: (1)(2)(3)lg100=x (4) 思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x. 解:(1); (2); (3)10x=100=102,于是x=2; (4)由. 类型二、利用对数恒等式化简求值 2.求值:解:. 总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三: 【变式1】求的值(a,b,c∈R+,且不等于1,N>0) 思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算. 解:. 类型三、积、商、幂的对数 3.已知lg2=a,lg3=b,用a、b表示下列各式. (1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15 解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a (3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b (5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a

举一反三: 【变式1】求值 (1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2 解: (1) (2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1 (3)原式=2lg5+lg2(1+lg5)+(lg2)2 =2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2. 【变式2】已知3a=5b=c,,求c的值. 解:由3a=c得: 同理可得 . 【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:. 证明: . 【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:. 证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb 即. 类型四、换底公式的运用 4.(1)已知log x y=a,用a表示; (2)已知log a x=m,log b x=n,log c x=p,求log abc x.

对数及对数函数典型例题精讲

对数与对数函数 一、选择题(本大题共6小题,每小题6分,共36分) 1.方程lg x +lg(x +3)=1的解x 为 ( ) A .1 B .2 C .10 D .5 解析 B ∵lg x +lg(x +3)=lg 10,∴x (x +3)=10.∴x 2+3x -10=0. 解得x =2或-5(舍去). 2.“a =1”是“函数f (x )=lg(ax +1)在(0,+∞)上单调递增”的 ( ) A .充分必要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件 解析 C 显然函数f (x )=lg(x +1),g (x )=lg(2x +1)在(0,+∞)上均单调递增,所以“a =1”是“函数f (x )=lg(ax +1)在(0,+∞)上单调递增”的充分不必要条件. 则a ,b ,c 的大小关系是 ( ) A .a 1)的值域是 ( ) A .(-∞,-2] B .[-2,+∞) C .(-∞,2] D .[2,+∞) 解析 A ∵x + 1x -1+1=x -1+1 x -1 +2≥2(x -1)·1 x -1 +2=4,∴y ≤-2. 5.函数f (x )=2|log2x |的图象大致是 ( )

解析 C f (x )=2|log2x |=???? ? x ,x ≥1,1 x ,0≤-1,01 ,88x x x ,g(x)=x 2log , 则f(x)与g(x)两函数的 图象的交点个数为 ( ) A 1 B 2 C 3 D 4 答案:B 8.函数f(x)=x a log (a>0,a ≠1),若)()(21x f x f -=1,则)()(2 221x f x f -等于 ( ) A 2 B 1 C 2 1 D 2log a 答案A 二、填空题(本大题共3小题,每小题8分,共24分) 9.lg 25+lg 2×lg 50+(lg 2)2=________. 解析 lg 25+lg 2×lg 50+(lg 2)2=2lg 5+lg 2×(2-lg 2)+(lg 2)2=2lg 5+2lg 2=2(lg 5+lg 2)=2. 【答案】 2 10.已知0n) 11.已知f(x)=x 2log ,则)2 3 ()83(f f += 2 12.已知)2(log ax y a -=在[]1,0上是x 的减函数,则a 的取值范围是 ()2,1 13.设m 为常数,如果)34lg(2-+-=m x mx y 的定义域为R ,则m 的取值范围是(]4,0 14.函数f (x )=log 1 2(2x 2 -3x +1)的增区间是____________. 解析 ∵2x 2 -3x +1>0,∴x <1 2或x >1.∵二次函数y =2x 2-3x +1的减区间是 ? ????-∞,34, ∴f (x )的增区间是? ????-∞,12. 【答案】 ? ? ? ??-∞,12

对数函数讲义(可直接使用).

一、 教学目标: 1.理解对数的概念,掌握对数的运算性质; 2.掌握对数函数的概念、图象和性质;能利用对数函数的性质解题. 二、教学重、难点: 运用对数运算性质进行求值、化简、证明、运用对数函数的定义域、单调性解题 三、命题规律: 主要考察指数式b a N =与对数式log a N b =的互化,对数函数的图像和性质或由对数函数复合成的函数,主要涉及比较大小、奇偶性、过定点、单调区间以及运用单调性求最值等,主要以填空为主。 四、教学内容: 【知识回顾】 1.对数的概念 如果 ,那么数b 叫做以a 为底N 的对数,记作 ,其中a 叫做对数的 ,N 叫做对数的 。 即指数式与对数式的互化:log b a a N b N =?= 2.常用对数:通常将以10为底的对数10log N 叫做常用对数,记作lg N 。 自然对数:通常将以无理数 2.71828e =???为底的对数叫做自然对数,记作ln N 。 3.对数的性质及对数恒等式、换底公式 (1)对数恒等式:①log N a a = (01,0)a a N >≠>且②log N a a = (01,0)a a N >≠>且 (2)换底公式:log a N =log log b b N a (3)对数的性质:①负数和零没有对数 ② 1的对数是零,即log 10a = ③底的对数等于1,即log 1a a = ④log log log a b c b c d ??=log a d

