当前位置:文档之家› 双效溴化锂吸收式制冷机的工作原理

双效溴化锂吸收式制冷机的工作原理

双效溴化锂吸收式制冷机的工作原理

一、吸收式制冷原理:

吸收式制冷原理,都是利用液态制冷剂在低压、低温下汽化,使制冷剂蒸汽吸收载冷剂的热负荷产生制冷效应的。

吸收式制冷机循环工作的工质为二元工质,如溴化锂水溶液。溶液中水是制冷剂,水在真空状态下蒸发产生低温蒸汽,从而吸收溴化锂溶液中的热量,使溴化锂溶液温度降低,产生制冷效应。

溴化锂水溶液是吸收剂,在常温和低温下具有强烈吸收水蒸汽的特性,而在高温下又能将吸收的水分释放出来。吸收式制冷装置和工作过程就是使制冷溶液吸收与释放周而复始的循环过程,达到制冷的目的。

二、双效溴化锂吸收式制冷机的工作原理

1、串联双效溴化锂吸收式制冷机工作原理示意图

图一三筒串联双效溴化锂吸收式制冷机工作原理示意图

2、串联双效溴化锂制冷机的工作原理

由图一可知:吸收器中的溴化锂稀溶液由发生器泵升压后经高温换热器升温并输送至高压发生器;溶液在高压发生器中被供热蒸汽加热使溶液中的部分制冷剂(水)被汽化产生高温冷剂蒸汽而使溶液浓缩;浓缩后的高温溶液经高温换热器降温后进入低压发生器,溶液在低压发生器中被来自高压发生器的冷剂蒸汽加热使溶液中的制冷剂继续汽化产生低温冷剂蒸汽使溶液进一步浓缩,浓缩后溶液经低温热交换器降温并送回吸收器;由高压发生器产生的冷剂蒸汽经低压发生器降温后进入冷凝器,由低压发生器产生的冷剂蒸汽直接进入冷凝器,这两股冷剂蒸汽在真空冷凝器中冷凝成低温制冷剂;低温制冷剂节流降压后送入真空蒸发器中低压蒸发,蒸发后的蒸汽被吸收器中溶液吸收,一方面使溶液浓度降低成为稀溶液,另一方面使溶液放热而降温达到制冷的目的。

其工作过程循环图,如图二所示。

1-2:等浓升压力加热过程(吸收泵、

高低温换热器中完成)

2-3:加热增浓过程(高低压发生器中

完成)

3-4等浓节流降压过程(节流阀)

4-1:浓降放热过程(蒸发器、吸收器

中完成)

图二循环工作过程简化示意图

3、并联双效溴化锂制冷机的工作原理图

并联双效溴化锂制冷机和串联双效溴化锂制冷机的工作原理相

同,其主要差别在于溴化锂溶液所经路径的区别,前者为并联,后者为串联,并联的双效溴化锂制冷机的工作原理,如图三所示,其工作原理在此不再重述。

图三 三筒并联双效溴化锂吸收式制冷机工作原理示意图

三、影响吸收式制冷机制冷量的因素与调节

衡量吸收式制冷机的经济性指标通常用热力系数£表示:即吸收式制冷机的制冷量Q 0与供汽热耗Q 之比:

£= 而影响制冷量Q 0的因素很多,如供热蒸汽压力变化(即热负荷变化)、气候与外界环境变化、用户负荷变化、制冷工质的溶液浓度变化等。下面分别简介各因素的影响与调节:

1、供热蒸汽压力变化对制冷量的影响与调节:

溴化锂吸收式制冷机的供热蒸汽一般为饱和蒸汽,设计汽压一般Q 0 Q

在0.25—0.8MPa范围内。

当供汽压力变化(即温度变化),造成高、低压发生器的热负荷改变,导致发生器中产生的冷剂蒸汽量改变,使制冷量改变。另外发生器中溴化锂溶液浓度改变,必将造成循环过程溴化锂溶液的浓度差和循环量的改变,使制冷效应变化造成制冷量的改变。

其调节方法是根据检测的供汽压力和制冷量(或冷媒水温度)信号,进行前馈加负反馈的PID控制,调节供汽量。

2、冷却水温度和流量变化对制冷量的影响与调节:

当外界气候和其他条件改变时,会造成冷却水的温度和流量的改变。使冷凝器和吸收器中带走的热量改变,必将造成冷凝器的冷凝效果和吸收器的吸收效果改变,使吸收器中的溶液浓度改变,造成制冷效应改变和制冷量的变化。

其调节方法是根据检测冷却水的温度和流量信号,一方面控制凉水塔制冷风机的转速和进入制冷机的循环水量的控制。

3、制冷机漏入不凝性气体对制冷量的影响:

