当前位置:文档之家› 阀控式铅酸蓄电池结构及工作原理

阀控式铅酸蓄电池结构及工作原理

阀控式铅酸蓄电池结构及工作原理

一、引言

阀控式铅酸蓄电池是一种常见的蓄电池类型,广泛应用于汽车、UPS系统、太阳能发电系统等领域。本文将介绍阀控式铅酸蓄电池的结构和工作原理。

二、结构

阀控式铅酸蓄电池由电池正板、负板、隔板、电解液、阀门组成。

1. 电池正板和负板:电池正板和负板是蓄电池的主要组成部分,由铅钙合金制成。正板上涂有活性物质,如二氧化铅(PbO2),负板上涂有铅(Pb)。正负板之间通过隔板隔离,防止短路。

2. 隔板:隔板是一种多孔的材料,通常由橡胶或塑料制成。它的作用是将正板和负板隔离,并防止活性物质的混合。

3. 电解液:电解液是阀控式铅酸蓄电池中的重要组成部分,一般为硫酸溶液。它起到导电和储存化学能的作用。

4. 阀门:阀控式铅酸蓄电池中的阀门是一个重要的安全装置,用于控制电解液中的气体释放和防止过压。当电池内部气压过高时,阀门会打开,释放气体,防止电池爆炸。

三、工作原理

阀控式铅酸蓄电池的工作原理是通过化学反应将化学能转化为电能。

1. 充电过程:在充电过程中,外部电源施加正向电压,使电池正板上的二氧化铅还原为铅酸铅(PbSO4)。同时,电池负板上的铅也发生反应,生成二氧化铅。电解液中的硫酸会被分解,释放出氧气和氢气。

2. 放电过程:在放电过程中,阀控式铅酸蓄电池作为电源供电。电池正板上的二氧化铅与电解液中的硫酸发生反应,生成铅酸铅和水,同时释放出电子。电子通过外部电路流动,产生电流供给负载使用。

3. 阀门控制:阀控式铅酸蓄电池中的阀门起到了重要的安全保护作用。当电池内部气压超过设定值时,阀门会自动打开,释放气体,防止电池爆炸。

四、总结

阀控式铅酸蓄电池由电池正板、负板、隔板、电解液和阀门组成。它通过化学反应将化学能转化为电能,实现充放电的过程。阀控式铅酸蓄电池广泛应用于各个领域,具有稳定的性能和安全可靠的特点。在使用时,需要注意充电和放电过程中的安全性,并定期检查和维护电池的状态,以保证其正常工作和寿命。

阀控式铅酸蓄电池特性

阀控式铅酸蓄电池特性

目录 目录 (2) 1 背景 (3) 2 VRLA电池结构及工作原理 (3) 2.1VRLA电池的电化学反应原理 (3) 2.2VRLA电池的氧循环原理 (4) 2.3VRLA电池的容量分类 (4) 3 特性曲线 (4) 3.1充放电曲线 (4) 3.2倍率特性 (5) 3.3温度特性 (6) 3.4循环特性 (7) 4总结 (8) 参考文献 (8)

1 背景 阀控式铅酸蓄电池(VRLA)尽管它的质量比能量、体积比能量不能和镍镉电池、镍氢电池、锂离子电池、锂聚合物电池相比,但它的性能价格比仍有很大优势,特别是作备用电源、储能电源和动力电源等领域的应用。由于铅酸蓄电池容量大,大电流放电性能好,无记忆效应,价格便宜,因此铅酸蓄电池的市场份额仍是化学电源产品的首位。 VRLA电池结构上是密封的,充、放电过程中不会漏液,也不需要定期加水或加酸液,同时,电池内部有一个可以控制电池内部气压的特殊排气阀,当电池发生化学反应产气量超过一定值时,排气阀会自动打开,把多余气体排出,从而防止电池内气压过大发生危险,因此,排气阀又被称作安全阀。基于以上两点,目前生产厂家通常把这种电池叫做“免维护”阀控密封式铅酸蓄电池。 2 VRLA电池结构及工作原理 2.1 VRLA电池的电化学反应原理 铅酸蓄电池主要由正极板(活性物质为PbO2)、负极板(海绵状金属Pb)、隔板、电池槽、盖、安全阀、电解液(硫酸)等组成,并具有正极、负极端子,一种典型铅酸蓄电池结构如图1所示。蓄电池通过正负极充、放电反应来实现蓄电池正常工作。放电时,蓄电池将储存的化学能转化为电能;充电时,蓄电池将电能转化为化学能储存下来。电池总反应如下: PbO2+Pb+2H2SO4放电 → 充电 ← 2PbSO4+2H2O 从反应方程式中可以看出,电池正负极反应是可逆的。电池放电时,负极板上的铅放出两个电子,在极板上生成难溶的硫酸铅。正极板的铅离子得到来自负极的两个电子后,变成二价铅离子,在极板上也生成难溶的硫酸铅。由于正负极存在电势差,电解液中硫酸根离子向正极移动,氢离子向负极流动,这样在电池内部就形成了整个电流回路。反之就是电池充电的过程。 ①端子;②中盖;③面盖;④安全阀;⑤极柱;⑥负极板;⑦隔膜;⑧正极板;⑨电池槽;

二、阀控式蓄电池的工作原理

二、阀控式蓄电池的工作原理 1.阀控式蓄电池的结构原理 相对于防酸隔暴式蓄电池组就是把所需的电解液在出厂前就注入到极板 和隔板中,没有游离的电解液,通过负极板潮湿来提高吸收氧的能力,为防止电解液减少把蓄电池全密封,所以阀控式铅酸蓄电池又称为“贫液式蓄电池”。 2.阀控式蓄电池的工作原理 阀控式蓄电池在充电过程中和充电终止时会出现水被电解的现象,通常情况下,正极出现氧气,负极出现氢气。由于电池采用免维护极板,使氧气析出时电位提高,加上反应区域和反应速度的不同,使正极出现氧气先于负极出现氢气。由于阀控式蓄电池结构,使电池内部保留一定压力和气体,保证上述反应循环进行,与此同时也抑制负极氢气的析出,控制了电池内水分的消耗,因此电池可以密封运行。 三、影响阀控式蓄电池使用寿命的主要因素 在放电终止电压下蓄电池组能放出的最少电量的电池是衡量蓄电池寿命 的主要指标,而与蓄电池容量有关的因素较多,如设计不周密、制造不精良、安装不正确、维护不完善等均对蓄电池的使用寿命有一定的影响。下面主要从使用维护的角度分析影响阀控式蓄电池使用寿命的主要因素。 1.环境温度 环境温度过高对蓄电池使用寿命的影响很大,温度升高时,蓄电池的极板腐蚀将加剧,同时将消耗更多的水,从而使电池寿命缩短。蓄电池在25℃的环境下可获得较长的寿命,长期运行温度若升高10℃,使用寿命约降低一半。 2.过度充电 长期过充电状态下,正极因析氧反应,水被消耗,H+增加,从而导致正极附近酸度增加,板栅腐蚀加速,使板栅变薄加速电池的腐蚀,使电池容量降低;同时因水损耗加剧,将使蓄电池有干涸的危险,从而影响蓄电池的寿命。