4.对数的运算性质 如果01,0,0a a M N >≠>>且,那么 (1)log ()a MN = ; (2)log a M N = ; (3)log n a M = ; (4)log n a m M = 。 (5)log log a b b a ?= ; (6)log a b =1log b a 5.对数函数 函数log (01)a y x a a =>≠且做对数函数,其定义域为(0,+∞),值域为(-∞,+∞).、 6.对数函数图像与性质 注:对数函数1log log (01)a a y x y x a a ==>≠与且的图像关于x 轴对称。 7.同真数的对数值大小关系如图 在第一象限内,图像从左到右相应的底逐渐增大, 即01c d a b <<<<< 8.对数式、对数函数的理解 ① 应重视指数式与对数式的互化关系,它体现了数学的转化思想,也往往是解决“指数、对数”问题的关键。 ② 在理解对数函数的概念时,应抓住定义的“形式”,像2log 2,log 2,3ln x y y x y x ===等函数均不符合形式log (01)a y x a a =>≠且,因此,它们都不是对数函数 ③ 画对数函数log a y x =的图像,应抓住三个关键点1(,1),(1.0),(,1)a a -

对数与对数函数-知识点与题型归纳

对数与对数函数-知识点与题型归纳

●高考明方向 1.理解对数的概念及其运算性质,知道用换底公式能将一般 对数转化成自然对数或常用对数;了解对数在简化运算中的作用. 2.理解对数函数的概念,理解对数函数的单调性,掌握对数 函数图象通过的特殊点. 3.知道对数函数是一类重要的函数模型. 4.了解指数函数y=a x与对数函数y=log a x互为反函数 (a>0,且a≠1). ★备考知考情 通过对近几年高考试题的统计分析可以看出,本节内容在高考中属于必考内容,且占有重要的分量,主要以选择题的形式命题,也有填空题和解答题.主要考查对数运算、换底公式等.及对数函数的图象和性质.对数函数与幂、指数函数结合考查,利用单调性比较大小、解不等式是高考的热点. 一、知识梳理《名师一号》P27 注意: 知识点一对数及对数的运算性质 1.对数的概念 2

3 一般地,对于指数式a b =N ,我们把“以a 为底N 的对数b ”记作log a N ,即b =log a N (a >0,且a ≠1).其中,数a 叫做对数的底数,N 叫做真数,读作“b 等于以a 为底N 的对数”. 注意:(补充)关注定义---指对互化的依据 2.对数的性质与运算法则 (1)对数的运算法则 如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N =log a M -log a N ; ③log a M n =n log a M (n ∈R); ④log a m M n =n m log a M . (2)对数的性质 ①a log aN =N ;②log a a N =N (a >0,且a ≠1). (3)对数的重要公式 ①换底公式:log b N =log a N log a b (a ,b 均大于零且不等于1); ②log a b =1 log b a ,推广log a b ·log b c ·log c d =log a d . 注意:(补充)特殊结论:log 10,log 1a a a ==

2020版高考数学新设计大一轮复习-第6节对数与对数函数习题理(含解析)新人教A版

第6节 对数与对数函数 最新考纲 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,1 2的对数函数的图象;3.体会对数函数是一类重 要的函数模型;4.了解指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数. 知 识 梳 理 1.对数的概念 如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 2.对数的性质、换底公式与运算性质 (1)对数的性质:①a log a N =N ;②log a a b =b (a >0,且a ≠1). (2)对数的运算法则 如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N =log a M -log a N ; ③log a M n =n log a M (n ∈R ); ④log a m M n =n m log a M (m ,n ∈R ,且m ≠0). (3)换底公式:log b N =log a N log a b (a ,b 均大于零且不等于1). 3.对数函数及其性质 (1)概念:函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)对数函数的图象与性质 a >1 0

第13讲 对数函数(原卷版)2021届新课改地区高三数学一轮专题复习

第13讲:对数函数 一、课程标准 1、通过具体实例,直观了解对数函数模型所刻画的数量关系,理解对数函数的概念。 2、体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象。 3、探索并了解对数函数的单调性与特殊点。 4、知道指数函数y=a x与对数函数y=log a x互为反函数(a>0,a≠1)。 二、基础知识回顾 1、对数函数y=log a x(a>0,且a≠1)的图象与性质 2、反函数 指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称.对数函数的图象与底数大小的比较 3、如图,作直线y=1,则该直线与四个函数图象交点的横坐标为相应的底数. 故0<c<d<1<a<b.