当不凝性气体漏入冷凝器和吸收器后,会在传热管外表形成一层气膜,阻碍蒸汽的冷凝传热,根据传热学的理论与实践证明,蒸汽中含有1%的不凝气体,使传热效果降低40%。另外蒸汽中有不凝性气体影响吸收器中溴化锂溶液与制冷剂蒸汽之间的传质,造成溶液浓度的改变而使制冷效应下降,制冷量减小。因此,在制冷机运行维护中,应严格隔绝外界空气的漏入,并随时保证排除机组中不凝性气体。

4、换热管中污垢对制冷量的影响:

溴化锂吸收式制冷机中换热管在运行中冷却水和冷媒水则会形成一层污垢,污垢的导热系数很小,使传热性能变差,制冷量减小。因此,经常定期清洗传热管的污垢,是保证制冷机正常运行的重要环节。

5、溴化锂溶液量和浓度变化对制冷量的影响:

溴化锂溶液量变化,使制冷过程溶液的循环速度改变,导致产生制冷剂蒸汽量的改变而使制冷量的变化。

若溴化锂溶液浓度减小,在循环过程中稀、浓溶液的浓度差会偏

离设计值要求,使制冷量减小,若溴化锂溶液浓度增大,在循环过程中可能吸析溴化锂结晶体影响制冷机的工作效率使制冷量变化。

溴化锂吸收式制冷机的工作原理讲解

溴化锂吸收式制冷机的工作原理是: 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃.以上循环如此反复进行,最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0。85kPa的溴化锂溶液与具有1kPa 压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0。87kPa)为止. 图1 吸收制冷的原理

溴化锂吸收式制冷机原理

溴化锂吸收式制冷机原理 制冷原理 一、一般制冷原理 根据热力学的基本原理我们知道,一般的制冷循环由四个主要部件组成:压缩机、冷凝器、节流阀和蒸发器,其制冷原理如下 一般制冷机的制冷原理压缩机的作用是把压力较低的蒸汽压缩成压力较高的蒸汽,使蒸汽的体积减小,压力升高。 压缩机吸入从蒸发器出来的较低压力的工质蒸汽,使之压力升高后送入冷凝器,在冷凝器中冷凝成压力较高的液体,经节流阀节流后,成为压力较低的液体后,送入蒸发器,在蒸发器中吸热蒸发而成为压力较低的蒸汽,再送入蒸发器的入口,从而完成制冷循环。 根据在冷凝器中冷却冷剂蒸汽的流体介质不同,可分为空冷式和水冷式。 空冷式的冷却介质为空气,而水冷式的冷却介质为水。在蒸发器中使冷剂介质吸热蒸发的介质称为冷媒。如冷媒为水,就称为冷媒水。 作为冷媒还有盐水等。能作为冷剂的工质很多,既有氟利昂之类的工质,也可是水等。 压缩机是消耗能源的装置,它的目的是使压力较低的工质蒸汽变成压力较高的工质蒸汽。实际上,能达到上述目的不只是压缩机,也有其他手段 二、制冷的能源 制冷实际上是一个能量的转换过程。 在制冷机中,把压缩机(或能起到压缩机作用的其他部件)中消耗的能量转换成冷能(其温度低于环境温度)。

所以,原则上讲,只要是有一定品质的能量,都能作为压缩机的能源。 压缩机消耗的是电能或机械能。而有一定压力和较高温度的蒸汽也是一种能源,是否也可转变为冷能呢?还有其他一些能源,如太阳能、化学能等,是否也可转变为冷能呢?答案是肯定的。 如利用蒸汽作为能源的溴化锂吸收式制冷机和蒸汽喷射式制冷机等。 溴化锂吸收式制冷机中是怎样利用蒸汽作为能源取代压缩机的呢? 三、水为什么能作为能源 目前,在一般制冷机中使用的是象氟利昂之类的工质。实际上,能作为制冷剂的工质有很多,只要它们具有以下条件。 1.在要求的温度范围你内,其状态会发生变化(相变); 2.有较大的蒸发潜热; 3.工作压力适中; 4.物理、化学性质稳定; 5.经济、实用。 可见,水就具有以上条件。它在一定的压力下,在适当的温度范围内,能够容易地由液态转变成汽态,或者相反;其蒸发潜热也较大,工作压力和物理、化学性质十分稳定,且绝对经济、实用。 所以,水是一种非常合适的制冷剂。 但它也有一定的局限性:0℃以下时,它能转变为固体,所以,以水作为制冷剂的制冷机,不能制取0℃以下的冷媒。 四、吸收式制冷机中的吸收剂的循环为什么能起到压缩机的作用 压缩机的作用是把压力较低的冷剂蒸汽变成压力较高的冷剂蒸汽。所以,只要能将压力较低的冷剂蒸汽变成压力较高的冷剂蒸汽的部件都可取代压缩机。下面就是一