3.过度放电 蓄电池过度放电主要发生在交流电源停电后,蓄电池长时间为负载供电。当蓄电池被过度放电到其电压过低甚至为零时,会导致电池内部有大量的硫酸铅被吸附到蓄电池的阴极表面,在电池的阴极造成“硫酸盐化”。因硫酸铅是一种绝缘体,它的形成必将对蓄电池的充、放电性能产生很大的负面影响,因此在阴极上形成的硫酸盐越多,蓄电池的内阻越大,电池的充、放电性能就越差,蓄电池的使用寿命就越短。 4.长期浮充电 直流系统的开关电源提供的浮充电流对阀控式蓄电池而言有三个作用:供日常性负载电流、补充蓄电池自放电的损失、维持蓄电池内氧循环。若蓄电池在长期浮充电状态下,只充电而不放电,势必会造成蓄电池的阳极极板钝化,使蓄电池内阻增大,容量大幅下降,从而造成蓄电池使用寿命下降。 四、基站阀控式蓄电池容量损失的成因 在整个通信行业中,移动通信基站为解决通信覆盖问题,建站环境较为复杂,对市电引入的建设因受基站环境条件限制,建设配置要求有所不同,维护要求有所差易,比如许多基站建于城市高楼或郊区高山。客观上讲基站的市电环境大多没有交换局要求得高,但对电池的质量要求较高,给蓄电池组的配置、维护、管理增加了许多困难,阀控式蓄电池的主要维护指标的测试要通过动力环境监控系统来取得,而阀控式蓄电池容量损失主要取决于通信用开关整流电源对电池的充电质量,主要维护取决于开关电源对阀控式蓄电池的充电管理(均浮充控制、电池保护)。及动力环境监控系统是否发挥效用。

阀控式铅酸蓄电池结构及工作原理

阀控式铅酸蓄电池结构及工作原理 一、引言 阀控式铅酸蓄电池是一种常见的蓄电池类型,广泛应用于汽车、UPS系统、太阳能发电系统等领域。本文将介绍阀控式铅酸蓄电池的结构和工作原理。 二、结构 阀控式铅酸蓄电池由电池正板、负板、隔板、电解液、阀门组成。 1. 电池正板和负板:电池正板和负板是蓄电池的主要组成部分,由铅钙合金制成。正板上涂有活性物质,如二氧化铅(PbO2),负板上涂有铅(Pb)。正负板之间通过隔板隔离,防止短路。 2. 隔板:隔板是一种多孔的材料,通常由橡胶或塑料制成。它的作用是将正板和负板隔离,并防止活性物质的混合。 3. 电解液:电解液是阀控式铅酸蓄电池中的重要组成部分,一般为硫酸溶液。它起到导电和储存化学能的作用。 4. 阀门:阀控式铅酸蓄电池中的阀门是一个重要的安全装置,用于控制电解液中的气体释放和防止过压。当电池内部气压过高时,阀门会打开,释放气体,防止电池爆炸。 三、工作原理

阀控式铅酸蓄电池的工作原理是通过化学反应将化学能转化为电能。 1. 充电过程:在充电过程中,外部电源施加正向电压,使电池正板上的二氧化铅还原为铅酸铅(PbSO4)。同时,电池负板上的铅也发生反应,生成二氧化铅。电解液中的硫酸会被分解,释放出氧气和氢气。 2. 放电过程:在放电过程中,阀控式铅酸蓄电池作为电源供电。电池正板上的二氧化铅与电解液中的硫酸发生反应,生成铅酸铅和水,同时释放出电子。电子通过外部电路流动,产生电流供给负载使用。 3. 阀门控制:阀控式铅酸蓄电池中的阀门起到了重要的安全保护作用。当电池内部气压超过设定值时,阀门会自动打开,释放气体,防止电池爆炸。 四、总结 阀控式铅酸蓄电池由电池正板、负板、隔板、电解液和阀门组成。它通过化学反应将化学能转化为电能,实现充放电的过程。阀控式铅酸蓄电池广泛应用于各个领域,具有稳定的性能和安全可靠的特点。在使用时,需要注意充电和放电过程中的安全性,并定期检查和维护电池的状态,以保证其正常工作和寿命。

阀控式密封铅酸蓄电池

阀控式密封铅酸蓄电池(VRLA) VRLA电池的组件结构及其作用 2V系列VRLA电池的结构如下图所示: 各组件的作用如下: 板栅:由铅合金经过模具铸造形成栅格状的物体,用于支撑活性物质、传导电流。 极板:板栅上涂膏后称为极板,它提供电化学反应的活性物质,是电化学反应的场所,电池容量的主要制约者。根据所涂铅膏性质的不同分为正极板和负极板。 隔板:储存电解液;作为氧气复合的气体通道;防止活性物质脱落;防止正负极之间短路。槽盖:盛装极群。 极柱:直接焊接在汇流排上,用以连接连接条,传导电流。 安全阀:安全阀安装在电池盖上,由阀体和安全阀共同组成,使电池保持一定内压,提高密封反应效率;过充电或高电流充电时,安全阀打开排出气体,防止电池变形甚至发生爆炸;防止外界空气进入电池;防止电解液挥发。 关于VRLA电池的容量 电池在一定放电条件下所能给出得电量称为电池的容量,以符号C表示。常用的单位为安培小时,简称安时(A.h)或毫安时(mA.h)。通常在C的下角处标明放电时率,如C10表明10小时率的放电容量;C3表明3小时率的放电容量。 容量分类 电池的容量可分为理论容量、额定容量、设计容量和标称容量。

