当前位置:文档之家› 平行钢丝拉索疲劳性能理论研究

平行钢丝拉索疲劳性能理论研究

平行钢丝拉索疲劳性能理论研究
平行钢丝拉索疲劳性能理论研究

2009年01月第25卷第1期 

沈阳建筑大学学报(自然科学版)

Journal of Shenyang J ianzhu U niversity (N atural Science ) Jan. 2009

V ol.25,N o.1

收稿日期:2008-11-01

基金项目:国家自然科学基金重点项目(50538020)

作者简介:兰成明(1979—),男,博士研究生,主要从事结构耐久性与可靠性研究.

文章编号:1671-2021(2009)01-0056-05

平行钢丝拉索疲劳性能理论研究

兰成明

(哈尔滨工业大学土木工程学院,黑龙江哈尔滨150090)

摘 要:目的建立平行钢丝拉索疲劳寿命的理论分析模型,为平行钢丝拉索的设计及疲劳评定提供理论依据.方法考虑平行钢丝拉索的特点,根据单根钢丝疲劳寿命的概率分布及线性累积损伤理论,采用Monte Carl o 方法进行模拟.结果拉索疲劳寿命由其中一小部分疲劳寿命较短的钢丝控制,拉索的疲劳寿命远远小于钢丝的疲劳寿命,以10%的断丝率作为拉索寿命的终止比较合理,此时能够保证结构具有一定的安全裕度,同时拉索得到充分利用.结论为保证拉索具有良好的疲劳性能,除了要求拉索内钢丝具有长的疲劳寿命外,还必须严格控制钢丝疲劳寿命的变异性,初始应力幅相同的条件下,增加拉索内钢丝数不影响拉索的疲劳寿命,但会降低拉索疲劳寿命的变异性.

关键词:平行钢丝拉索;疲劳;概率分布;累积损伤中图分类号:U 441 文献标志码:A

0 引 言

斜拉桥这种桥型出现以来,其拉索一直是斜拉桥设计者关注的焦点之一,曾经在很长的一段时间里,拉索制造工艺一直是斜拉桥发展的障碍.拉索在桥梁运营期间的安全是斜拉桥结构安全的最重要条件之一,斜拉索破坏的最主要原因是钢丝的锈蚀,疲劳及其耦合效应引起拉索内钢丝的断裂,许多斜拉桥失效事故都是由拉索失效引起的[1-4].目前,国内外大跨度斜拉桥拉索主要采用平行镀锌高强钢丝拉索,其与钢绞线拉索相比具有明显的优势:拉索由工厂预制,工艺成熟,质量稳定;冷铸锚锚固可靠;钢丝受力均匀;轴向刚度大,材料利用率高;价格相对便宜.近20年来,我国已经修建了上百座大型斜拉桥,90%以上都采

用镀锌高强钢丝PE 防护拉索[5]

.

目前国内外一般根据钢丝或拉索的S -N 曲线确定拉索的疲劳强度,拉索的疲劳强度应由疲劳试验获得,因疲劳试验费时费力,是一项庞大的试验研究工作,我国现无系统、完善、权威的拉索

疲劳试验数据,更没有总结出拉索的疲劳强度计算公式,这些都给设计人员带来很大的盲目性.我

国《公路斜拉桥设计规范(试行)》

(JTJ 027-96)中关于拉索的疲劳强度是采用通过200万次的常幅反复加载试验来验证.此种试验的原理就是疲劳设计方法中的无限寿命设计方法,现阶段我国公路、铁路桥梁规范中有关疲劳设计皆采用此方法,无限寿命设计方法的目的就是使构件在活载引起的循环应力作用下能够长期安全使用,不产生疲劳破坏.拉索疲劳强度还可以通过对钢丝疲劳强度的折减得到,例如,瑞士B irkenm aier 指出[6]

,拉索的疲劳强度和钢丝的疲劳强度有如下

关系Δσ拉索=Δσ钢丝/1.6.美国后张法协会斜拉桥委员会颁布的《斜拉桥设计、试验与安装条例》中

指出Δσ拉索=Δσ钢丝-100

.以上方法均是近似的方法且偏于保守,不能反映斜拉索在交变荷载作用下的真实性能.鉴于平行钢丝拉索的重要性,笔者根据平行钢丝拉索的特点,从钢丝疲劳寿命的概率分布进行分析,提出拉索疲劳寿命预测的理论方法,并结合钢丝的

第25卷兰成明:平行钢丝拉索疲劳性能理论研究57

 疲劳试验数据分析拉索疲劳性能的影响因素,为

拉索设计及疲劳评定提供理论基础.

1 钢丝疲劳寿命计算模型

最早 B.D.C olem an 和S.L.Phoenix 建立了纤维束疲劳的理论模型[7-8]

,直到目前依然是研究平行钢丝束拉索疲劳的理论基础,平行钢丝拉索计算模型见图1

.

图1 平行钢丝束拉索计算模型

R.R ackw itz 和M.H.Faber 根据上述模型推导了考虑应力幅、钢丝长度、钢丝内平均应力、钢丝强度及钢丝面积等的钢丝疲劳寿命预测模

型[9]

,钢丝在指定应力幅ΔS 下疲劳寿命N 概率分布服从如下W eibu ll 分布

F N (N ,ΔS )=1-exp -

ΔS

r c

α

N K

α

m ’

,

(1)

式中:α,m ’和K 为未知参数,其中,r c =

(cnA 0)

-1/

α,c 为未知参数,A 0为钢丝的截面积,

对于长度为L 的钢丝,参数n 由下式确定

[10]

n =L

L 0

,(2)

式中:L 0为钢丝疲劳寿命的特征长度,是表征钢丝自身材料性能的物理量,计算时假定为常数;参数n 即表征长度效应对拉索疲劳寿命的影响.参数K 可以采用如下形式表示

K =K 0

1-m s m z

r

,(3)

式中:K 0为未知参数;m s 为钢丝内的平均应力;m z 为钢丝抗拉强度的均值;参数γ假定等于0.5.

本次疲劳试验用钢丝取自国内某斜拉桥换下的旧索,为1570级高强钢丝.疲劳试验钢丝样本长度500mm ,钢丝直径5mm ,疲劳试验加载频率

30H z,实测钢丝抗拉强度均值1621M Pa,设计4

个应力幅,分别为640M Pa 、500M Pa 、360M Pa 和290M Pa,应力比等于0.5.为了准确得到钢丝疲劳寿命的概率分布,每个应力幅下进行疲劳试验的钢丝数为13~15根.根据钢丝疲劳寿命服从

W eibull 分布,见公式(1),由于钢丝试验样本长

度相同,计算时取参数n =1,采用极大似然法估计未知参数,其中α=5112,m ’=2.15,c =1.86×104,K 0=5.94×1010.单根钢丝疲劳试验结果及计算得到的P -S -N 曲线如图2所示.从图中可以看出随着应力幅增大,钢丝的疲劳寿命逐渐减小,图中虚线表示钢丝中值S -N 曲线,钢丝中值

S -N 曲线数据表达如下

lgN =11.729-2.511lg

ΔS.(4)图2 钢丝疲劳试验结果及P -S -N 曲线

2 拉索疲劳寿命模型

假定拉索的疲劳寿命曲线形式如下

lgN =A -B lg

ΔS,(5)

式中:参数A 、B 可由疲劳试验确定.拉索内钢丝的疲劳断裂是随机的,同时某一根钢丝发生疲劳断裂后沿长度方向不能继续承担荷载,拉索的荷载由其内未发生疲劳断裂钢丝承担,发生荷载的重分布,荷载重分布后应力幅表达如下

ΔS (N )=

m

i (N )

ΔS,(6)

式中:ΔS (N )为经过N 次疲劳应力幅循环后,未发生疲劳断裂钢丝的应力幅;i (N )为未发生疲劳断裂的钢丝数;ΔS 为初始完好状态时每根钢丝的疲劳应力幅.随着疲劳荷载循环增加,拉索内钢丝不断发生断裂,未发生疲劳断裂的钢丝上的疲劳应力幅不断增加,加速了拉索疲劳的破坏.

58 沈阳建筑大学学报(自然科学版)第25卷

由于钢丝疲劳断裂是随机的且随着钢丝的疲劳断裂荷载发生重分布,这一过程非常复杂,为描述拉索内钢丝疲劳断裂过程,笔者采用M onte C arlo 方法随机模拟拉索内钢丝的疲劳断裂过程.