溴化锂吸收式制冷机的工作原理和设计计算

溴化锂吸收式制冷机的工作原理是: 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却.冷剂水自身吸收冷水热量后蒸发.成为冷剂蒸汽.进入吸收器内.被浓溶液吸收.浓溶液变成稀溶液。吸收器里的稀溶液.由溶液泵送往热交换器、热回收器后温度升高.最后进入再生器.在再生器中稀溶液被加热.成为最终浓溶液。浓溶液流经热交换器.温度被降低.进入吸收器.滴淋在冷却水管上.吸收来自蒸发器的冷剂蒸汽.成为稀溶液。另一方面.在再生器内.外部高温水加热溴化锂溶液后产生的水蒸汽.进入冷凝器被冷却.经减压节流.变成低温冷剂水.进入蒸发器.滴淋在冷水管上.冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成.并且依靠热源水、冷水的串联将这两组系统有机地结合在一起.通过对高温侧、低温侧溶液循环量和制冷量的最佳分配.实现温度、压力、浓度等参数在两个循环之间的优化配置.并且最大限度的利用热源水的热量.使热水温度可降到66℃。以上循环如此反复进行.最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂.溴化锂水溶液为吸收剂.制取0℃以上的低 温水.多用于空调系统。 溴化锂的性质与食盐相似.属盐类。它的沸点为1265℃.故在一般的高温下对溴化锂水溶液加热时.可以认为仅产生水蒸气.整个系统中没有精馏设备.因而系统更加简单。溴化锂具有极强的吸水性.但溴化锂在水中的溶解度是随温度的降低而降低的.溶液的浓度不宜超过66%.否则运行中.当溶液温度降低时.将有溴化锂结晶析出的危险性.破坏循环的正常运行。溴化锂水溶液的水蒸气分压.比同温度下纯水的饱和蒸汽压小得多.故在相同压力下.溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力.这是溴化锂吸收式制冷机的机理之一。 工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0.85kPa的溴化锂溶液与具有1kPa 压力(7℃)的水蒸气接触.蒸气和液体不处于平衡状态.此时溶液具有吸收水蒸气的能力.直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。 图1 吸收制冷的原理 0.87kPa和0.85kPa之间的压差用于克服连接管道中的流动阻力以及由于过程偏离平衡状态而产生的压差.如图1所示。水在5℃下蒸发时.就可能从较高温度的被冷却介质中吸收气化潜热.使被冷却介质冷却。

溴化锂吸收式制冷机组原理

溴化锂吸收式制冷机组原理 溴化锂吸收式制冷机组是一种利用化学反应来制冷的机组,其原理是利用溴化锂和水之间的化学反应来吸收热量,从而实现制冷的目的。 溴化锂吸收式制冷机组由吸收器、发生器、冷凝器、蒸发器和泵等组成。其中,吸收器和发生器是实现制冷的关键部件。 吸收器是一个密闭的容器,内部装有溴化锂和水。当外界的热量进入吸收器时,溴化锂和水之间的化学反应就会发生,从而吸收热量。这个过程中,溴化锂会从固态转化为液态,而水则会从液态转化为气态。 发生器也是一个密闭的容器,内部同样装有溴化锂和水。当发生器受到热源的加热时,溴化锂和水之间的化学反应就会逆转,从而释放出吸收器中吸收的热量。这个过程中,溴化锂会从液态转化为气态,而水则会从气态转化为液态。 冷凝器和蒸发器则是用来控制制冷剂的流动和温度的。冷凝器将发生器中的制冷剂冷却,使其从气态转化为液态,然后将其送入蒸发器。蒸发器则将制冷剂加热,使其从液态转化为气态,从而吸收周围的热量,实现制冷的目的。 泵则是用来控制制冷剂的流动的。当制冷剂在蒸发器中变成气态时,

泵会将其吸入发生器中,从而维持制冷剂的循环。 溴化锂吸收式制冷机组的优点是能够利用低温热源来制冷,比如太阳能、余热等。同时,它也是一种环保的制冷方式,因为它不需要使用氟利昂等对臭氧层有害的物质。 然而,溴化锂吸收式制冷机组也存在一些缺点。首先,它的制冷效率比传统的机械式制冷机组要低。其次,它的体积比较大,不适合用于小型制冷设备。此外,溴化锂是一种有毒的物质,需要特殊的处理和储存。 总的来说,溴化锂吸收式制冷机组是一种利用化学反应来制冷的机组,具有一定的优点和缺点。随着环保意识的提高和技术的不断进步,相信它将会在未来得到更广泛的应用。