由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大. 三、自主热身、归纳总结 1、函数f(x)=log 2(-x 2+22)的值域为(B ) A . ????-∞,32 B . ?? ??-∞,32 C . ????32,+∞ D . ????32,+∞ 2、若log a 2<log b 2<0,则下列结论正确的是(B ) A . 0<a <b <1 B . 0<b <a <1 C . a >b >1 D . b >a >1 3、函数2 2()log (34)f x x x =--的单调减区间为( ) A .(,1)-∞- B .3(,)2 -∞- C .3(,)2 +∞ D .(4,)+∞ 4、(2019秋?菏泽期末)已知函数()log (1)a f x x =+,()log (1)(0a g x x a =->,1)a ≠,则( ) A .函数()()f x g x +的定义域为(1,1)- B .函数()()f x g x +的图象关于y 轴对称 C .函数()()f x g x +在定义域上有最小值0 D .函数()()f x g x -在区间(0,1)上是减函数 5、(2018苏州期末)已知4a =2,log a x =2a ,则正实数x 的值为________. 6、(2018盐城三模).函数()ln(1f x =的定义域为 ▲ . 四、例题选讲 考点一对数函数的性质及其应用 例1、(1)函数的定义域为( ) A . B . C . D .

对数函数知识点

对数函数知识点 1.对数函数的概念 形如 y log a x( a 0且 a 1) 的函数叫做对数函数 . 说明:( 1)一个函数为对数函数的条件是: ①系数为 1; ②底数为大于 0 且不等于 1 的正常数; ③自变量为真数 . 对数型函数的定义域: 特别应注意的是:真数大于零、底数大于零且不等于 1。 2 、 由 对 数 的 定 义 容 易 知 道 对 数 函 数 y log a x (a 0, a 1) 是指数函数 y a x (a 0, a 1) 的反函数。 反函数及其性质 ①互为反函数的两个函数的图象关于直线 y x 对称。 ②若函数 y f ( x) 上有一点 (a, b ) ,则 (b, a) 必在其反函数图象上, 反之若 (b, a) 在反函 数图象上,则 ( a, b) 必在原函数图象上。 ③利用反函数的性质,由指数函数 y a x (a 0, a 1) 的定义域 x R ,值域 y 0 , 容易得到对数函数 y log a x(a 0, a 1) 的定义域为 x 0 ,值域为 R ,利用上节学过的 对数概念,也可得出这一点。 3、.对数函数的图象和性质 定义 y log a x (a 0且 a 1) 底数 a 1 0 a 1 图象 定义域 (0, ) 值域 R 单调性 增函数 减函数 共点性 图象过点 (1,0) ,即 log a 1 函数值x (0,1) y ( ,0); x [1, ) x (0,1) y (0, ); x [1, ) 特征 y [0, ) y ( ,0] 对称性 函数 y log a x 与 y log 1 x 的图象关于 x 轴对称 a 4.对数函数与指数函数的比较 名称 指数函数 对数函数 一般形式 y a x (a 0, a 1) y log a x (a 0, a 1)

6 第6讲 对数与对数函数

第6讲 对数与对数函数 1.对数 指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称. 判断正误(正确的打“√”,错误的打“×”) (1)若MN >0,则log a (MN )=log a M +log a N .( ) (2)log a x ·log a y =log a (x +y ).( )