理论容量是活性物质的质量按法拉第定律计算而得的最高理论值。为了比较不同系列的电池,常用比容量的概念,即单位体积或单位质量电池所能给出的理论电量,单位为A.h/kg 或A.h/L。 实际容量是指电池在一定条件下所能输出的电量。它等于放电电流与放电时间的成绩,单位为A.h,其值小于理论容量。因为组成设计电池时,除活性物质外还包括非反应成分如外壳、导电零件等,同时还与活性物质被有效利用的程度有关。 额定容量是按国家或有关部门颁布的标准,保证电池在一定的放电条件下应该放出的最低限度的容量。 标称容量是用来鉴别电池安时值,只标明电池的容量范围而没有确切值,因为在没有指定放电条件下,电池的容量是无法确定的。 影响实际容量的因素 电池的实际容量主要与电池正、负极活性物质的数量及利用的程度(利用率)有关,而活性物质利用率主要受放电制度、电极的结构、制造工艺等方面的影响。使用过程中影响实际容量的是放电率、放电制度、终止电压和温度。 放电制度指放电速率、放电形式、终止电压和温度。高速率即大电流。低温条件下放电时,将减少电池输出的容量。 放电速率简称放电率,常用倍率和时率表示。 时率是以放电时间表示的放电速率,即以某电流放电至规定终止电压所经历的时间。例如某电池额定容量是10小时率时为500Ah,即以C10为500Ah表示,则电池应以500/10=50A(即I10=50A)的电流放电,连续放电10h为合格。 倍率是指电池放电电流的数值为额定容量数值的倍数。电池放电倍率越高,放电电流越大,放电时间就越短,放出的相应容量越少。如放电电流表示为0.1 C10,对于一个500Ah (C10)的电池,即以0.1×500=50A的电流放电;1C10意指500A的电流放电。C的下脚标表示放电时率。 终止电压指电池放电时电压下降到不宜再继续放电时的最低工作电压。一般在高倍率、低温条件下放电时,终止电压规定得低一些。阀控电池10小时率的终止电压为1.8V/单体。由于铅酸蓄电池本身的特性,即使放电的终止电压继续降低,电池也不会放出太多的容量,但终止电压过低对电池的损伤极大,尤其当放电到较低电压而又不能及时充电时,将大大缩短电池的寿命。

铅酸蓄电池工作的原理

铅酸蓄电池工作的原理铅酸蓄电池的电化学反应原理就是充电时将电能转化为化学能在电池内储存起来,放电时将化学能转化为电能供给外系统。其充电和放电过程是通过电化学反应完成的,电化学反应式如下: 从上面反应式可看出,充电过程中存在水分解反应,当正极充电到70%时,开始析出氧气,负极充电到90%时开始析出氢气,由于氢氧气的析出,如果反应产生的气体不能重新复合得用,电池就会失水干涸;对于早期的传统式铅酸蓄电池https://www.doczj.com/doc/4a19211101.html,,由于氢氧气的析出及从电池内部逸出,不能进行气体的再复合,是需经常加酸加水维护的重要原因;而阀控式铅酸蓄电池能在电池内部对氧气再复合利用,同时抑制氢气的析出,克服了传统式铅酸蓄电池的主要缺点。?铅酸蓄电池的氧循环原理铅酸蓄电池采用负极活性物质过量设计,AG 或GEL电解液吸附系统,正极在充电后期产生的氧气通过AGM或GEL空隙扩散到负极,与负极海绵状铅发生反应变成水,使负极处于去极化状态或充电不足状态,达不到析氢过电位,所以负极不会由于充电而析出氢气,电池失水量很小,故使用期间不需加酸加水维护。阀控式铅酸蓄电池氧循环图示如下: 铅酸蓄电池正极活性物质是二氧化铅,负极活性物质是海绵铅,电解液是稀硫酸溶液,其放电化学反应为二氧化铅、海绵铅与电解液反应生成硫酸铅和水, Pb(负极)+PbO2(正极)+2H2SO4====2PbSO4+2H2O(放电反应)其充电化学反应为硫酸铅和水转化为二氧化铅、海绵铅与稀硫酸。 2PbSO4+2H2O====Pb(负极)+PbO2(正极)+2H2SO4 (充电反应)铅酸蓄电池单格额定电压为2.0V, 一般串联为6V、12V用于汽车、摩托车启动照明使用,单替电池一般串联为48V、96V、110或220V用于不同场合。电池内正、负极板间采用电阻极低、杂质少成分稳定离子能通过的橡胶、PVC、PE或AGM隔板。铅酸蓄电池工艺制造过程简述铅酸蓄电池主要由电池槽、电池盖、正负极板、稀硫酸电解液、隔板及附件构成。工艺制造简述如下: 铅粉制造:将1#电解铅用专用设备铅粉机通过氧化筛选制成符合要求的铅粉。 板栅铸造:将铅锑合金、铅钙合金或其他合金铅通常用重力铸造的方式铸造成符合要求的不同类型各种板板栅。 极板制造:用铅粉和稀硫酸及添加剂混合后涂抹于板栅表面再进行干燥固化即是生极板。 极板化成:正、负极板在直流电的作用下与稀硫酸的通过氧化还原反应生产氧化铅,再通过清洗、干燥即是可用于电池装配所用正负极板。 装配电池:将不同型号不同片数极板根据不同的需要组装成各种不同类型的蓄电池。 备注:各单位因工艺条件不同可选择不同的流程。

铅酸蓄电池原理简介

3原理简介 要想很好的对密封阀控式铅酸蓄电池进行维护,首先要了解它的原理,以便于有的放矢。 1860年法国人普兰特(G.Plante)将中间用橡胶条隔开的两块铅皮浸在稀硫酸中经过正向反向地反复充电,所得的产品能以比当时任何一次电池更大的电流放电,这就是世界上第1个铅酸蓄电池。铅酸蓄电池经过100多年的发展,已有各种类型和各种用途的专用电池,但不论何种铅酸蓄电池,其原理都是一致的。在正极上: PbO2+4H++SO42-+2e → PbSO4+2H2O ……. ① 在负极上: Pb+ SO42- → PbSO4 +2e ….......② 从整体上看,蓄电池放电反应方程式为: PbO2+ Pb + 2H2SO4 → 2 PbSO4 + 2H2O ……..③ 此反应为放出能量的过程,只要条件具备,可快速自发地进行。二氧化铅和铅作为活性物质分别存在于正负极上,其放电反应后分别在正负极上生成了硫酸铅,所以称此为双极硫酸盐化理论。反应过程中释放出能量(电能和热能)。蓄电池充电反应方程式即①~③的逆反应。 上世纪70年代,创制出了第1个贫液式结构的密封阀控式铅酸蓄电池。密封阀控式铅酸蓄电池以其少维护、安全、清洁等特点迅速在各个领域被使用。在我国从上世纪90年代初开始,密封阀控式铅酸蓄电池迅速代替开口式蓄电池占领绝大部分市场。 密封阀控式铅酸蓄电池实现其密封的原理是,当电池充电开始产生气体后,从正极析出的氧气到达负极,在负极上发生化合反应,方程式如下: 在正极上: H2O →1/2O2 +2H+ + 2e ….. ….④ 在负极上: PbSO4 +2e → Pb+SO42- …..….⑤ 在负极上同时: Pb+ 1/2O2 +2H++ SO42- → PbSO4+H2O …..….⑥ 从以上反应原理可以看出,蓄电池在正常充放电时,内部电解液会发生分解-化合循环反应,这样可以保证电解液不会损失。但要想实现这个原理,还要注意一点,电池在充入电解液时内部隔板要保持有约10%的孔隙不被电解液所占,正极生成的氧气才能通过这部分孔隙到达负极而被吸收。 实现电池的密封的同时还要考虑到电池出现过充电时如何保护电池。因而密封电池使用了安全