双效溴化锂吸收式制冷机的工作原理

双效溴化锂吸收式制冷机的工作原理 一、吸收式制冷原理: 吸收式制冷原理,都是利用液态制冷剂在低压、低温下汽化,使制冷剂蒸汽吸收载冷剂的热负荷产生制冷效应的。 吸收式制冷机循环工作的工质为二元工质,如溴化锂水溶液。溶液中水是制冷剂,水在真空状态下蒸发产生低温蒸汽,从而吸收溴化锂溶液中的热量,使溴化锂溶液温度降低,产生制冷效应。 溴化锂水溶液是吸收剂,在常温和低温下具有强烈吸收水蒸汽的特性,而在高温下又能将吸收的水分释放出来。吸收式制冷装置和工作过程就是使制冷溶液吸收与释放周而复始的循环过程,达到制冷的目的。 二、双效溴化锂吸收式制冷机的工作原理 1、串联双效溴化锂吸收式制冷机工作原理示意图

图一三筒串联双效溴化锂吸收式制冷机工作原理示意图 2、串联双效溴化锂制冷机的工作原理 由图一可知:吸收器中的溴化锂稀溶液由发生器泵升压后经高温换热器升温并输送至高压发生器;溶液在高压发生器中被供热蒸汽加热使溶液中的部分制冷剂(水)被汽化产生高温冷剂蒸汽而使溶液浓缩;浓缩后的高温溶液经高温换热器降温后进入低压发生器,溶液在低压发生器中被来自高压发生器的冷剂蒸汽加热使溶液中的制冷剂继续汽化产生低温冷剂蒸汽使溶液进一步浓缩,浓缩后溶液经低温热交换器降温并送回吸收器;由高压发生器产生的冷剂蒸汽经低压发生器降温后进入冷凝器,由低压发生器产生的冷剂蒸汽直接进入冷凝器,这两股冷剂蒸汽在真空冷凝器中冷凝成低温制冷剂;低温制冷剂节流降压后送入真空蒸发器中低压蒸发,蒸发后的蒸汽被吸收器中溶液吸收,一方面使溶液浓度降低成为稀溶液,另一方面使溶液放热而降温达到制冷的目的。 其工作过程循环图,如图二所示。 1-2:等浓升压力加热过程(吸收泵、 高低温换热器中完成) 2-3:加热增浓过程(高低压发生器中 完成) 3-4等浓节流降压过程(节流阀) 4-1:浓降放热过程(蒸发器、吸收器 中完成) 图二循环工作过程简化示意图 3、并联双效溴化锂制冷机的工作原理图 并联双效溴化锂制冷机和串联双效溴化锂制冷机的工作原理相

溴化锂吸收式制冷机的工作原理汇总

溴化锂吸收式制冷机的工作原理汇总 溴化锂吸收式制冷机是一种常用的制冷设备,它利用溴化锂和水之间的化学反应来实现制冷效果。下面将详细介绍溴化锂吸收式制冷机的工作原理。 1. 工作原理概述 溴化锂吸收式制冷机的工作原理基于溴化锂和水之间的化学吸收反应。当溴化锂溶液与水蒸汽接触时,溴化锂会吸收水蒸汽,并形成溴化锂水合物。这个过程是一个放热反应,释放出热量。然后,通过加热溴化锂水合物,将水蒸汽从溴化锂中释放出来,这是一个吸热反应,吸收热量。通过循环这两个反应,溴化锂吸收式制冷机能够实现制冷效果。 2. 主要组成部分 溴化锂吸收式制冷机主要由以下几个组成部分组成: 2.1 蒸发器 蒸发器是溴化锂吸收式制冷机的关键组件之一。在蒸发器中,水蒸汽与溴化锂溶液接触并发生吸收反应。在这个过程中,水蒸汽的热量被吸收,从而使蒸发器中的温度降低。 2.2 吸收器 吸收器是溴化锂吸收式制冷机中的另一个重要组件。在吸收器中,溴化锂溶液吸收水蒸汽,并形成溴化锂水合物。这个过程是一个放热反应,释放出热量。 2.3 发生器 发生器是溴化锂吸收式制冷机中的热源部分。在发生器中,通过加热溴化锂水合物,将水蒸汽从溴化锂中释放出来。这个过程是一个吸热反应,吸收热量。 2.4 冷凝器