(3)函数y =log 2x 及y =log 13 3x 都是对数函数.( ) (4)对数函数y =log a x (a >0且a ≠1)在(0,+∞)上是增函数.( ) (5)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0)且过点(a ,1),????1 a ,-1,函数图象只在第一、四象限.( ) 答案:(1)× (2)× (3)× (4)× (5)√ 函数y =x ln(1-x )的定义域为( ) A .(0,1) B .[0,1) C .(0,1] D .[0,1] 解析:选B .因为y =x ln(1-x ),所以? ????x ≥0, 1-x >0,解得0≤x <1. 函数f (x )=log 12 (x 2-4)的单调递增区间为( ) A .(0,+∞) B .(-∞,0) C .(2,+∞) D .(-∞,-2) 解析:选D.设t =x 2-4,因为y =log 12 t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2). lg 5 2 +2lg 2-????12-1=________. 解析:lg 52+2lg 2-????12-1=lg 5-lg 2+2lg 2-2 =(lg 5+lg 2)-2=1-2=-1. 答案:-1 (教材习题改编)函数y =log a (4-x )+1(a >0,且a ≠1)的图象恒过点________. 解析:当4-x =1即x =3时,y =log a 1+1=1. 所以函数的图象恒过点(3,1). 答案:(3,1) 对数式的化简与求值 [典例引领] 计算下列各式:

20222高三数学(理科)(全国版)一轮复习试题:第2章第5讲 对数与对数函数 2

第二章 函数的概念与基本初等函数I 第五讲 对数与对数函数 1.[2021江苏省镇江中学质检]若函数f (x )=a x -2 ,g (x )=log a |x |(a >0,且a ≠1),且 f (2)·g (2)<0,则函数f (x ),g (x )在同一平面直角坐标系中的大致图象是( ) A B C D 2.[2021河北省张家口市宣化区模拟]若函数f (x )=lo g 13 (x 2 +2a -1)的值域为R,则a 的取值范围 为( ) A.(-∞,1 2] B.(-∞,1 2 ) C.[1 2 ,+∞) D.(1 2 ,+∞) 3.[2021湖北省四地七校联考]设a =lo g 12 3,b =(1 2 )3 ,c =312 ,则( ) A .a ab B.a +b 0,且a ≠1),则“a >1”是“f (x )在(3,+∞)上是增函数”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件

D.既不充分也不必要条件 6.[2021长春市第一次质量监测]已知偶函数f (x )满足f (x )=f (2-x ),当x ∈(0,1)时,f (x )=3x +1,则f (lo g 13 84)的值为( ) A .5527 B .2827 C .5528 D .27 28 7.[2021贵阳市四校第二次联考]若a =ln22 ,b = ln33 ,c = ln55 ,则( ) A.a b a ;④a b b >0,且a +b =1,x =(1 a )b ,y =log ab (1a +1b ),z =log b 1 a ,则 x ,y ,z 的大小关系是( ) A.x >z >y B.x >y >z C.z >y >x D.z >x >y 11.[2020南昌市测试][新角度题]已知正实数a ,b ,c 满足(1 2 )a =log 2a ,(1 3 )b =log 2b ,c =lo g 12 c ,则 ( ) A.a

对数函数教学实例

《对数函数》教学课案 一、教材分析 本节课就是新课标高中数学必修①中第三章对数函数内容得第二课时,也就就是对数函数得入门、对数函数对于学生来说就是一个全新得函数模型,学习起来比较困难、而对数函数又就是本章得重要内容,在高考中占有一定得分量,它就是在指数函数得基础上,对函数类型得拓广,同时在解决一些日常生活问题及科研中起十分重要得作用、通过本节课得学习,可以让学生理解对数函得概念,从而进一步深化对对数模型得认识与理解。同时,通过对数概念得学习,对培养学生对立统一,相互联系、相互转化得思想,培养学生得逻辑思维能力都具有重要得意义、二、学情分析 大部分学生学习得自主性较差,主动性不够,学习有依赖性,且学习得信心不足,对数学存在或多或少得恐惧感、通过对指数函与指数函数得学习,学生已多次体会了对立统一、相互联系、相互转化得思想,并且探究能力、逻辑思维能力得到了一定得锻炼、因此,学生已具备了探索发现研究对数函数定义得认识基础,故应通过指导,教会学生独立思考、大胆探索与灵活运用类比、转化、归纳等数学思想得学习方法、 三、设计思路 学生就是教学得主体,本节课要给学生提供各种参与机会、为了调动学生学习得积极性,使学生化被动为主动、本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数得模型,体会引入对数得必要性、在教学重难点上,步步设问、启发学生得思维,通过课堂练习、探究活动,学生讨论得方式来加深理解,很好地突破难点与提高教学效率、让学生在教师得引导下,充分地动手、动口、动脑,掌握学习得主动权、 四、教学目标 1、理解对数函数得概念,了解对数函数与指数函数得关系;理解对数函数得性质,掌握以上知识并形成技能、 2、通过对数函数得学习,树立相互联系,相互转化得观点,渗透数形结合,分类讨论得思想. 、