每次M on te C arlo 模拟后,根据钢丝的寿命从小到大对钢丝进行重新排序,基于M iner 疲劳破坏准则,计算拉索内每根钢丝的疲劳损伤指数

M i =

N i N r

,

(7)

式中:M i 为拉索内第i 根钢丝的M iner 损伤指数;N i 为拉索内第i 根钢丝在指定应力幅ΔS 作用下的疲劳寿命;N r 为钢丝在指定应力幅ΔS 作用下的寿命均值.

由M iner 准则,随着应力幅循环增加,当第一根钢丝的损伤指数等于M 1时,第一根钢丝发生破坏,剩余钢丝荷载发生重分布,随着循环继续增加,当第二根钢丝的损伤指数等于M 2时,第二根钢丝发生破坏,剩余钢丝荷载发生重分布,由公式

(5)和公式(6)及M iner 准则,第i 根钢丝破坏时

所经历的荷载循环数为

[11]

N ′i =N r

i

j =1

(M j -M j-1)

m m -j +1

-B

,(8)

式中:M 0=0.从公式(8)可以看出N ′i /N r 独立于应力幅ΔS.

根据上述分析可知,当单根钢丝在指定应力幅下的疲劳寿命概率分布确定后,根据拉索疲劳的理论模型,采用M onte C arlo 模拟即可得到不同断丝率条件下拉索的疲劳寿命.由于M onte C arlo 模拟结果为近似结果,随着模拟试验次数的增加计算结果趋于真实值,但计算量亦随之增大.为保证M onte C arlo 模拟的精度,研究发现,以断丝率10%作为拉索的疲劳寿命终止时,采用2000次模拟得到的拉索寿命均值与采用6000次模拟得到的拉索疲劳寿命变化率小于1%,精度能够满足要求,因此后面所有计算均采用2000次的模拟结果.根据前述给出的钢丝疲劳寿命概率分布参数,以应力幅ΔS =360M Pa 为例,在此条件下,

钢丝疲劳寿命服从均值为2.141×105

,变异系数为0.446的W eibull 分布,假定拉索内钢丝数为300根

.图3给出单根拉索常荷载幅与常应力幅作用下,拉索寿命与单丝寿命均值比值随拉索断丝率的变化关系,计算时取参数n =1.对于常应力幅的情况,即拉索内未断的钢丝应力幅始终不

变,曲线相当于单根钢丝疲劳寿命的累积分布函数.

图3 常荷载幅与常应力幅拉索寿命比较

从图3中可以看出,在断丝率小于10%时,

两条曲线基本相同,但是对于考虑荷载重分配的常荷载幅情况,当拉索的断丝率达到20%后,拉索的断丝率陡增,整根拉索在疲劳荷载作用下迅速发生破坏,因此,在进行拉索疲劳设计及安全评定时,有理由定义以10%的断丝率作为拉索寿命的终止,此时能够保证结构具有一定的安全裕度,从上述的计算结果可以看出,斜拉索的疲劳寿命是由其中组成拉索的一小部分疲劳寿命较短的钢丝控制,因此,斜拉索的疲劳寿命的均值远小于钢丝疲劳寿命的均值.

3 拉索疲劳寿命的影响因素

3.1 S -N 曲线参数B 的影响

拉索S

-N 曲线参数B 对拉索疲劳寿命影响的计算结果见图4,其中单丝疲劳寿命服从前述W eibull 分布,参数B 取值范围为[2,4.5],从计算

图4 参数B 对拉索疲劳寿命的影响

第25卷兰成明:平行钢丝拉索疲劳性能理论研究59

 结果可以看出,当断丝率为5%、10%时,参数B

对拉索的疲劳寿命影响较小,但是当断丝率为20%,特别是断丝率为30%时,参数B 对拉索的疲劳寿命影响则比较明显,随着参数B 增大,拉索的疲劳寿命逐渐降低.

当断丝率较小时,拉索S -N 曲线参数B 对拉索的疲劳寿命影响很小,主要原因是断丝率较小时,荷载重分配并不明显,钢丝内的应力幅增加并不明显,从而导致拉索S -N 曲线参数B 对拉索的疲劳寿命影响不大.3.2 长度效应的影响

图5给出不同n 条件下整根钢丝的疲劳寿命均值与疲劳试验测得n =1时钢丝疲劳寿命均值的比值的变化关系,其中n =1时单丝疲劳寿命服从前述W eibull 分布,同时给出不同钢丝疲劳寿命变异系数δ=0.1和δ=0.3情况下,该比值的变化关系

.

图5 长度效应对钢丝疲劳寿命的影响

从图5中可以看出参数n 相同的条件下,变

异系数δ越大,则整根钢丝的疲劳寿命越低;变异系数不变的条件下,整根钢丝的疲劳寿命随参数

n 的增加而降低,且变异系数越大,整根钢丝疲劳

寿命下降越多,显然,参数n 增大意味着钢丝的长度增加,则钢丝的疲劳寿命均值必将降低,即考虑长度效应对钢丝疲劳寿命产生的影响.从图中可以看出长度效应对钢丝疲劳寿命影响非常大,在具体应用时应该准确估计参数n 值.参数n 对拉索疲劳寿命影响的计算结果见图6.

图中给出了不同钢丝疲劳寿命变异系数及不同断丝率条件下拉索疲劳寿命与钢丝疲劳寿命均值的比值随参数n 的变化关系.从图中可以看出,

参数n 相同的条件下,钢丝疲劳寿命的变异系数

对拉索疲劳寿命影响非常大,钢丝疲劳寿命的变异系数越大,则拉索的疲劳寿命降低越多;钢丝疲劳寿命变异系数相同的条件,参数n 增大,则拉索的疲劳寿命降低,同时钢丝疲劳寿命变异性越大参数n 对拉索疲劳寿命的影响越明显

.

图6 长度效应对拉索疲劳寿命的影响

3.3 拉索内钢丝数的影响

拉索内的钢丝数目对拉索疲劳寿命的影响计

算结果见图7,图中给出以5%、10%、20%及30

%

图7 钢丝数对拉索疲劳寿命的影响

断丝率作为拉索的疲劳寿命,单根钢丝的疲劳寿

命服从前述W eibull 分布,参数n =1,拉索内的钢丝数从100根到1000根情况下,拉索疲劳寿命的均值及失效概率为5%时拉索的疲劳寿命计算结果.从计算结果可以看出,拉索内的钢丝数对拉索疲劳寿命的均值基本没有影响,即初始应力幅相同的情况下,拉索疲劳寿命的均值与其组成的钢丝数无关,并不是拉索内的钢丝数越多,拉索疲劳寿命均值越大、拉索越安全.

60

 沈阳建筑大学学报(自然科学版)第25卷

从图7中可以看出,不同断丝率条件下,随着拉索内钢丝数的增加,失效概率为5%的拉索疲劳寿命均逐渐增加,有渐近于拉索的平均寿命的趋势.这表明随着拉索内钢丝数量增加,拉索疲劳寿命的变异性逐渐减小.拉索内的钢丝可以看作一个无穷大集合的子样本,当样本数量少时,样本的变异性就大,样本数量大时,样本的变异性就小.随着拉索内钢丝数的增加,拉索的疲劳寿命变异性减小,拉索的疲劳性能趋于稳定.

4 结 论

笔者根据平行钢丝拉索的特点,考虑单根钢丝疲劳寿命的概率分布,建立了平行钢丝拉索疲劳寿命计算的理论模型,通过M onte C arlo模拟计算拉索的疲劳寿命,得到如下结论:

(1)拉索的疲劳寿命是由其中组成拉索的一小部分疲劳寿命较短的钢丝控制,拉索的疲劳寿命远小于钢丝的疲劳寿命,以10%的断丝率作为拉索寿命的终止比较合理,此时能够保证结构具有一定的安全裕度,同时拉索得到充分利用;

(2)长度效应对钢丝及拉索疲劳寿命的影响较大,设计计算时应该谨慎考虑;

(3)初始应力幅相同的条件下,拉索内的钢丝数不影响拉索的疲劳寿命,但钢丝数增多会降低拉索疲劳寿命的变异性;

(4)为保证拉索具有良好的疲劳性能,除了要求拉索内钢丝具有长的疲劳寿命外,还必须严格控制钢丝疲劳寿命的变异性.