阀控密封铅酸蓄电池

固定型阀控密封铅酸蓄电池 第一章 蓄电池基础知识 一、密封铅酸蓄电池的用途和分类 1、蓄电池的用途: 在通信企业中,各种电信设备必须有交流或直流电源供给,方能完成通信工作。 蓄电池可以将电能转换为化学能而储存起来,在用电时再将化学能转变为电能,是一种供电方便、安全可靠的直流电源。 它具有较稳定的电压和较大的容量;蓄电池可与整流模块并联浮充供电,也可以作为市电中断时的备用电源,它不受市电突然中断影响,因此,一直在通信系统得到了十分广泛的应用。 如:浮充供电、事故照明、信号指示、摇控、油机发电机组和汽车等的起动点火等都离不开蓄电池。因此,作为储能装置的各种蓄电池在通信电源系统中是直流供电系统的重要组成部分,蓄电池在电信企业中的重要性越加显明。 蓄电池使用得好坏,对于能否保证通信的安全可靠关系极大,而且对于蓄电池的使用寿命有直接影响。维护蓄电池要保证使它经常处于良好可靠的状态,在任何情况下应保证供电不中断。

2、蓄电池的分类: 按不同用途和外形结构分为:固定型蓄电池和移动型蓄电池 按电解质的不同可分为:咸性电解质电池和铅酸蓄电池。 在通信电源中一般采用的是铅酸蓄电池,它以酸性物质作为电解质。铅酸蓄电池的电解液是稀硫酸,正极有效物质是二氧化铅(PbO2),负极有效物质是绒状铅(Pb)。而阀控式密封蓄电池因其具有“免维护”功能,所以在电信通信中得到实际应用。所谓“免维护”并非不需要维护,只是相对于传统铅酸电池维护而言,仅指使用期间勿须加水。但在实际工作中仍需履行维护手续。 二、蓄电池的组成和工作原理: 蓄电池是一种化学电源,是由正极、负极、电解质、隔离物和容器组成的。其中正负两极的活性物质和电解质起电化反应,对电池产生电流起着主导作用。 在电池内部,正极和负极通过电解质构成电池的内电路,在电池外部接通两极的导线和负荷构成电池的外电路。 1、放电过程的化学反应: 当外电路接上负载后,铅蓄电池在正、负极板间电位差的作用下,电流从正极流出,经负载流向负极,也就是说,负极上的电子经负载进入正极,同时在蓄电池内部产生化学反应。 电池向外电路输送电流的过程,叫做电池的放电。

铅酸蓄电池基本知识

电池:通过化学反应提供直流电能的电化学装置 电池是一种能量转化与储存的装置,它主要通过化学反应将化学能或物理能转化为电能。它由两种不同成分的电化学活性电极分别组成正负极,两电极浸泡在能提供媒体传导作用的电解质中,当连接在某一外部载体上时,通过转换其内部的化学能来提供电能。 Cell和Battery的区别: ①Cell是指一般的小型和单个电池,更强调单个单元; ②Battery是指蓄电池和电池组,更强调系统或者组; ③Battery运用得更加广泛,是电池的通用名称,包括锂电池、镍氢电池、蓄电池、干电池等等。一次电池与二次电池的异同点: 一次电池只能放电一次,二次电池(也叫可充电电池),可反复充放电循环使用,可充电电池在放电时电极体积和结构之间发生可逆变化,一次电池的质量比容量和体积比容量均大于一般充电电池,但内阻远比二次电池大,因此负载能力较低,另外,一次电池的自放电远小于二次电池。电池种类 一次电池:不可充电,如锌锰、碱性、锂电池 二次电池:可充电,如铅酸、镍氢、锂离子电池 高级电池:结构特殊,性能卓越,如锌空电池,以空气做正极,体积很小,用于助听器。 燃料电池:Fuel Cell, FC,将存在于燃料(氢气)和氧化剂(氧气)中的化学能转化为电能的装置,不是蓄电池,是发电机,1839年由英国的Grove发明。 太阳能电池:物理电源,通过光电效应或光化学效应直接把光能转化为电能的装置, 1883年Charles发明首块太阳能电池,前景广阔,目前成本高,限制了应用。 电池由外壳、正极、负极、端子、隔膜等组成 外壳:一般是塑料或金属材质 正极:电流的流出端 负极:电流的流入端端子:内部与活性物质相连,外接用电器 隔膜:防止正、负极短路,并提供电子的内部传递通道蓄电池: 蓄电池(Storage Battery),也称二次电池,是通过充电将电能转换为化学能贮存起来,使用时再将化学能转换为电能释放出来的化学电源装置。 铅酸蓄电池:

阀控式密封铅酸蓄电池的工作原理和维护

阀控式密封铅酸蓄电池的工作原理和维护 工作原理: 阀控式密封铅酸蓄电池的工作原理基于铅酸电池的化学反应。在充电状态下,电池内的负极板(铅)上生成二氧化铅,正极板(二氧化铅)还原为铅,同时,在电解液中形成硫酸铅。而在放电状态下,正负极板之间的化学反应反转,二氧化铅还原为铅,同时电池释放出电能。 然而,阀控式密封铅酸蓄电池与普通铅酸蓄电池的区别在于,它具有自密封的特点。密封结构可以控制气体的扩散和液体的蒸发,使得电池能够保持足够的电解液,同时阻止外部空气进入电池内部。这使得阀控式密封铅酸蓄电池具有更长的寿命和更高的安全性能。 维护: 1.温度控制:电池的工作温度应在20℃-25℃范围内,避免过高或过低的温度。高温会加速电解液的蒸发,降低电池的寿命,低温则会降低电池的容量和输出功率。 2.充电状态:尽量保持电池处于充满状态,可以通过定期充电或充电器进行维护充电来实现。如果长时间不充电,电池内的自放电会导致电池电量逐渐减少。 3.清洁维护:定期检查电池表面的污物,如有必要可以用湿布或软刷进行清洁。同时检查电池连接器和线缆的接触是否良好,如有松动或腐蚀应及时修复或更换。

4.定期检查电池状态:通过测量电池的开路电压、内阻、容量等参数,可以了解电池的健康状态。如果发现电池存在异常,如充电时间延长、容 量下降等,应及时进行维修或更换。 5.安全措施:在维护电池时应注意安全,及时清理电池周围的杂物和 易燃物,避免因外界因素引起的安全问题。同时,正确使用充电器以防止 过度充电或过度放电。 总之,阀控式密封铅酸蓄电池以其自密封、阀控和免维护的特点,成 为一种非常理想的蓄电池选择。通过了解其工作原理和维护要点,可以更 好地使用和保护阀控式密封铅酸蓄电池,延长其使用寿命,提高电池系统 的可靠性和安全性。