冷凝器是溴化锂吸收式制冷机中的另一个重要组件。在冷凝器中,通过冷却溴化锂水合物,使其重新变为溴化锂溶液,并释放出热量。 2.5 膨胀阀 膨胀阀用于控制制冷剂的流量,将高压的溴化锂溶液送入蒸发器,使其蒸发并吸收热量。 3. 工作过程 溴化锂吸收式制冷机的工作过程可以分为以下几个步骤: 3.1 吸收过程 在吸收器中,溴化锂溶液吸收水蒸汽,形成溴化锂水合物。这个过程是一个放热反应,释放出热量。 3.2 冷凝过程 在冷凝器中,通过冷却溴化锂水合物,使其重新变为溴化锂溶液,并释放出热量。 3.3 膨胀过程 通过膨胀阀,高压的溴化锂溶液被送入蒸发器,使其蒸发并吸收热量。 3.4 发生过程 在发生器中,通过加热溴化锂水合物,将水蒸汽从溴化锂中释放出来。这个过程是一个吸热反应,吸收热量。 4. 优点和应用领域 溴化锂吸收式制冷机具有以下几个优点: 4.1 能耗低

2021年溴化锂吸收式制冷机参数

溴化锂吸收式制冷机工作原理、特点 及相关产品参数 欧阳光明(2021.03.07) 溴化锂吸收式制冷机工作原理、特点及相关产品参数 溴化锂吸收式制冷机工作原理:溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制冷的目的。为使制冷过程能连续不断地进行下去,蒸发后的冷剂水蒸气被溴化锂溶液所吸收,溶液变稀,这一过程是在吸收器中发生的,然后以热能为动力,将溶液加热使其水份分离出来,而溶液变浓,这一过程是在发生器中进行的。发生器中得到的蒸汽在冷凝器中凝结成水,经节流后再送至蒸发器中蒸发。 如此循环达到连续制冷的目的。 溴化锂吸收式制冷机的特点 一、优点 (一)以热能为动力,电能耗用较少,且对热源要求不高。能利用各种低势热能和废汽、废热,如高于20kPa(0.2kgf/cm2)表压饱和蒸汽、高干75℃的热水以及地热、太阳能等,有利于热源的综合利用。具有很好的节电、节能效果,经济性好。

(二)整个机组除功率很小的屏蔽泵外,没有其他运动部件,振动小、噪声低、运行比较安静。 (三)以溴化锂溶液为工质,机器在真空状态下运转,无臭、无毒、无爆炸危险、安全可靠、无公害、有利于满足环境保护 的要求。 (四)冷量调节范围宽。随着外界负荷变化,机组可在10%~100%的范围内进行冷量的无级调节。即使低负荷运行,热效率几乎不下降,性能稳定,能很好适应负荷变化的要求。 (五)对外界条件变化的适应性强。如标准外界条件为:蒸汽压力5.88 X 105Pa(6kgf/cm2)表压,冷却水进口温度32℃,冷媒水出口温度10℃的蒸汽双效机,实际运行表明,能在蒸汽压力(1.96~7.84) X 105Pa(2.0~8.0kgf/cm2)表压,冷却水进口温度25~40℃,冷媒水出口温度5~15C的宽阔范围内稳 定运转。 (六)安装简便,对安装基础要求低。机器运转时振动小,无需特殊基础,只考虑静负荷即可。可安装在室内、室外、底层、楼层或屋顶。安装时只需作一般校平,按要求连接汽、水、电 即可。 (七)制造简单,操作、维修保养方便。机组中除屏蔽泵、真空泵和真空间等附属设备外,几乎都是换热设备,制造比较容易。由于机组性能稳定,对外界条件变化适应性强,因而操作比较简单。机组的维修保养工作,主要在于保持其气密性。

溴化锂吸收式制冷机组原理、操作及维护

溴化锂吸收式制冷机的工作原理之马矢奏春创作溴化锂吸收式制冷机的工作原理:冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液酿成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后发生的水蒸汽,进入冷凝器被冷却,经减压节流,酿成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,而且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,而且最大限度的利用热源水的热量,使热水温度可降到66℃。以上循环如此反复进行,最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅发生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强

的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超出66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一 使用管理 初始状态S0 溴化锂制冷机机、电、仪及辅助系统准备就绪110 P ()-工艺流程确认完毕120 P [ ]-开G-506A/B补水泵,待冷媒水管线上的放气阀无放气声为止,启动G-503A/B,慢慢打开出口阀,确认出口压力为0.6Mpa,入口为0.2Mpa,补水泵G-506A/B,出口压力为0.2Mpa,冷媒水系统建立正常。130 P [ ]-全开循环水进入溴化锂制冷机的入口阀,关小出口阀包管循环水流量为120m3/hr,入口温度小于32℃,但大于19℃℃,循环水系统建立正常。140 P [ ]-慢慢开中压蒸汽阀,排凝;表压力小于0.8Mpa。150 P [ ]-确认溴化锂制冷机电源,确认机内真空度在40mmHg以下,正常压力差为10mmHg,若压力超标,则必须进行抽空,直到压力在要求范围内。