参考文献:

[1] 王文涛.斜拉桥换索工程[M].北京:人民交通出

版社,1997.

[2] 陈政清.斜拉索风雨振现场观测与振动控制[J].

建筑科学与工程学报,2005,22(4):5-10.

[3] 邰扣霞,丁大钧.中国桥梁建设新飞跃[J].建筑科

学与工程学报,2006,23(2):30-40.

[4] 朱劲松,肖汝诚.大跨度斜拉桥拉索安全性分析方

法研究[J].土木工程学报,2006,39(9):74-79. [5] 李丹,丁一峥.高强钢丝和钢绞线拉索的分析比较

[J].公路交通技术,2005,(6):78-85.

[6] B irkenm aier M.Fatigue resistant tendons for cable-

stayed construction[C].Zurich:I AB SE Proceedings,

1980.

[7] C olem an B D.S tatistics and ti m e dependence of m e2

chanical breakdow n in fibers[J].Journal of A pp lied

Physics,1958,29(6):968-983.

[8] Phoenix S L.S tochastic strength and fatigue of fiber

bundles[J].International Journal of Fracture,1978,

14(3):327-344.

[9] R ackw itz R,Faber M H.R eliability of parallel w ire

cable under fatigue[C].M exico:P roceedings of the

ICA SP6C onference,1991.

[10] FaberM H,Engelund S,R ackw itz R.A spects of par2

allel w ire cable reliability[J].S tructural Safety,

2003,25:201-225.

[11] S tallings J M,Frank K H.S tay-cable fatigue be2

havior[J].Journal of S tructural Engineering,1991,

117(3):938-950.

Fati gue Properti es Assessment Theory of ParallelW i re Cable LAN C hengm ing

(School of C ivil Engineering,H arbin Institute of Technology,H arbin C hina,150090)

Abstract:In order to p rovide the theoretical basis fo r design and safety assess m ent of parallel w ire cable fa2 tigue p roperties,the fatigue life m odel of parallel w ire cab le is established.B ased on the characteristics of p arallel w ire cable,the M onte C arlo si m ulation m ethod is p roposed to si m ulate cab le fatigue life,w ith the consideration of the p robab ility d istribution of sing le w ire and cum ulative dam age theory.The results show that the cable fatigue life is controlled by a s m all fraction of the cable w ires w ith the sho rtest fatigue lives and cable fatigue life is significantly low er than m ean life of w ire.It is reasonable to define10%broken w ires as the ter m ination of cab le fatigue life,tak ing the econom y and safety of cable into consideration.To obtain the good fatigue p roperties of cable,the w ires in cab le m ust have long fatigue life and low variability. The variability of cable fatigue life decreases as the num ber of w ires increases and the m ean cable life is in2 sensitive to the num ber of w ires in cable.

Key words:parallel w ire cable;fatigue;p robability distribution;cum ulative dam age

平行钢丝索挂设施工工艺

目录 1 总则 (1) 第1.1条编制依据 (1) 2 斜拉索有关材料的验收 (1) 第2.1条验收标准及项目 (1) 第2.2条验收项目 (1) 1技术资料 (1) 2斜拉索的外观检验 (1) 3 主要机具设备 (1) 第3.1条主要机具设备表(单塔) (1) 4 挂索工艺流程及工艺措施 (2) 第4.1条梁端牵引 (2) 第4.1条塔端牵引 (2) 第4.3条挂索方案的选择 (2) 1 塔部安装方法 (2) ⑴吊点法 (2) ⑵吊机安装法 (2) ⑶分步牵引法 (3) 2 梁部安装方法 (3) ⑴吊点法 (3) ⑵拉杆接长法 (3) 3 挂索牵引索力计算 (3) 第4.3条斜拉索挂设 (3) 1 挂索设备 (3) 2缆索起吊和放盘 (3) 3缆索挂设准备工作 (4) 4缆索挂设 (5) ⑴挂设步骤和方法 (5) ⑵挂设技术要求 (6) 5缆索张拉 (6) ⑴总体规定 (6) ⑵牵索张拉 (6) 6 永久索张拉 (7) ⑴牵索体系转换 (7) ⑵张拉永久索至设计索力 (7) 7 索力控制与调整 (7) ⑴索力测量 (7) ⑵索力控制措施 (7) ⑶索力调整 (8) 5 缆索挂设常见质量通病的预防和控制措施 (8) 第5.1条缆索外观质量控制措施 (8) 1 PE护套的防护 (8) 2 锚头防护 (9) 第5.2条索力张拉与调整精度的预防和控制措施 (9) 6 安全措施 (9) 第6.1条安全措施 (9)

平行钢丝索挂设施工工艺 1 总则 第1.1条编制依据 1《公路桥涵施工技术规范》(JTJ041-2000); 2《铁路桥涵施工规范》(TB10203-2002); 3《斜拉索设计、试验与安装条例》(美国后张协会斜拉桥委员会1993年3月); 4已建斜拉桥平行钢索挂设施工经验。 2 斜拉索有关材料的验收 第2.1条验收标准及项目 成品斜拉索应组织验收,验收依据《斜拉桥热挤聚乙烯高强钢丝拉索技术条件》(GB/T18365-2001)、《公路斜拉桥设计规范》(JTJ207-96)、《铁路桥涵设计规范》(TBJ2-2000)进行。 第2.2条验收项目 1技术资料 每根斜拉索的质量保证书,以及各项例行检查结果。例行检查内容包括 ⑴钢丝的质量保证单或合格证及索厂的抽检结果。 ⑵聚乙烯护套料的质保单或合格证。 ⑶冷铸锚的检验报告或合格证(包括零部件探伤报告)。 ⑷每根索冷铸填料试件的抗压强度在常温下应达到147Mpa。 ⑸斜拉索在设计温度,零应力下的直线长度,其误差在规范允许值范围内。 ⑹斜拉索的超张拉值符合规范要求,且冷铸锚分丝板内缩值应≤6mm。 ⑺每种规格型号的斜拉索均应有一根在超张拉后作弹性模量试验,且其值≥1.9×105 Mpa。 ⑻包装完好,标示牌上字迹清楚,填写内容齐全。 2斜拉索的外观检验 ⑴外观面良好,不应有深于1mm的划痕。 ⑵两端冷铸锚外表不得有损伤,螺纹不得有任何碰伤,锚圈和锚杯能自由旋合。 3 主要机具设备 第3.1条主要机具设备表(单塔)