光伏储能系统之铅酸蓄电池原理和种类

光伏储能系统之铅酸蓄电池原理和种类 储能电池及器件是太阳能光伏发电系统不可缺少的存储 能电能的部件,其主要功能是存储光伏发电系统的电能,并在日照量不足,夜间以及应急状态下为负载供电。常用的储能电池有铅酸蓄电池、碱性蓄电池、锂电池、超级电容,它们分别应用于不同场合或者产品中。目前应用是铅酸蓄电池,从19 世纪50年代开发出来至今,已经有160余年的历史,目前衍生出很多种类,如富液铅酸电池、阀控密封铅酸电池、胶体电池,铅碳电池等. 一、工作原理及基本结构 铅酸电池是用铅和二氧化铅作为电池负极和正极活性物质,以稀硫酸为电解质的化学储能装置,具有电能转换效率高、循环寿命长、端电压高、安全性强、性价比高、安装维护简单等特点,目前是各类储能、应急供电、启动装置中的化学电源。铅酸电池的主要构成包括: 1.极板:正负极板均是以特殊的合金板栅涂敷上活性物质所得,极板在充放电时存储和释放能量,确保电池的容量和性能可靠。 2.隔板:是置放于电池正负极中间的一个隔离介质,防止电池正负极直接接触而短路的装置,不同类型的铅酸电池隔板材

质不同,阀控类电池主要以AGM、PE、PVC为主。 3.电解液:铅酸电池的电解液是用蒸馏水配制的稀硫酸,电 解液在充放电时起到在正负极间传输离子的作用,因而电解液必须要没有杂质。 4.容器(电池壳盖):电池包覆的容器,电解液和极板均在容器内,主要起支撑作用,同时防止内部物质外溢,外部物质进入内部结构污染电池。 二、种类及优势 铅酸电池的工作原理就是通过电化学反应,电能和化学能之间相互转化,电极主要由铅及其氧化物制成,电解液是硫酸溶液的一种蓄电池。英语:Lead-acidbattery。 放电状态下,正极主要成分为二氧化铅,负极主要成分为铅。充电状态下,正负极的主要成分均为硫酸铅。 铅酸蓄电池种类较多,应用在光伏储能系统中,比较多的有三种,富液型铅酸蓄电池、阀控式密封铅酸蓄电池、铅碳蓄电池等等。 2.1 富液型铅酸蓄电池 铅酸电池的电解液中的硫酸直接参与电池充放电反应过程,传统铅酸电池中,电池槽内除去极板、隔板及其他固体组装部件的剩余空间完全充满硫酸电解液,电解液处于富余过量状态,故被称为"富液式'电池,电池极板完全浸泡在硫酸电解液中。

阀控式铅酸蓄电池培训资料

阀控式铅酸蓄电池培训资料 一、引言 阀控式铅酸蓄电池是一种常见的储能设备,广泛应用于电力系统、通信系统、太阳能发电系统等领域。本文旨在向您介绍阀控式铅酸蓄电池的基本知识、工作原理、维护方法等内容,帮助您更好地了解和应用这一技术。 二、阀控式铅酸蓄电池的基本知识 1. 铅酸蓄电池的分类 铅酸蓄电池根据其工作原理和结构可以分为阀控式铅酸蓄电池和自动充电式铅酸蓄电池两种。阀控式铅酸蓄电池通过阀门控制气体的排放和补充,实现了自动充电和放电的功能。 2. 阀控式铅酸蓄电池的工作原理 阀控式铅酸蓄电池由正极板、负极板、分隔板和电解液组成。当外部电源施加在蓄电池上时,正极板上的铅酸会被电解成正极活性物质和负极活性物质,形成电化学反应。同时,负极板上的铅酸也会被电解,并与正极反应产生电流。 3. 阀控式铅酸蓄电池的优势 阀控式铅酸蓄电池具有以下优势: - 高效率:阀控式铅酸蓄电池具有高能量转换效率,能够更好地满足电力系统的需求。 - 长寿命:采用特殊的设计和材料,阀控式铅酸蓄电池具有较长的使用寿命。 - 安全可靠:阀控式铅酸蓄电池具有过充、过放保护功能,避免了电池的损坏和安全事故的发生。

三、阀控式铅酸蓄电池的维护方法 1. 充电和放电控制 阀控式铅酸蓄电池的充电和放电控制是保证其正常运行的关键。在充电过程中,应根据电池的额定电压和充电电流进行合理的控制。在放电过程中,应注意电池的放电深度,避免过度放电导致电池寿命的缩短。 2. 温度控制 阀控式铅酸蓄电池的工作温度范围一般为-20℃~50℃。过高或过低的温度都会 影响电池的性能和寿命。因此,在使用过程中应注意控制环境温度,避免过热或过冷的情况。 3. 定期检查和维护 定期检查和维护是保证阀控式铅酸蓄电池正常运行的重要措施。应定期检查电 池的电压、电流、温度等参数,确保其工作状态良好。同时,应定期清洁电池表面,防止灰尘和污垢的积累。 四、阀控式铅酸蓄电池的应用领域 阀控式铅酸蓄电池广泛应用于以下领域: 1. 电力系统:阀控式铅酸蓄电池作为备用电源,可在电网故障或停电时提供紧 急电力支持。 2. 通信系统:阀控式铅酸蓄电池作为通信基站的备用电源,可保证通信系统的 连续运行。 3. 太阳能发电系统:阀控式铅酸蓄电池作为太阳能发电系统的储能设备,可将 多余的电能储存起来,以供夜间或阴天使用。 五、结论