溴化锂吸收式制冷原理

溴化锂吸收式制冷原理 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否如此运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在一样压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 溴化锂吸收式制冷原理同蒸汽压缩式制冷原理有一样之处,都是利用液态制冷剂在低温、低压条件下,蒸发、气化吸收载冷剂(冷水)的热负荷,产生制冷效应。所不同的是,溴化锂吸收式制冷是利用“溴化 锂一水〞组成的二元溶液为工质对,完成制冷循环的。 在溴化锂吸收式制冷机循环的二元工质对中,水是制冷剂。在真空(绝对压力:870Pa)状态下蒸发,具有较低的蒸发温度(5℃),从而吸收载冷剂热负荷,使之温度降低,源源不断地输出低温冷水。 工质对中溴化锂水溶液如此是吸收剂,可在常温和低温下强烈地吸收水蒸气,但在高温下又能将其吸收的水分释放出来。制冷剂在二元溶液工质对中,不断地被吸收或释放出来。吸收与释放周而复始,不断循环,因此,蒸发制冷循环也连续不断。制冷过程所需的热能可为蒸汽,也可利用废热,废汽,以与地下热水(75'C以上)。在燃油或天然气充足的地方,还可采用直燃型溴化锂吸收式制冷机制取低温水。 这些特征充分表现出溴化锂吸收式制冷机良好的经济性能,促进了溴化锂吸收式制冷机的开展。 因为溴化锂吸收式制冷机的制冷剂是水,制冷温度只能在o℃以上,一般不低于5℃,故溴化锂吸收式制冷机多用于空气调节工程作低温冷源,特别适用于大、中型空调工程中使用。溴化锂吸收式制冷机在某些生产工艺中也可用作低温冷却水。 第一节吸收式制冷的根本原理 一、吸收式制冷机根本工作原理 从热力学原理知道,任何液体工质在由液态向气态转化过程必然向周围吸收热量。在汽化时会吸收汽化热。水在一定压力下汽化,而又必然是相应的温度。而且汽化压力愈低,汽化温度也愈低。如一个大气压下水的汽化温度为100~C,而在o.05大气压时汽化温度为33℃等。如果我们能创造一个 压力很低的条件,让水在这个压力条件下汽化吸热,就可以得到相应的低温。 一定温度和浓度的溴化锂溶液的饱和压力比同温度的水的饱和蒸汽压力低得多。由于溴化锂溶液和水之间存在蒸汽压力差,溴化锂溶液即吸收水的蒸汽,使水的蒸汽压力降低,水如此进一步蒸发并吸收热量,而使本身的温度降低到对应的较低蒸汽压力的蒸发温度,从而实现制冷。 蒸汽压缩式制冷机的工作循环由压缩、冷凝、节流、蒸发四个根本过程组成。吸收式制冷机的根本工作过程实际上也是这四个过程,不过在压缩过程中,蒸汽不是利用压缩机的机械压缩,而是使用另一种方法完成的。如图2—1所示,由蒸发器出来的低压制冷剂蒸汽先进人吸收器,成在吸收器中用一种液态吸收剂来吸收,以维持蒸发器的低压,在吸收的过程中要放出大量的溶解热。热量由管冷却水或其他冷却介质带走,然后用溶液泵将这一由吸收剂与制冷剂混合而成的溶液送人发生器。溶液在发生器