铝合金焊接接头疲劳性能研究 张禧铭

铝合金焊接接头疲劳性能研究张禧铭 摘要:测定了6061铝合金焊接件焊接接头的疲劳性能,介绍了铝合金焊接件焊 接接头的疲劳特征,分析了铝合金焊接件焊接接头中缺陷对其疲劳性能的影响。 结果表明铝合金焊接件焊接接口处气孔、夹杂物及未焊透三个焊接缺陷均会零件 的应力集中创造条件,对铝合金焊接件焊接接头疲劳性能有重大影响。气孔的大小、数量,未焊透的分布位置及形式明显地影响铝合金焊接件焊接接头的疲劳性 能 0.引言 铝合金由于其质量轻、强度高、无磁性、耐腐蚀性好,广泛应用于汽车、铁路、航空航天等领域。焊接是铝合金零件最常见的连接方式,在铝合金焊接零件 在重复外力作用下会发生疲劳断裂,而疲劳破坏过程又这些问题往往会给用户造 成不可估量的巨大损失[1]。通过研究发现,铝合金焊件焊接接头发生疲劳破坏是 铝合金焊接断裂的主要原因,因此对铝合金焊接件进行全面分析,找出原因并提 出解决方案,提高铝合金焊接件有着重大意义[2,3]。近些年过高校和科研院所 对铝合金焊接件焊接接口做了大量研究工作,并取得了重大成果。周进等人通过 对5A02 铝合金焊接接头的疲劳性能进行分析,得出了补焊可以降低铝合金焊接 件焊接接口的疲劳强度(下降将近20%),可作为一种可靠的补救措施[4]。王德 俊通过对铝合金焊接接头焊缝几何特征的研究,得出了十字接头焊接方式比对接 接头焊接方式应力集中更严重的结论[5]。本文以6061铝合金为研究对象,分析 焊接缺陷铝合金焊接件疲劳性能的研究。 1.试验材料及试验方法 本试验需要的材料为铝合金和焊丝,其中铝合金选用6061铝板,焊丝选用5356焊丝,铝板采用对接焊接。这两种材料的化学成分如表1所示。 试验材料化学成分/% 将铝板通过焊丝分别用MIG焊和TIG焊两种方法进行焊接,不仅仅能够保证 铝合金焊接件内部化学成分的完整性,而且也可以提高铝合金焊接件的焊接质量。 在进行全部焊接之后还需要采用合理的方法对焊接物进行验伤处理,找出其 中存在的问题,并对出现问题的原因进行全面分析。焊后进行X射线探伤检验, 找出存在的问题并找到原因及时解决,将样品进行铣削加工,去除焊缝余高。为 获得样品真实状态,将样品铣削加工后再进行X射线探伤检测。在MTS万能试验机上进行疲劳试验,用JSM-35C显微镜对断口形状进行合理观察。 2.试验结果及分析 2.1疲劳试验 试验结果如表2所示,对试验结果进行整理、对比,可以发现无论6061铝合金焊接件的焊缝有无缺陷,发生疲劳破坏的均为焊接口。但是整个焊接过程是否 存在缺陷对存在的疲劳现象和相应寿命还有很重要的作用。但焊缝有无缺陷对其 寿命有明显影响,即有焊缝缺陷的样品其寿命明显低于无焊缝缺陷的样品,并且 随着缺陷尺寸的增大,疲劳寿命下降越多。 6061铝合金焊接接头疲劳性能 2.2疲劳断口特征 按照焊接接头的断裂过程疲劳断口一般分为裂纹源、疲劳裂纹扩展和最后断

钢丝断裂原因分析

钢丝断裂原因分析

一、夹杂物引起断裂 线材中非金属夹杂物的存在,破坏了组织的连续性,起到了一个显微裂纹的作用。当受到外力作用时,在夹杂物的顶端首先产生附加的应力集中。尤其在原奥氏体晶粒交界处出现的大块状、条状或片状碳化物,这些异常碳化物在材料冷变形时,严重地阻塞了位错的移动,致使该处产生应力集中。当应力集中达到一定大小时便会使碳化物开裂,或在碳化物与基体交界处产生裂纹。当裂纹达到失稳状态尺寸,地瞬时产生断裂。 非金属夹杂物的多少是衡量帘线钢质量高低的一个重要因素。在用SEM对断口进行分析的过程中,经常发现非金属夹杂物。在典型的杯锥状断口上有时候就能发现夹杂物,SEM表明大多为三氧化二铝夹杂或其它高熔点脆性夹杂物。其避免主要是通过精炼,使夹杂物变为塑性低熔点夹杂物。 脆性夹杂物是引起钢丝断裂的重要原因之一,而夹杂物引起断裂分为以下几种形势: 1、夹杂物与钢基体之间界面脱开 拉伸过程中,在夹杂物周围的局部加剧了应力集中;裂纹优先在与拉应力垂直的夹杂物与基体的界面产生并沿着夹杂物与钢基体界面扩展,致使夹杂物与基体界面脱开。 2、夹杂物本身开裂

由于脆性较矮杂物本身具有缺陷,在拉伸过程中,在缺陷处产生严重的应力集中,由于局部应力升高而导致夹杂物本身开裂。; 3、混合开裂 钢中非金属夹杂物的形状、分布是没有规律的,因此夹杂物在钢中引起裂纹也是随机性的,取决于夹杂物的性质、尺寸、形状及分布,对于同类型的夹杂物,由于形状、分布和受力方向不同,往往产生断裂的情况也不尽相同,有时两种断裂方式同时存在,有时两种断裂方式交替进行。4、沿两种不同类型夹杂物的相界开裂 钢中经常出现几种夹杂物相共生在一起的复合夹杂物,由于各类夹杂物之间的力学性能和物理性质不同,相界结合力较弱,在拉应力作用下容易从相界开裂。 二、偏析引起的钢丝断裂 在一定程度上,中心偏析对钢丝拉断的危害必脆性夹杂物。因为偏析在更大程度上影响了钢丝的延伸性,从而使塑性变形不能在存在偏析的地方产生。在钢丝最初的拉拔过程中偏析导致小的裂纹的出现,等进入了最终拉拔时就导致了人字形断口(chevroncracks) 在连铸过程中减少中心偏析的途径有以下几个: 1、中心偏析随着中包过热度的降低而降低,因此中包的钢液温度应该尽可能的低;

平行钢丝斜拉索施工工艺

第三篇 平行钢丝斜拉索施工

第一章总则 1.0.1编制依据 1.《公路桥涵施工技术规范》(JTJ041-2000); 2.《铁路桥涵施工规范》(TB10203-2002); 3.《斜拉桥热挤聚乙烯高强钢丝拉索技术条件》(GB/T18365-2001); 4.已建斜拉桥平行钢丝索挂设施工经验。 1.0.2适用范围 本工艺针对采用牵索挂篮悬浇混凝土主梁的平行钢丝索挂索施工而编制,对其它形式桥梁的平行钢丝索挂索施工可参考使用。 1.0.3斜拉索分类及组成 平行钢丝索由专业缆索生产厂家制成成品斜拉索,经卷盘后运至施工现场挂设、张拉。成品斜拉索一般由索体及其两端的冷铸锚(主要包括锚杯、锚圈、连接筒和盖板)组成,索体由紧密排列并经左旋扭绞的钢丝束、束外缠绕细钢丝或纤维增强聚脂带、外挤聚乙烯护套形成。根据钢丝的不同直径和根数分为不同规格型号的斜拉索,冷铸锚应与拉索型号相匹配。斜拉索具体规格型号见《斜拉桥热挤聚乙烯高强钢丝拉索技术条件》(GB/T18365-2001)附录。 1.0.4斜拉索验收 1.验收标准 成品斜拉索应组织验收,验收依据设计图纸、《斜拉桥热挤聚乙烯高强钢丝拉索技术条件》(GB/T18365-2001)、《公路斜拉桥设计规范》(JTJ207-96)等相应规范或标准。 2.验收项目 1)技术资料 每根斜拉索的质量保证书,以及各项例行检查结果。例行检查内容包括: (1)钢丝的质量保证单或合格证及索厂的抽检结果。 (2)聚乙烯护套料的质保单或合格证。

(3)冷铸锚的检验报告或合格证(包括零部件探伤报告)。 (4)每根索冷铸填料试件在常温下的抗压强度合格报告。 (5)斜拉索在设计温度,零应力下的直线长度,其误差在规范允许值范围内。 (6)斜拉索的超张拉值符合规范要求,且冷铸锚分丝板内缩值应≤6mm㎜。 (7)每种规格型号的斜拉索均应有一根在超张拉后作弹性模量试验,且其值≥1.9×105 MPa。 (8)包装完好,标示牌上字迹清楚,填写内容齐全。 2)斜拉索的外观检验 (1)外观面良好,不应有深于1mm的划痕。 (2)两端冷铸锚外表不得有损伤,螺纹不得有任何碰伤,锚圈和锚杯能自由旋合。 第二章斜拉索挂设 2.1 挂索方案 2.1.1挂索方案的选择 斜拉索是斜拉桥上部结构连接塔、梁的构件,它将主梁上的荷载传给主塔,与塔、梁的连接受它们的结构特点影响,挂索方法一般服从于全桥上部结构施工的总体方案和步骤安排。除塔、梁同步作业的情况外,斜拉桥主梁的安装大多是在主塔完成后进行的,斜拉索的安装一般是与主梁施工同步进行,挂索方法主要受主梁施工方案的影响。不同结构形式的主梁有各自不同的施工方法,对挂索施工有不同的要求。因此,挂索只能根据主梁施工的总体要求来选择其施工方案。 斜拉索锚固于塔、梁上。为满足斜拉索的锚固和安装要求,塔、梁锚点处需提供一定的安装及操作净空。但有时因结构构造的原因,施工净空受到限制或一端根本无法提供施工操作条件时,则挂索方法就需根据实际情况进行调整,选择合适的挂索设备来满足施工要求,并解决结构尺寸条件的限制,取得尽可能高的使用效率。常用的挂索施工方案一般有三种: 1.先装梁端,再牵引安装塔端 这种挂索方法常用于主梁为预制安装或梁端没有操作条件、而塔端有操作净空的斜拉桥。因施工方法简捷明了,挂索设计也相对较简单。一般情况下,为获得较高的施工效率,塔端需安装大吨位的电动卷扬机、滑车组和张拉设备等。同时,为提供施工方便,塔上还需安装临时牵引锚固件、转向滑车、脚手架等一系列施工辅助件。施工作业大多在塔上进行,高空作业较多。 挂设原则是:先利用塔上起吊设备将缆索锚头提升到距塔上索道管一定高度,再将梁端缆索锚头安装到位,最后塔端锚头利用软、硬牵引装置牵引到位。 工艺流程:安装固定放索系统及转向滑车→放索→塔端安装张拉杆与起吊夹具→塔上起吊设备提升塔端锚头至一定高度→继续放索,梁端利用卷扬机牵引梁端锚头到位→利用接长杆将斜拉索与牵索挂篮联结→塔端利用牵引杆牵引塔侧锚头到位→张拉牵索索力→浇注主梁混凝土、张拉预应力→进行体系转换→分级、对称张拉至设计索