阀控式密封铅酸蓄电池的性能特点及其维护

阀控式密封铅酸蓄电池的性能特点及其维护 阀控式密封铅酸(VRLA)蓄电池以其体积小、重量轻、密封好、无泄露、无污染、放电性能好、维护量小等特点,已取代了消氢和防酸隔爆铅酸蓄电池。VRLA蓄电池俗称“免维护电池〞,但并不是不需要维护,只是在运行中不需要添加蒸馏水和补酸。假设不根据其工作特点进展科学有效的维护,很容易造成蓄电池寿命大幅度缩短,甚至导致通信故障。 1 阀控式密封铅酸蓄电池的构造和特点 1.1 VRLA蓄电池的构造 VRLA蓄电池的根本构造是由正负极板、超细玻璃纤维隔板、电解液、平安阀、导电端子以及壳盖、壳体组成。正负极板是电化学反响的区域,在板栅上敷涂铅膏经过固化、化成等工艺处理后形成。正极板有效成分为二氧化铅,负极板有效成分为海绵状铅。隔板为孔率在93%以上超细玻璃纤维组成。平安阀是一种排气装置,释放多余的气体保持电池的气密性和液密性,并保持电池内部压力在最正确的平安范围内。电池端子与负载连接起到传导电流的作用,电池槽和外壳是由阻燃材料ABS或PP等树脂材料组成。 1.2 VRLA蓄电池的特点 VRLA蓄电池在充电过程中,负极反响近似为复原反响,所以负极也称为阴极。VRLA蓄电池电池负极活性物质相对于正极有盈余,超细隔板透气性好,能吸附全部电解液,使电解液在蓄电池内部无流动性,同时又有自动开、闭的平安阀,保证了正极产生的氧气,在蓄电池内部循环的方式被阴极吸收,即称为阴极吸附式原理。由于VRLA蓄电池具有独特的内部设计构造,保证了电池内部氧气循环复合的有效建立,在传统消氢和防酸隔爆铅酸蓄电池的根底上进展了改进,已成为一种新型的换代产品,并广泛地应用于通信行业。它与消氢和防酸隔爆式蓄电池相比,具有以下几个特点:电池在密封贫液状态下运行;不需要补酸和添加蒸馏水,无需测量电解液比重,电池内部使用了不流动电解液;有效防止了电解液分层,自放电率小,在标准温度下每月自放电小于3%,可以立放和卧放两个方向放置;能与通信设备同室安装,采用陶瓷过滤器根本无酸雾逸出;不漏液、不腐蚀设备,对环境污染小,但运行时对环境温度和浮充电压要求较高,没有记忆效应;比能量较高,具有大电流放电能力。 2 阀控式密封铅酸蓄电池的充、放电性能 VRLA蓄电池充电时,可分为浮充式、恒压限流或递增电压式三种,在电池放电时间短或补偿电池内部自放电而产生的容量损失时,采用浮充方式充电。当电池放电时间较长,蓄电池容量损失较大或同组电池中各单体电池端电压差大于100mV时,应采用恒压限流或递增电压式充电。递增电压式也就是充电电压值小于或等于均充电压值。但是,假设环境温度过高,造成蓄电池内阻的变化,那么浮充电压提高,导致充电电流增大,造成蓄电池失水过快,蓄电池容量下降,使蓄电池寿命的缩短,所以浮充电压必须随温度的变化进展相应补偿,标准温度为25℃,一般温度每增加或减少1℃,那么浮充电压应减少或增加1~3mV。对于枢纽楼环境温度较好,电池温度补偿电压应设定每度补偿1mV为佳。

免维护铅酸蓄电池的结构

免维护铅酸蓄电池的结构 免维护铅酸蓄电池的结构 免维护铅酸蓄电池的结构 人们常说的免维护蓄电池正规名称叫做阀控式密封铅酸蓄电池它作为电动车的动力源使用广泛。电动车用的阀控式密封铅酸蓄电池从外表看,有外壳、阀盖、接线端子。接线端子周边的密封材料分别用红色和黑色(或者蓝色)来表明正极和负极。12V的电池内部分为6个独立的相互隔绝的单格,每个单格内有用各自的汇流导体连接的正极板群和负极板群。铅酸蓄电池的极板犹如钢筋水泥的结构,是在合金.丝的筛网状的骨架上涂敷(或者轧制)活性物质形成的:正极板上的物质是二氧化铅(Pb02),负极板上的物质是绒状铅(Pb)。每一个正、负极板之间都隔着多孔的超细纤维物质(也有使用二氧化硅胶物质填充的),其中吸附着硫酸(H2s04)电解液,这个纤维物质(或硅胶物质)是电化学反应过程中液相传输和气相传输的通道,它和正、负极板群被紧密地装配在一起,形成一个2V的电池单体。由于铅酸蓄电池在充电时极板不可避免的会产生氢气和氧气,当它们产生的过多并且来不及化和成水的时候就会在单格内形成压力。为了保证蓄电池正常安全的工作,每个单格都设有自己的溢气阀,当压力过量时让气体自动逸出。相对于电池槽里装满电解液体的富液电池而言阀控式密封铅酸蓄电池内部只蕴含着很少的电解液,属于贫液电池。尽管如此,由于设计时电解液有一定的冗余,并且在溢气阀压力的保护下只要使用合理,由气体逸出造成的水损失极小,以至阀控蓄电池的电解液在寿命过程中基本不用补充,因此阀控式密封铅酸蓄电池也被称为免维护蓄电池。以上是电动自行车常用的阀控式密封铅酸蓄电池的结构示意图。图中6个2V的单格串联成12V的电池,电动自行车就是由2个、3个或者4个这样的电池

阀控式铅酸蓄电池

阀控式铅酸蓄电池 阀控式铅酸蓄电池的英文名称为ValveRegulatedLeadBattery(简称VRLA电池),其基本特点是使用期间不用加酸加水维护,电池为密封结构,不会漏酸,也不会排酸雾,电池盖子上设有单向排气阀(也叫安全阀),该阀的作用是当电池内部气体量超过肯定值(通常用气压值表示),即当电池内部气压上升到肯定值时,排气阀自动打开,排出气体,然后自动关阀,防止空气进入电池内部。 目录相关参数技术特点基本介绍 相关参数 当蓄电池用导体在外部接通时,正极和负极的电化反应自发地进行,假如电池中电能与化学能转换达到平衡时,正极的平衡电极电势与负极平衡电极电势的差值,便是电池电动势,它在数值上等于达到稳定值时的开路电压。电动势与单位电量的乘积,表示单位电量所能作的电功。但电池电动势与开路电压意义不同:电动势可依据电池中的反应利用热力学计算或通过测量计算,有明确的物理意义。后者只在数字上近于电动势,需视电池的可逆程度而定。 电池在开路状态下的端电压称为开路电压。电池的开路电压等于电池正极电极电势与负极电极电势之差。 电池工作电压是指电池有电流通过(闭路)的端电压。在电池放电初始的工作电压称为初始电压。电池在接通负载后,由于欧姆电阻和极化过电位的存在,电池的工作电压低于开路电压。 电池容量是指电池储存电量的数量,以符号C表示。常用的单位为安培小时,简称安时(Ah)或毫安时(mAh)。 电池的容量可以分为额定容量(标称容量)、实际容量。 (1)额定容量