溴化锂冷水机组工作原理及分类

溴化锂冷水机组工作原理及分 类 -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

溴化锂冷水机组工作原理及分 类(总3页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

溴化锂冷水机组工作原理及分类 溴化锂溶液的特性 在溴化锂吸收式制冷机中,水作为制冷剂用来产生冷效应,溴化锂溶液作为吸收剂,用来吸收产生冷效应后的冷剂蒸汽。因此,水和溴化锂溶液组成制冷机中的工质对。 1.溴化锂水溶液是由固体的溴化锂溶质溶解在水溶剂中而成。常压下,水的沸点是100℃,而溴化锂的沸点为1265℃。供制冷机应用的溴化锂,一般 以水溶液的形式供应。性状为无色透明液体;浓度不低于50%;水溶液PH值 8以上。 2.20℃时溴化锂溶解至饱和时量为111.2克,即溴化锂的溶解度为 111.2克。溶解度的大小与溶质和溶剂的特性的关,还与温度有关,一般随温 度升高而增大,当温度降低时,溶解度减小,溶液中会有溴化锂的晶体析出而 形成结晶现象。这一点在溴冷机中是非常重要,运行中必须注意结晶现象,否 则常会由此影响制冷机的正常运行。 3.溴化锂溶液对普通金属有腐蚀作用。尤其在有氧气存在的情况下腐蚀 更为严重。 溴化锂制冷原理 溴化锂吸收式制冷原理和蒸汽压缩制冷原理有相同之处,都是利用液态制冷剂在低温、低压条件下,蒸发、汽化吸收载冷剂的热负荷,产生制冷效应。所不同的是,溴化锂吸收式制冷是在利用“溴化锂-水”组成的二元溶液为工质对,完成制冷循环的。 在溴化锂吸收式制冷机内循环的二元工质中,水是制冷剂。水在真空状态下蒸发,具有较低的蒸发温度(6℃),从而吸收载冷剂热负荷,使之温度降低。溴化锂水溶液是吸收剂,在常温和低温下强烈地吸收水蒸气,但在高温下又能将其吸收的水分释放出来。吸收与释放周而复始制冷循环不断。制冷过程中的热能为蒸汽,也可叫动力。

双效溴化锂吸收式制冷机工作原理

双效溴化锂吸收式制冷机的工作原理 双效溴化锂吸收式制冷机是一种常见的制冷设备,它利用溴化锂溶液在吸收和脱吸收过程中的热力学性质变化来实现制冷。下面将详细解释双效溴化锂吸收式制冷机的工作原理。 1. 基本组成 双效溴化锂吸收式制冷机主要由以下几个部分组成: •发生器:用于加热溴化锂溶液,使其发生汽化,产生高浓度的溴化锂溶液和溴气。 •冷凝器:用于冷却溴气,使其凝结成液体,并放出吸收过程中吸收的热量。•蒸发器:用于蒸发制冷剂,吸收周围的热量,从而降低温度。 •吸收器:用于吸收蒸发器中产生的溴气,生成稀溶液。 •冷冻水蒸发器:用于冷却冷冻水,吸收冷量。 •泵:用于循环溴化锂溶液。 •阀门:用于调节流量和压力。 2. 工作过程 双效溴化锂吸收式制冷机的工作过程可以分为以下几个步骤: 2.1 发生器过程 在发生器中,通过加热溴化锂溶液,使其发生汽化。溴化锂溶液中的溴化锂和水发生反应,生成溴气和稀溶液。发生器中的加热源可以是燃气、电加热器等。溴气在发生器中上升,经过冷凝器冷却后凝结成液体。 2.2 冷凝器过程 在冷凝器中,溴气被冷却,凝结成液体。同时,冷凝器通过换热器将吸收器中的稀溶液加热,使其浓度增加。 2.3 蒸发器过程 在蒸发器中,制冷剂(一般为水)蒸发吸收周围的热量,从而降低温度。制冷剂蒸发后的蒸汽经过换热器与发生器中的溴气进行热交换,使溴气被吸收。 2.4 吸收器过程 在吸收器中,蒸发器中产生的溴气被稀溶液吸收,生成浓溶液。吸收器通过换热器将冷冻水加热,使其温度升高。

2.5 冷冻水蒸发器过程 在冷冻水蒸发器中,冷冻水通过换热器与吸收器中的浓溶液进行热交换,从而吸收冷量,降低冷冻水的温度。 3. 工作原理解析 双效溴化锂吸收式制冷机的工作原理基于溴化锂溶液在吸收和脱吸收过程中的热力学性质变化。 在发生器中,加热溴化锂溶液使其发生汽化,生成溴气和稀溶液。溴气在冷凝器中冷却凝结成液体,放出吸收过程中吸收的热量。冷凝器中的液体溴化锂溶液浓度增加后进入吸收器。 在蒸发器中,制冷剂蒸发吸收周围的热量,从而降低温度。制冷剂蒸发后的蒸汽与发生器中的溴气进行热交换,使溴气被吸收。吸收器中的稀溶液浓度增加后进入发生器。 通过循环运行泵将溴化锂溶液从吸收器送往发生器,从蒸发器送往吸收器,实现溴化锂溶液的循环。同时,通过阀门调节流量和压力,控制制冷剂的流动和各部分的工作状态。 4. 优势和应用 双效溴化锂吸收式制冷机具有以下优势: •高效节能:双效设计使得利用溴化锂溶液的吸收和脱吸收过程中产生的热量最大化,提高能量利用效率。 •环保:溴化锂制冷剂无臭氧破坏潜力,对环境友好。 •适应性强:适用于大范围的制冷负荷,可广泛应用于空调、制冷设备等领域。 双效溴化锂吸收式制冷机在空调、工业制冷、航空航天等领域有着广泛的应用。它能够满足不同场景下的制冷需求,提供舒适的室内环境和高效的制冷效果。