影响金属材料疲劳强度的八大因素

影响金属材料疲劳强度的八大因素 Via 常州精密钢管博客 影响金属材料疲劳强度的八大因素 材料的疲劳强度对各种外在因素和内在因素都极为敏感。外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。 应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。 疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。 q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 尺寸因素的影响

材料的疲劳性能

材料的疲劳性能一、疲劳破坏的变动应力 材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。变动载荷指大小或方向随着时间变化的载荷。变动载荷在单位面积上的平均值称为变动应力,分为规则周期变动应力(或称循环应力)和无规则随 1 /2; min) 2 应力; ②不对称循环:σm≠0,-1σm>0,-10,r=0,齿轮的齿根及某些压力容器承受此类应力。σm=σa<0,r=∞,轴承承受脉动循环压应力;

④波动循环:σm>σa,0

②疲劳破坏属于低应力循环延时断裂,对于疲劳寿命的预测显得十分重要和必要; ③疲劳对缺陷(缺口、裂纹及组织)十分敏感,即对缺陷具有高度的选择性。因为缺口或裂纹会引起应力集中,加大对材料的损伤作用;组织缺陷(夹杂、疏松、白点、脱碳等)将降低材料的局部强度。二者综合更加速疲劳破坏 出现两个疲劳源。 (2)疲劳裂纹扩展区(亚临界扩展区)? 疲劳裂纹扩展区特征为断口较光滑并分布有贝纹线或裂纹扩展台阶。贝纹线是疲劳区最典型的特征,是一簇以疲劳源为圆心的平行弧线,凹侧指向疲劳源,凸侧指向裂纹扩展方向。近疲劳源区贝纹线较细密(裂纹扩展较慢),远

中碳钢丝拉拔过程中的组织与性能研究

中碳钢丝拉拔过程中的组织与性能研究 钢丝具有强度高、自重轻的特点,钢丝绳是由多层钢丝捻制而成,因此工作平稳、可靠,所以钢丝绳被广泛应用于工业生产中。目前,钢丝工业生产要求产品高强度、生产高效率、低成本。 钢丝生产工艺以冷拔为主,所以现代钢丝生产逐渐转变为高速大应变的塑性变形问题。目前工业生产中,主要使用高碳钢丝,但是中碳钢丝生产成本更低廉具有发展空间。 通过对中碳钢丝拉拔变形过程中珠光体和铁素体相进行研究,为高碳钢丝的两相变形研究提供借鉴,也为中碳钢丝的研究提供一定的理论基础。本课题采用金相观察、SEM观察、TEM观察等多种手段,观察不同形变量下中碳钢的显微组织结构;并测量不同应变量中碳钢丝的强度、显微硬度、电阻率等性能。 此外,还通过显微观察和EBSD分析等方法,研究了热处理对中碳钢丝组织与性能的影响。本论文的主要研究成果如下:冷拔过程对中碳钢丝具有晶粒细化作用,并造成冷拔织构。 珠光体片层间距S与钢丝直径d线性相关。应变量ε<1.5时,钢丝强度与片层间距变化符合Hall-Petch关系;当应变量ε>1.5,钢丝片层间距与其强度不再符合Hall-Petch关系。 晶体内部位错密度随应变量的升高先升高后降低,晶粒内部有亚晶产生,应变量进一步升高,将导致大量位错规律排列形成了小角度晶界。EBSD分析表明退火对冷拔造成的晶体缺陷有明显的消除效果,晶粒取向不再一致,而趋于杂乱。 回复与再结晶作用使冷拔造成的条带状组织开始逐步转变成柱状晶组织。此外,应变量ε越大,钢丝抗拉强度越大,显微硬度越高,电阻率越大;但是退火处理

对钢丝显微硬度、抗拉强度以及电阻率的下降,这表明退火工艺显著消除钢丝内部组织缺陷。

材料的疲劳性能

材料的疲劳性能 一、疲劳破坏的变动应力 材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。变动载荷指大小或方向随着时间变化的载荷。变动载荷在单位面积上的平均值称为变动应力,分为规则周期变动应力(或称循环应力)和无规则随机变动应力两种。 1、表征应力循环特征的参量有: ①最大循环应力:σmax; ②最小循环应力:σmin; ③平均应力:σm=(σmax+σmin)/2; ④应力幅σa或应力范围Δσ:Δσ=σmax-σmin,σa=Δσ/2=(σmax-σmin)/2; ⑤应力比(或称循环应力特征系数):r=σmin/σmax。 2、按平均应力和应力幅的相对大小,循环应力分为: ①对称循环:σm=(σmax+σmin)/2=0,r=-1,大多数旋转轴类零件承受此类应力; ②不对称循环:σm≠0,-1σm>0,-1

③脉动循环:σm=σa>0,r=0,齿轮的齿根及某些压力容器承受此类应力。σm=σa<0,r=∞,轴承承受脉动循环压应力; ④波动循环:σm>σa,0

PTI斜拉索规范

斜拉索设计、测试和安装条例——美国后张法协会斜拉桥委员会 2001年2月第四版 编译:彭旭民吴美艳 中铁大桥局集团武汉桥梁科学研究院有限公司 二○○五年六月

1.0适用范围 本条例适用于以预应力平行钢丝、钢绞线、钢筋作为主要受拉构件的的斜拉桥拉索的设计、试验与安装。条例仅适用于超静定斜拉桥的拉索。建议本条例与观点近似的《荷载与抗力系数设计:桥梁设计技术规范》(美国州际高速公路和运输协会——AASHTO,第S版)结合使用。 本版将取代所有以前的版本。若若未规定专门的有效期,标准和规范应当参照最新版本。 C.1.0适用范围 注释:本条例一般不涉及斜拉桥的设计,而仅限于作拉索的设计、检测、试验和安装的依据。本条例不包括利用螺旋状的或闭式卷制的钢绞线、钢丝绳制成的斜拉索。 超静定斜拉桥是指设计上单根斜拉索失效不会导致严重的结构损伤或整个桥梁破坏的桥梁。本条例是在典型的美国施工合约公共部分的基础上起草的,公共部分由互异且独立的三方组成,分别是: 业主方(政府或公众机构) 设计方(工程师) 承包方(桥梁建设者) 完善的程序反映了组织及合同的权威性。在别处,合同管理可能不同,同样地,在设计施工项目上,合同管理也会不同。 本条例应由具有斜拉桥设计资质的专业工程师来完成。本条例未规定的设计程序,其他方法设计出相同安全及工作性能的方案也是可行的,但必须满足本条例。 1.1参考标准和规范 1.1.1美国高速公路和运输协会(AASHTO) AASHTO《荷载与抗力系数设计:桥梁设计技术规范》-SI制 1.1.2美国检测与材料协会(ASTM) 1.1.3美国焊接协会(AWS) 1.1.4加利福尼亚运输部(CALTRANS)1.1.5联邦高速公路管理局(FHWA) 1.1.6国际预应力协会(FIP) 1.1.7后张法协会(PTI) 1.1.8SSPC:保护涂层协会 2.0名词术语 2.1名词 锚具(套筒)——指用来夹持张拉产生的索力并将该力传递至桥梁的上部结构或塔身的所有材料以及组装件。对张拉端锚具和锚固端锚具应区别对待。 锚固长度——锚固斜拉索张拉元件的锚具内斜拉索的长度,包括张拉设备直接连接的锚固元件和楔形锚或其它MTE锚后面的无应力钢绞线的斜拉索长度。 护套——在MTE外防止共受腐蚀的外覆层。护套可以通过物理、化学或两种方法结合来提供防腐保护。 填充剂——保护MTE免受雨水侵蚀的填料或涂层。