额定容量是电池规定在在25℃环境温度下,以10小时率电流放电,应当放出限度的电量(Ah)。 a、放电率。放电率是针对蓄电池放电电流大小,分为时间率和电 流率。 放电时间率指在肯定放电条件下,放电至放电终了电压的时间长短。依据IEC标准,放电时间率有20,10,5,3,1,0.5小时率及分 钟率,分别表示为:20Hr,10Hr,5Hr,3Hr,2Hr,1Hr,0.5Hr等。 b、放电停止电压。铅蓄电池以肯定的放电率在25℃环境温度下放电至能再反复充电使用的电压称为放电终了电压。大多数固定型电池规 定以10Hr放电时(25℃)停止电压为1.8V/只。停止电压值视放电速率 和需要而定。通常,为使电池安全运行,小于10Hr的小电流放电,停 止电压取值稍高,大于10Hr的大电流放电,停止电压取值稍低。在通 信电源系统中,蓄电池放电的停止电压,由通信设备对基础电压要求而定。 放电电流率是为了比较标称容量不同的蓄电池放电电流大小而设的,通常以10小时率电流为标准,用I10表示,3小时率及1小时率放 电电流则分别以I3、I1表示。 c、额定容量。固定铅酸蓄电池规定在25℃环境下,以10小时率 电流放电至终了电压所能达到的额定容量。10小时率额定容量用C10表示。10小时率的电流值为C10/10。 其它小时率下容量表示方法为:3小时率容量(Ah)用C3表示, 在25℃环境温度下实测容量(Ah)是放电电流与放电时间(h)的乘积,阀控铅酸固定型电池C3和I3值应当为: C3=0.75C10(Ah) I3=2.5I10(h) 1小时定容量(Ah)用C1表示,实测C1和I1值应为C1=0.55C10(Ah)

铅酸蓄电池的原理及性能

铅酸蓄电池的原理与性能 一、铅酸蓄电池的工作原理 蓄电池是一种化学电源,它的构造可以是各式各样的,可是从原理上讲所有的电池都是由正极、负极、电解质、隔离物和容器组成的,其中 正负两极的活性物质和电解质起电化反响,对电池产生电流 起着主要作用,如图4-1所示。 在电池部,正极和负极通过电解质构成电池的电路,在 电池外部接通两极的导线和负荷构成电池的外电路。 在电极和电解液的接触面有电极电位产生,不同的两极 活性物质产生不同的电极电位,有着较高电位的电极叫做正 极,有着较低电位的电极叫做负极,这样在正负极之间产生了电位差,当外电路接通时,就有电流从正极经过外电路流向负极,再由负极经过电路流向正极,电池向外电路输送电流的过程,叫做电池的放电。 在放电过程中,两极活性物质逐渐消耗,负极活性物质 1.电解质 2.负极 3.容量 4.正极 5.隔离物 6.导线 7.负荷 图4-1 电池构造示意图 放出电子而被氧化,正极活性物质吸收从外电路流回的电子而被复原,这样负极电位逐渐升高,正极电位逐渐降低,两极间的电位差也就逐渐降低,而且由于电化反响形成新的化合物增加了电池的阻,使电池输出电流逐渐减少,直至不能满足使用要求时,或在外电路两电极之间端电压低于一定限度时,电池放电即告终。 电池放电以后,用外来直流电源以适当的反向电流通入,可以使已形成的新化合物复原成为原来的活性物质,而电池又能放电,这种用反向电流使活性物质复原的过程叫做充电。 蓄电池可以反复屡次充电、放电,循环使用,使用寿 命长,本钱较低,能输出较大的 能量,放电时电压下降很慢。 1.电动势的产生 铅蓄电池的正极是二氧化铅(PbO2),负极是绒状铅 (Pb),它们是两种不同的活性物质,故和稀硫酸(H2SO4)起 化学作用的结果也不同。在未接通负载时,由于化学作用 使正极板上缺少电子,负极板上却多余电子,如图4-2所图4-2 铅蓄电池电势产生过程示,两极间就产生了一定的电位差。 2.放电过程的化学反响 当外电路接上负载(比方灯泡)后,铅蓄电池在 正、负极板间电位差(电动势)的作用下,电流Ⅰ从 正极流出,经负载流向负极,也就是说,负极上的 电子经负载进入正极,如图4-3。同时在蓄电池部 产生化学反响: . 学习.资料.

阀控式密封铅酸蓄电池

阀控式密封铅酸蓄电池 1.1. UPS系统常用的储能装置 碱性镉镍蓄电池(Alkaline Cd-Ni batteries) 碱性蓄电池是以KOH,NaOH的水溶液做为电解质的,镉镍蓄电池是碱性蓄电池,碱性镉镍 蓄电池相对于铅酸蓄电池是长寿命、高倍率、,可以做到密封。IEC285、IEC623标准规定循环寿命500—1000次可以工作5-10年,高低温性能好,高倍率(5-10倍率)放电性能好,除有记忆效应,制造工艺复杂,组成镉镍蓄电池的材料昂贵短缺外,其它各方面都优于铅酸蓄电池,其价格是铅蓄电池的几十倍,单体电压低(1.25V)。一般UPS系统不宜选用镉镍蓄电池,尤其是大功率UPS系统用镉镍蓄电池造价非常可观。 阀控铅酸蓄电池AGM体系(Valve-reguleted lead-acid batteries Absorptive glass mat) 组成蓄电池材料资源丰富,价格便宜,单体电压高(2V),经过阀控达到密封,现在工艺都很成熟,大电流高倍率放电性能基本满足UPS系统工作要求,工作其间对环境没有污染,价格相对镉镍蓄电池便宜很多,尤其是大功率UPS系统所用电池。是目前UPS系统首选的蓄电池。 富液免维护铅酸蓄电池Freedom体系(最早以美国Delco公司命名为依据Vented lead acid battery) 富液免维护铅酸蓄电池国外也称Flooded Sealed Maintenance Free lead acid batteries,其工作原理除氧气阴极复合不如AGM、,其化学反应机理相同。由于将AGM体系的贫液式改为富液式Freedom体系,用PE (polythylene)隔板、富液密封,能克服AGM贫液体系所产生的热失控、干涸、内阻大等缺点。由于该体系的流动性大、低温内阻小,从电化学动力学的理论分析,高速放电传质速度优于AGM体系和gel体系。由于采用过剩电解液气体可以自由进出,通过特殊的复合盖结构设计 通过分子筛性质的滤气安全阀,实现了对电池的完全密封,永不漏液。由于生产工艺简单单体电容易实现一致,电液量高于AGM, Gel体系1.2倍,使用寿命5--10年。根据以上几点分析和比较能,目前为UPS系统配套首选VRLA蓄电池和Flooded体系和Gel胶体蓄电池。 关于胶体密封铅酸蓄电池(Gel electrolyte sealed lead-acid batteries) 1.2. 关于硅胶体(Gelled)