溴化锂吸收式制冷机组原理、操作及维护

溴化锂吸收式制冷机的工作原理 溴化锂吸收式制冷机的工作原理:冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。以上循环如此反复进行,最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一 使用管理 初始状态S0 溴化锂制冷机机、电、仪及辅助系统准备就绪 110 P ()-工艺流程确认完毕 120 P [ ]-开G-506A/B补水泵,待冷媒水管线上的放气阀无放气声为止,启动G-503A/B,慢慢打开出口阀,确认出口压力为0.6Mpa,入口为0.2Mpa,补水泵G-506A/B,出口压力为0.2Mpa,冷媒水系统建立正常。 130 P [ ]-全开循环水进入溴化锂制冷机的入口阀,关小出口阀保证循环水流量为120m3/hr,入口温度小于32℃,但大于19℃,出口温度小于37.5℃,循环水系统建立正常。140 P [ ]-慢慢开中压蒸汽阀,排凝;表压力小于0.8Mpa。 150 P [ ]-确认溴化锂制冷机电源,确认机内真空度在40mmHg以下,正常压力差为10mmHg,若压力超标,则必须进行抽空,直到压力在要求范围内。

双效溴化锂制冷机工作原理

双效溴化锂制冷机工作原理 双效溴化锂制冷机,一般形式为三筒式。主要部件由:高压发生器、低压发生器、冷凝器、吸收器、蒸发器、高温换热器、低温换热器、冷凝水回热器、冷剂水冷却器及发生器泵、吸收器泵、蒸发器泵和电气控制系统等组成。制冷原理为:吸收器中的稀溶液,由发生器泵分两路输送至高温换热器和低温换热器,进入高温换热器的稀溶液被高压发生器流出的高温浓溶液加热升温后,进入高压发生器。而进入低温换热器的稀溶液,被从低压发生器流出的浓溶液加热升温后,再经凝水回热器继续升温,然后进入低压发生器。 进入高压发生器的稀溶液被工作蒸汽加热,溶液沸腾,产生高温冷剂蒸汽,导入低压发生器,加热低压发生器中的稀溶液后,经节流进入冷凝器,被冷却凝结为冷剂水。 进入低压发生器的稀溶液被高压发生器产生的高温冷剂蒸汽所加热,产生低温冷剂蒸汽直接进入冷凝器,也被冷却凝结为冷剂水。高、低压发生器产生的冷剂水汇合于冷凝器集水盘中,混合后导入蒸发器中。 加热高压发生器中稀溶液的工作蒸汽的凝结不,经凝水回热器进入凝水管路。而高压发生器中的稀溶液因被加热蒸发出了冷剂蒸汽,使浓度升高成浓溶液,又经高温热交换器导入吸收器。低压发生器中的稀溶液,被加热升温放出冷剂蒸汽也成为浓溶液,再经低温热交换器进入吸收器。浓溶液与吸收器中原有溶液混合成中间浓度溶液,由吸收器泵吸取混合溶液,输送至喷淋系统,喷洒在吸收器管簇外表面,吸收来自蒸发器蒸发出来的冷剂蒸汽,再次变为稀溶液进入下一个循环。吸收过程所产生的吸收热被冷却水带到制冷系统外,完成溴化锂溶液从稀溶液到浓溶液,再回到稀溶液循环过程。即热压缩循环过程。 高、低压发生器所产生的冷剂蒸汽,凝结在冷凝器管簇外表面上,被流经管簇里面的冷却水吸收凝结过程产生的凝结热,带到制冷系统外。凝结后的冷剂水汇集起来经节流装置,淋洒在蒸发器管簇外表面上,因蒸发器内压力低,部分冷剂水闪发吸收冷媒水的热量,产生部分制冷效应。尚未蒸发的大部分冷剂水,由蒸发器泵喷淋在蒸发器管簇外表面,吸收通过管簇内流经的冷媒水热量,蒸发成冷剂蒸汽,进入吸收器。冷媒水的热量被吸收使水温降低,从而达到制冷目的,完成制冷循环。吸收器中喷淋中间浓度混合溶液吸收制冷剂蒸汽,使蒸发

相关主题
文本预览
相关文档 最新文档