钢丝的基本组织结构与使用性能

钢丝的基本组织结构与使用性能(壹佰钢铁网推荐)钢丝的组织结构除指显微组织、晶粒度外,还包括显微组织缺陷。显微组织缺陷指钢丝实际晶格结构与理想晶格结构之间存在的差异,按冶金学理论,金属材料的显微组织缺陷可以分为:点缺陷、线缺陷、面缺陷、体缺陷。显微组织结构的各种缺陷可用相应的技术参数去定义和度量,也可以借助各种检验方法去观察和研究。钢丝的性能完全取决于组织结构,而组织结构在很大程度上取决于热处理和冷加工工艺,要生产出顾客滿意的钢丝产品,必须搞清组织结构与使用性能的关系,以及组织结构与热处理工艺的关系。 1 钢丝的几种基本组织形态 钢铁材料有7种基本组织结构:奥氏体、铁素体和渗碳体、珠光体、贝氏体、马氏体和莱氏体,其中奥氏体、铁素体和渗碳体是基本相,珠光体、贝氏体、马氏体和莱氏体是多相混合物。钢丝具有的各种组织结构的表观特性及性能特点描述如下: 奥氏体:观察Mn13或奥氏体钢1Cr18Ni9Ti的钢丝金相组织可发现,奥氏体的晶界比较直,晶内有孪晶或滑移线。淬火钢中的残余奥氏体分布在马氏体的空隙处,颜色浅黄、发亮。 奥氏体钢丝具有优异的冷加工性能,在高低温条件下均可保持良好的强韧性。一般来说奥氏体钢的冷加工硬化速率远大于珠光体和索氏体钢,经大减面拉拔可以制备具有特殊性能的弹簧,高锰奥氏体钢具有优异的耐磨性能和减振性能,奥氏体不锈钢具有良好的耐蚀性能和耐热性能。固溶状态的奥氏体钢无磁,经深冷加工有微弱的磁性。 铁素体:铁素体晶界圆滑,晶内很少见孪晶或滑移线,颜色浅绿、发亮,深腐蚀后发暗。钢中铁素体以片状、块状、针状和网状存在。纯铁素体组织具有良好的塑性和韧性,但强度和硬度都很低;冷加工硬化缓慢,可以承受较大减面率拉拔,但成品钢丝抗拉强度很难超过1200MPa。常用铁素体钢丝有铁素体不锈钢丝(0Cr17)和铁-铬-铝电热合金丝(0Cr25Al5)等。 渗碳体:钢中渗碳体以各种形态存在,外形和成分有很大差异。一次渗碳体多在树枝晶间处析出,呈块状,角部不尖锐;共晶渗碳体呈骨骼状,破碎后呈多角形块状;二次渗碳体多在晶界处或晶内,可能是带状、网状或针状;共析渗碳体呈片状,退火、回火后呈球状或粒状。在金相图谱中渗碳体白亮,退火状态呈珠光色。一次渗碳体和破碎的共晶渗碳体只有在莱氏体钢丝,如9Cr18、Cr12、Cr12MoV和W18Cr4V中才能见到,只要热加工工艺得当,冷拉用盘条中的一次渗碳体块度应较小、无尖角,共晶碳化物应破碎成小块、角部要

平行钢丝拉索疲劳性能理论研究

2009年01月第25卷第1期  沈阳建筑大学学报(自然科学版) Journal of Shenyang J ianzhu U niversity (N atural Science ) Jan. 2009 V ol.25,N o.1 收稿日期:2008-11-01 基金项目:国家自然科学基金重点项目(50538020) 作者简介:兰成明(1979—),男,博士研究生,主要从事结构耐久性与可靠性研究. 文章编号:1671-2021(2009)01-0056-05 平行钢丝拉索疲劳性能理论研究 兰成明 (哈尔滨工业大学土木工程学院,黑龙江哈尔滨150090) 摘 要:目的建立平行钢丝拉索疲劳寿命的理论分析模型,为平行钢丝拉索的设计及疲劳评定提供理论依据.方法考虑平行钢丝拉索的特点,根据单根钢丝疲劳寿命的概率分布及线性累积损伤理论,采用Monte Carl o 方法进行模拟.结果拉索疲劳寿命由其中一小部分疲劳寿命较短的钢丝控制,拉索的疲劳寿命远远小于钢丝的疲劳寿命,以10%的断丝率作为拉索寿命的终止比较合理,此时能够保证结构具有一定的安全裕度,同时拉索得到充分利用.结论为保证拉索具有良好的疲劳性能,除了要求拉索内钢丝具有长的疲劳寿命外,还必须严格控制钢丝疲劳寿命的变异性,初始应力幅相同的条件下,增加拉索内钢丝数不影响拉索的疲劳寿命,但会降低拉索疲劳寿命的变异性. 关键词:平行钢丝拉索;疲劳;概率分布;累积损伤中图分类号:U 441 文献标志码:A 0 引 言 斜拉桥这种桥型出现以来,其拉索一直是斜拉桥设计者关注的焦点之一,曾经在很长的一段时间里,拉索制造工艺一直是斜拉桥发展的障碍.拉索在桥梁运营期间的安全是斜拉桥结构安全的最重要条件之一,斜拉索破坏的最主要原因是钢丝的锈蚀,疲劳及其耦合效应引起拉索内钢丝的断裂,许多斜拉桥失效事故都是由拉索失效引起的[1-4].目前,国内外大跨度斜拉桥拉索主要采用平行镀锌高强钢丝拉索,其与钢绞线拉索相比具有明显的优势:拉索由工厂预制,工艺成熟,质量稳定;冷铸锚锚固可靠;钢丝受力均匀;轴向刚度大,材料利用率高;价格相对便宜.近20年来,我国已经修建了上百座大型斜拉桥,90%以上都采 用镀锌高强钢丝PE 防护拉索[5] . 目前国内外一般根据钢丝或拉索的S -N 曲线确定拉索的疲劳强度,拉索的疲劳强度应由疲劳试验获得,因疲劳试验费时费力,是一项庞大的试验研究工作,我国现无系统、完善、权威的拉索 疲劳试验数据,更没有总结出拉索的疲劳强度计算公式,这些都给设计人员带来很大的盲目性.我 国《公路斜拉桥设计规范(试行)》 (JTJ 027-96)中关于拉索的疲劳强度是采用通过200万次的常幅反复加载试验来验证.此种试验的原理就是疲劳设计方法中的无限寿命设计方法,现阶段我国公路、铁路桥梁规范中有关疲劳设计皆采用此方法,无限寿命设计方法的目的就是使构件在活载引起的循环应力作用下能够长期安全使用,不产生疲劳破坏.拉索疲劳强度还可以通过对钢丝疲劳强度的折减得到,例如,瑞士B irkenm aier 指出[6] ,拉索的疲劳强度和钢丝的疲劳强度有如下 关系Δσ拉索=Δσ钢丝/1.6.美国后张法协会斜拉桥委员会颁布的《斜拉桥设计、试验与安装条例》中 指出Δσ拉索=Δσ钢丝-100 .以上方法均是近似的方法且偏于保守,不能反映斜拉索在交变荷载作用下的真实性能.鉴于平行钢丝拉索的重要性,笔者根据平行钢丝拉索的特点,从钢丝疲劳寿命的概率分布进行分析,提出拉索疲劳寿命预测的理论方法,并结合钢丝的