阀控式密封铅酸蓄电池

阀控式密封铅酸蓄电池 使用说明书 GFM系列 广州市恩留宁电池科技有限公司

目 录 Ⅰ、安全注意事项 Ⅱ 、概要 1.前言 2.特点 3.主要用途 3.技术参数 Ⅲ 、构造及密封的原理 1.构造 2.密封的原理 Ⅳ、 技术特性曲线 1、蓄电池放电曲线 2、充电曲线 3、浮充电压与温度的关系曲线: 4、容量与温度关系曲线 5、蓄电池寿命与温度的关系曲线 6、GFM 系列蓄电池放电容量与放电时间的关系曲线 Ⅴ、电池安装与使用 1、电池房技术要求 2、电池组正常运行对配套充电设备的要求: 3、电池的零、部件验收: 4、电池的安装 5、电池的调试与使用 6、电池组的检测、维护 Ⅵ、使用注意事项 Ⅰ 安 全 注 意 事 项

1.前言 阀控式密封铅酸蓄电池广泛用于通讯用设备单元、各种应急电源及发电机起动用电源等,并伴随着近些年来电子设备的发展和普及,被更广泛的使用。 以往阀控式铅酸蓄电池在充电过程中会造成水分解,引起电解液减少,需要进行补水、检查液面高度等维护操作。而我厂提供的“密封铅酸蓄电池”采用了触媒栓设计,使充电时产生的氢气和氧气反应生成水,因而不需要补水操作,获得了好评。 这里介绍的阀控式密封铅酸蓄电池(GFM系列)使维护更加省力,不需要液面高度检查、补水、比重测量及均等充电的拥有众多优点的紧凑型蓄电池。这种蓄电池是在原来广泛使用的小型密封铅酸蓄电池及阴极吸收式密封固定蓄电池的技术基础上,开发出来的长寿命、高可靠性、高性能的密封铅酸蓄电池。 2.特点 (1)长寿命 使用既有耐腐蚀性的特殊铅钙合金制成的栅板(格子体),拥有较长的浮充寿命。正常浮充电情况下产生的气体可以很好的被吸引,所以正常操作情况下不会因电解液枯竭导致电池容量减低。 使用特殊隔板保持电解液的同时,强力压紧正极板板面防止活性物质脱落。所以,可以长时期使用,是一种很经济的蓄电池。 GFM系列蓄电池,是在阀控式密封铅酸蓄电池技术的基础上实现了长寿命化。所以GFM电池设计寿命为10~15年(25℃)。 (2)维护容易 由于浮充电时,电池内部产生的氧气大部分被阴极板吸收还原成电解液,基本上没有电解液的减少,所以完全不必象一般蓄电池那样测量电解液的比重和补水。 (3)高倍率放电特性优良 采用孔率极高的特殊极板,并且端子和极柱一次成型,因而内阻较小,特别是大电流放电特性优良(1分钟放电情况下,比以前的开放富液式蓄电池提高20%以上)。 (4)可横向放置,缩小放置空间 电解液由特殊隔板保持,所以没有流动的液体,不必担心漏液。正常操作下,即使横放状态亦可使用。另外,端子形状也考虑到电池排列的需要哦,接线操作简单。 此外,不需要额外保留维护空间。由于电池是紧密的设计,所以可以缩小存放空间。而且,如果将电池横向放置,就可以在前面接线及检修,可以更加缩小其占据的空间。 (5)经济性好 由于不需要补水及均衡充电,可以减少检修费用及充电机可以简化。不产生酸雾,相邻机器亦不需要进行耐酸处理,所以整体经济性好。 (6)有较高安全性 为预防产生过多的气体,电池装有安全阀。 另外,还装有防爆过滤器,在构造上即使有火花接近,亦能防止引火至电池内部。 (7)自放电少 使用特殊铅钙合金制成的板栅,将自放电量限制到最小,可长期保存。 如上所述GFM系列拥有诸多特长,带触媒栓的开放式铅酸蓄电池相比较一览表如表—1所示。 3、主要用途 阀控式密封铅酸蓄电池GFM型系列是浮动充电(涓流式连续补充电)蓄电池,适合以下各种用途:○通讯用电源 ○变电所操作用及其它直流电源 ○应急照明灯等直流应急预备电源(防灾用电源) ○消防设备用电源 ○发电机起动电源 ○不间断电源(UPS)

阀控式铅酸电池基本原理

为了解决以上的两个问题,世界各国竞相开发密封铅酸蓄电池,希望实现电池的密封,获得干净的绿色能源。 1912年ThomasEdison发表专利,提出在单体电池的上部空间使用铂丝,在有电流通过时,铂被加热,成为氢、氧化合的催化剂,使析出的H2与O2重新化合,返回电解液中。但该专利未能付诸实现:①铂催化剂很快失效;②气体不是按氢2氧1的化学计量数析出,电池内部仍有气体发生;③存在爆炸的危险。 60年代,美国Gates公司发明铅钙合金,引起了密封铅酸蓄电池开发热,世界各大电池公司投入大量人力物力进行开发。 1969年,美国登月计划实施,密封阀控铅酸蓄电池和镉镍电池被列入月球车用动力电源,最后镉镍电池被采用,但密封铅酸蓄电池技术从此得到发展。 1969-1970年,美国EC公司制造了大约350,000只小型密封铅酸蓄电池,该电池采用玻璃纤维棉隔板,贫液式系统,这是最早的商业用阀控式铅酸蓄电池,但当时尚未认识到其氧再化合原理。 1975年,GatesRutter公司在经过许多年努力并付出高昂代价的情况下,获得了一项D型密封铅酸干电池的发明专利,成为今天VRLA的电池原型。 1979年,GNB公司在购买Gates公司的专利后,又发明了MFX正板栅专利合金,开始大规模宣传并生产大容量吸液式密封免维护铅酸蓄电池。 1984年,VRLA电池在美国和欧洲得到小范围应用。 1987年,随着电信业的飞速发展,VRLA电池在电信部门得到迅速推广使用。 1991年,英国电信部门对正在使用的VRLA电池进行了检查和测试,发现VRLA电池并不象厂商宣传的那样,电池出现了热失控、燃烧和早期容量失效等现象,这引起了电池工业界的广泛讨论,并对VRLA 电池的发展前途、容量监测技术、热失控和可靠性表示了疑问,此时,VRLA电池市场占有率还不到富液式电池的50%,原来提到的“密封免推护铅酸电池”名称正式被“VRLA电池”取代,原因是VRLA电池是一种还需要管理的电池,采用“免维护”容易引起误解。 1992年,针对1991年提出的问题,电池专家和生产厂家的技术员纷纷发表文章提出对策和看法,其中DrDaridFeder提出利用测电导的方法对VRLA电池进行监测。I.c.Bearinger从技术方面评述VRLA电池的先进性。这些文章对VRLA电池的发展和推广应用起了很大的促进作用。

相关主题
文本预览
相关文档 最新文档