2015届高考数学总复习 第二章 第六节对数与对数函数课时精练试题 文(含解析)

1.(2013·浙江卷)已知x ,y 为正实数,则( ) A .2lg x +lg y =2lg x +2lg y B .2lg (x +y )=2lg x ·2lg y C .2lg x ·lg y =2lg x +2lg y D .2lg (xy )=2lg x ·2lg y 解析: 由指数和对数的运算法则,易知选项D 正确. 答案:D 2.函数f (x )=2|log 2x |的图象大致是( ) 解析:∵f (x )=2|log 2x |=???? ? x ,x ≥1,1 x ,0b >0?? ????12a b ? / log 2a >log 2b .故选A. 答案:A 5.(2012·重庆卷)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( ) A .a =b <c B .a =b >c C .a <b <c D .a >b >c 解析:a =log 23+log 23=log 233,b =log 29-log 23=log 233,因此a =b ,

对数与对数函数 知识点与题型归纳

●高考明方向 1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用. 2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点. 3.知道对数函数是一类重要的函数模型. 4.了解指数函数y=a x与对数函数y=log a x互为反函数 (a>0,且a≠1). ★备考知考情 通过对近几年高考试题的统计分析可以看出,本节内容在高考中属于必考内容,且占有重要的分量,主要以选择题的形式命题,也有填空题和解答题.主要考查对数运算、换底公式等.及对数函数的图象和性质.对数函数与幂、指数函数结合考查,利用单调性比较大小、解不等式是高考的热点. 一、知识梳理《名师一号》P27 注意: 知识点一对数及对数的运算性质 1.对数的概念 一般地,对于指数式a b=N,我们把“以a为底N的

对数b ”记作log a N ,即b =log a N (a >0,且a ≠1).其中,数a 叫做对数的底数,N 叫做真数,读作“b 等于以a 为底N 的对数”. 注意:(补充)关注定义---指对互化的依据 2.对数的性质与运算法则 (1)对数的运算法则 如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N =log a M -log a N ; ③log a M n =n log a M (n ∈R); ④log a m M n =n m log a M . (2)对数的性质 ①a log aN =N ;②log a a N =N (a >0,且a ≠1). (3)对数的重要公式 ①换底公式:log b N =log a N log a b (a ,b 均大于零且不等于1); ②log a b =1 log b a ,推广log a b ·log b c ·log c d =log a d . 注意:(补充)特殊结论:log 10, log 1a a a == 知识点二 对数函数的图象与性质

对数的基本概念及运算

第十讲 对数的基本概念及运算 一:问题思考 问题1:一尺之棰,日取其半,万世不竭。 (1)取5次,还有多长? (2)取多少次,还有0.125尺? (1)为同学们熟悉的指数函数的模型,易得 (2)可设取x 次,则有 二:新知引入 1. 对数的概念:一般地,如果,那么数叫做以为底的对 数,记作: ,其中叫做对数的底数, 叫做真数。 注意:①是否是所有的实数都有对数呢? 负数和零没有对数 ②底数的限制:a>0且a ≠1。 思考:为什么对数的定义中要求底数a>0且a ≠1? 对数的书写格式 2、对数式与指数式的互化 N x N a a x log =?= 幂底数 ← a → 对数底数 指数(指数函数的自变量) ← b → 对数 幂(指数函数的函数值) ← N → 真数

3、对数的形式 ①常用对数:以10为底的对数 ,简记为: lgN ②自然对数:以无理数e=2.71828…为底的对数的对数 简记为: lnN . (在科学技术中,常常使用以e 为底的对数) ③一般对数:(含有常用对数和自然对数) 注意:对数的书写 课堂练习 1 将下列指数式写成对数式: (1) (2) (3) (4) 2 将下列对数式写成指数式: (1) (2) (3) 3 求下列各式的值: (1) (2) 2. 对数运算 (1) 基本性质 ①0和负数没有对数,即N>0 ②1的对数是0,即01log =a ③底数的对数等于1,即1log =a a ④对数恒等式:N a N a =log (2) 运算法则 如果,0,0,0,0>>≠>N M a a 则 1)N M MN a a a log log )(log +=; 2)N M N M a a a log log log -=; 3 ) ∈=n M n M a n a (log log R )。(例题 p111,例 4 ,计

文本预览
相关文档 最新文档