斜拉桥平行钢丝斜拉索安装施工工艺

斜拉桥平行钢丝斜拉索安装施工工艺 10.1.1工艺概述 一、适用范围 本工艺适用于采用平行钢丝索的铁路预应力混凝土斜拉桥拉索安装的情况,对其它形式桥梁(如采 用斜拉索加劲的连续钢桁梁、钢箱结合梁)的斜拉索安装施工可供参考。 二、工艺特点 本工艺着重介绍安装平行钢丝斜拉索所采用的分步牵引法,即根据全桥斜拉索在安装过程中由短到长、索力递增的特点,不同阶段分别选择不同的工具---先用大吨位的卷扬机将索的一端拉出锚固面固定,然后用穿心式张拉千斤顶将索另一端先软牵引再硬牵引至张拉锚固面锚固。该法在大多数斜拉桥中采用,方便可靠。 10.1.2作业内容 平行钢丝斜拉索安装作业内容包括:准备工作、成品索验收、索盘吊装上桥、放索、缆索挂设、 缆索张拉、索力调整、索头保护及减震装置安装等。 10.1.3质量标准及检验方法 《铁路钢桥制造规范》(TB10212-2009) 《铁路钢桥保护涂装及涂料供货技术条件》(TB/T 1527-2011) 《铁路桥涵工程施工质量验收标准》(TB10415-2003) 《高速铁路桥涵工程施工质量验收标准》(TB10752-2010) 10.5.4 工艺流程图(图 10.5.4-1) 检查验收

图10.5.4-1 平行钢丝斜拉索安装工艺流程图 10.5.5工艺步骤及质量控制 一、施工准备 平行钢丝斜拉索由有资质的专业生产厂家制作为成品索,经卷盘后运至施工现场。 1.验收依据 成品索应组织验收,验收依据设计图纸及相应规范进行。 2.验收项目 ⑴技术资料 每根斜拉索的质量保证书,以及各项例行检查结果。例行检查内容包括: ①钢丝的质量保证单或合格证及索厂的抽检结果。 ②聚乙烯护套料的质保单或合格证。 ③冷铸锚的检验报告或合格证(包括零部件探伤报告)。 ④每根索冷铸填料试件在常温下的抗压强度合格。 ⑤斜拉索在设计温度,零应力下的直线长度,其误差在规范允许值范围内。 ⑥斜拉索的超张拉值符合规范要求,且冷铸锚分丝板内缩值应≤5mm。 ⑦每种规格型号的斜拉索均应有一根在超张拉后作弹性模量试验,且其值≥1.85×105 Mpa。 ⑧包装完好,标示牌上字迹清楚,填写内容齐全。 ⑵外观检验 ①外观面良好,不应有深于 1mm 的划痕。 ②两端冷铸锚外表不得有损伤,螺纹不得有任何碰伤,锚环和锚杯能自由旋合。 二、索盘吊装上桥 1.缆索在工厂生产及检验后卷盘包装成型,最大外形尺寸应满足相应的运输条件。 2.缆索经运输汽车或驳船运至工地,整盘起吊上桥。在运输和装卸过程中,要防止碰伤锚具和聚乙烯保护层。包装好的缆索应放于干燥阴凉处并遮盖,索头应架空保护,防止锈蚀。 3.缆索起吊设备吊重应大于缆索加索盘的重量,索越重,所需的提升及梁上运输设备的能力越大,施工现场一般选用 10~16t 塔式吊机辅助塔端挂索。 对于小于塔式吊机起重能力的轻索,直接用塔式吊机起吊上桥;对于大于塔式吊机起吊能力的重索,则需要设置龙门吊机、或在塔根处设置梁面吊索架、或利用架梁吊机等起吊设备吊装上桥;也可以在梁端设置转向装置,从桥下直接放索,索的一端经提升、转向、水平牵引、辅助起吊等一系列作业后使整根索到达梁面预定位置。 三、放索 1.整盘索起吊上桥后,平稳运至放索点的放索支架上,先用塔端索头起吊设备提升放索,再用梁上放索卷扬机牵引放索,将索平铺在梁面放索滑道上水平拖动,直至整根索移动到位。 放索支架一般设置在塔根处梁面上,有立式转盘和水平转盘两种,对于钢结构索盘需设置一个立式转盘放索支架,在索盘轴孔内穿上圆轴,徐徐转动索盘将索放出;对于自身成盘的索,则需设置一个水平转盘,将索盘放在转盘上,边转动边将索放出。 2.在放索过程中,由于一端有较重的锚头盘在索盘的外侧,使放索盘偏心,加上索盘自身的弹性和牵引产生的偏心力,会使转盘转动时产生加速,导致散盘;也容易损坏斜拉索保护层,危及施工人员的安全。因此,对转盘应设刹车装置。 3.在放索或安装过程中,由于索自身弯曲或与桥面直接接触,索体在移动中可能损坏拉索的 PE 防护层或损坏索股。为避免此情况的发生,应采取以下措施: ⑴铺设地毯或厚棉垫,将待安装的斜拉索放于其上。 ⑵可在 PE 护套上缠绕或嵌套一层浅色胶带或 PE 面层。 ⑶放索时必须使用放索盘及缆索专用起吊牵引工具,索体要贴在特制的滚轮上拖拉,在放索沿途铺设索头小车限位走道和缆索三向限位橡胶滚轮滑道,当索放出后,沿滚筒运动。也可以每隔 2m 左右用一台牵索小车来载索移动,在缆索变向牵引处应专门设置导向装置。

材料的疲劳性能

材料的疲劳性能 一.本章的教学目的与要求 本章主要介绍材料的疲劳性能,要求学生掌握疲劳破坏的定义和特点,疲劳断口的宏观特征,金属以及非金属材料疲劳破坏的机理,各种疲劳抗力指标,例如疲劳强度,过载持久值,疲劳缺口敏感度,疲劳裂纹扩展速率以及裂纹扩展门槛值,影响材料疲劳强度的因素和热疲劳损伤的特征及其影响因素,目的是为疲劳强度设计和选用材料建立基本思路。 二.教学重点与难点 1. 疲劳破坏的一般规律(重点) 2.金属材料疲劳破坏机理(难点) 3. 疲劳抗力指标(重点) 4.影响材料及机件疲劳强度的因素(重点) 5热疲劳(难点) 三.主要外语词汇 疲劳强度:fatigue strength 断口:fracture 过载持久值:overload of lasting value 疲劳缺口敏感度:fatigue notch sensitivity 疲劳裂纹扩展速率:fatigue crack growth rate 裂纹扩展门槛值:threshold of crack propagation 热疲劳:thermal fatigue 四. 参考文献 1.张帆,周伟敏.材料性能学.上海:上海交通大学出版社,2009 2.束德林.金属力学性能.北京:机械工业出版社,1995 3.石德珂,金志浩等.材料力学性能.西安:西安交通大学出版社,1996 4.郑修麟.材料的力学性能.西安:西北工业大学出版社,1994 5.姜伟之,赵时熙等.工程材料力学性能.北京:北京航空航天大学出版社,1991 6.朱有利等.某型车辆扭力轴疲劳断裂失效分析[J]. 装甲兵工程学院学报,2010,24(5):78-81 五.授课内容

第四章钢丝的拉拔

第四章 钢丝的拉拔 钢帘线的单丝,从Ф5.5mm 的盘条经过干式的粗拉、中拉和湿式的细拉,一直拉到ФO.15~ФO.38mm ,所以钢丝的拉拔是钢帘线生产最基本的工艺。 自1880年制成了“纵列式拉丝机”实现了拉丝生产连续化,到本世纪20年代发明了硬质合金拉丝模以及润滑剂的改善,拉拔工艺日趋成熟,实现了稳定的连续化拉丝生产。近一、二十年,国内外拉丝技术又有很大发展。出线速度已高达25M /s 和30M /s 。随着微机技术的普及应用,拉丝机的自动化水平大为提高,例如KOCH 公司的直线式拉丝机配备的电脑专家系统中,可储存100套拉丝工艺参数,随时可以调用,实现了监控,故障诊断,在线调整一体化。由于线材的质量和性能不断提高,可将Ф5.5线材一次拉拔为Ф1.3mm 的半成品钢丝,总压缩率达94.41%,并可减少一次热处理。另外在拉丝模和润滑剂方面也相应地有了很大发展。 第一节 钢丝拉拔基本原理 钢丝拉拔理论是金属压力加工原理的一部分,拉拔的目的是将粗截面的线材通过模孔拉制成所需形状和尺寸的钢丝,同时要满足标准规定的性能和质量的要求,尤其是力学性能的要求。 众所周知,金属所以能够进行拉拔是因为各种金属都具有不同程度的塑性。所谓塑性即金属在外力作用下,产生永久变形而不破裂的能力。 由于金属的组织和化学成分的不同,金属能够承受的拉拔变形程度也不尽相同。拉拔理论研究不同组织和成分的金属,在拉拔中产生变形和应力分布的特点,拉拔过程中不均匀变形产生的原因和残余应力造成的后果,拉拔后金属组织和性能的变化规律,拉拔力和抗拔功率的计算方法并分析其影响因素,从而利用金属塑性,正确拟定拉拔工艺,合理使用拉丝设备,改革旧的工 艺制度,提高产品质量,降低成本,提高生产率。 限于篇幅,本章只能对上述有关内容作一些简单的阐述。 应 力 一、金属的塑性变形 σ 1.金属的变形和断裂 金属在外力作用下,随着应力的增加,可先后发 生弹性变形、塑性变形,直至断裂。图4—1所示为低 碳钢在拉伸试验时的应力一应变曲线。在应力(σ)低 于弹性极限(σe )时,钢所发生的变形为弹性变形,其 特点是外力去除后,其变形可以完全恢复,并且,应力 .45. 应变ε 4—1低碳钢在拉伸试验时的应力一应变曲线 .45.

斜拉索要求

1. 范围 1.1 本技术要求为***大桥斜拉索制作的依据,是结合***大桥特点而提出的。其内容包括:所有制作材料的提供,斜拉索的制作、试验、防护和锚具、减震阻尼器的制作以及产品的储存。 1.2 斜拉索结构特征 斜拉索采用直径为7mm的低松弛超高强度镀锌钢丝,钢丝抗拉强度1670MPa,本工程斜拉索为高强度平行钢丝拉索,共分7种规格,钢丝根数分别为109、121、139、151、163、187、199丝,斜拉索断面呈正六边形或缺角六边形紧密排列,经左旋轻度扭绞而成。为确保钢丝防护的可靠性,制索时按图纸规定在其外热挤双层PE防护套,外层PE防护套的颜色根据景观要求选用银灰色。 斜拉索的各项技术标准应符合图纸及国标《斜拉桥热挤聚乙烯高强钢丝拉索技术条件》(GB/T18365-2001)的要求,当国标与本技术要求不一致时,以本技术要求为准。 2. 材料 2.1 盘条 (1) 盘条技术要求 a. 制造钢丝用盘条应采用日本或德国进口盘条,盘条应满足通过拔丝模加工而成的钢丝符合图纸要求。 b. 硫、磷含量各不得超过0.025%,铜含量不得超过0.2%。 c. 制造钢丝用盘条应采用经索氏体化处理后的盘条。 d. 盘条用钢应以平炉、氧气转炉或电炉冶炼,盘条以热轧状态交货。 e. 盘条表面质量 (a) 盘条应将头尾有害缺陷部分切除,盘条的截面不得有分层及夹层。 (b) 盘条表面应光滑,不得有裂纹、折叠、耳子、结疤,不得有夹杂及其他有害缺陷。 f. 每批盘条的检验项目、试验方法及取样部位应按表1的规定执行。 g. 盘条应成批验收,每批由同一炉(罐)号、同一牌号、同一尺寸组成。 h. 特殊要求:根据需方要求,经供需双方协议,可进行化学成分、力学性能试验,各项检验的指标由供需双方协议规定。 (2) 钢丝制造 a. 承包人应编制拉丝工艺设计及钢丝镀锌工艺设计,并在开始生产镀锌钢丝前30d,报请监理工程师审查批准。 b. 盘条加工前应用酸洗方法清除表面的氧化铁皮,再将洗清后的盘条表面

镁合金疲劳性能的研究现状_高洪涛

镁合金疲劳性能的研究现状 高洪涛,吴国华,丁文江 (上海交通大学材料科学与工程学院,上海200030) 摘要:针对近几年镁合金疲劳性能的研究进行总结,从冶金因素、形状因素、加载制度、介质和温度等方面考察对镁合金疲劳性能的影响。归纳提高镁合金抗疲劳性能的途径:热处理、滚压强化和喷丸处理等。提出对镁合金疲劳性能研究的展望。 关键词:镁合金;疲劳性能;影响因素;强化途径 中图分类号:TG146.2 文献标识码:A 文章编号:1000-8365(2003)04-0266-03 Review on the Fatigue Behavior of Magnesiu m Alloys GAO Hong-tao,W U Guo-hua,DI NG W en-jiang (Schoo l of M aterials Science and Engineering,Shang hai Jiaotong U niversity,Shang hai200030,China) A bstract:This report provides some of the results of magnesium alloy s studying,especially about its fatigue behavior, in recent years.The facto rs that influence the fatigue behavior of magnesium alloy s can be given from several aspects of metallurgy,form factor,loading system,medium and tem perature.The strengthening methods can be concluded in three aspects.One is heat treatment;the o ther tw o are roller burnishing and shot blasting.In addition,the prospect of fatigue behavio r observation on mag nesium alloy s is discussed. Key words:M ag nesium alloy;Fatigue behavior;Influencing factors;Strengthening approach 综合性能优良的镁合金已大量应用于航空航天、汽车、电子等领域[1]。据预测,从2001~2007年,镁合金铸件在汽车上的用量将以25%~30%速度递增[2]。 随着镁合金需求的急剧增加,对其性能要求也越来越高。本文总结近几年镁合金疲劳性能方面的研究,以及提高其性能的建议。 1 镁合金的疲劳与断裂 M g属于密排六方结构,此类金属的塑性变形取决于c/a(c为点阵的高,a为基面的边长),Mg的c/a=1.6235,略小于按原子为等径刚球模型计算出的轴比1.633。孪晶和疲劳变形与现存孪晶的结合是疲劳变形的主要形式,滑移带沿着孪晶带堆积的区域是一些常见的裂纹源。许多微裂纹是一些微空洞造成的。位错环集团是Mg典型的疲劳位错结构。 镁合金的疲劳断裂是由最大剪应力控制的,并且沿着最大剪应力方向扩展。它的解理断裂发生在高指数面上,并且裂纹的形态因孪晶和滑移而强烈变化着。镁合金疲劳断裂结构中也有一些韧窝特征,它们来源于加载过程中出现并长大直到在塑性应变和塑性断裂条件下联合起来的微空洞,在沉淀相-基体界面处结合力较小,沉淀相或者夹杂物的破碎、局部的应力集中 收稿日期:2003-02-17; 修订日期:2003-03-24 基金项目:国家863计划资助项目,编号:200233AA1100. 作者简介:高洪涛(1976- ),河南洛阳人,博士生.研究方向:镁合金的研究与开发.都可能形成一些微空洞。 2 影响镁合金疲劳性能的因素 2.1 冶金因素 微观组织对疲劳裂纹的萌生和扩展有很大的影响[3]。砂型铸造M g-Zn-Zr合金,不管是铸态还是热处理态,晶粒越粗大,疲劳强度越低。另外,第2相质点或颗粒也影响镁合金的疲劳行为,第2相的切变模量和第2相质点间的平均距离是影响疲劳裂纹扩展速率的重要参数。另外,在小的ΔK区域,镁合金位错密度越高,疲劳裂纹扩展速率就越低。 镁基复合材料的疲劳性能与断裂特征与其基体上增强颗粒和晶须的尺寸和形态关系密切[4],含20% SiC晶须的AZ91D镁基复合材料低周疲劳断裂后发现,由于晶须散乱的分布于基体之上,裂纹表面粗糙并且裂纹扩展路径看起来很弯曲。断裂组织观察表明疲劳断裂扩展区和最后断裂区没有明显区别,并且特征是解理断裂。 在冶炼过程中,不可避免的引进一些夹杂物。这些夹杂物引起应力集中从而降低镁合金的抗疲劳能力,如果夹杂物是尖角,危害更大。夹杂物分布不均匀时,也会降低疲劳强度。 2.2 形状因素 (1)缺口敏感性及表面状况 镁合金比铝合金和钛合金有更大的缺口敏感性,变形镁合金比铸造镁合金有更大的缺口敏感性。 · 266· 铸造技术 FO UN DRY TECHN OLOG Y V ol.24N o.4 Jul.2003

相关主题
文本预览
相关文档 最新文档