当前位置:文档之家› 两段式煤气发生炉工艺

两段式煤气发生炉工艺

两段式煤气发生炉工艺
两段式煤气发生炉工艺

二段式煤气发生炉煤气站工艺:

合格原料煤由皮带机输送提升至主厂房储煤仓,再经双滚筒液压加煤机加入炉内,煤受到来自气化段煤气的加热干馏,干馏后半焦状态下的煤炭在气化段与气化剂(空气,蒸汽)发生反应,气化段生成的煤气分为两部分,一部分从两段炉下段煤气出口经旋风除尘器出炉,另一部分向上经中心管与干馏煤气混合从上段煤气出口出炉。下段出口煤气经旋风除尘器降温除尘后进入强制风冷器,继续除尘降温,然后进入间冷器进一步降温。上段出口煤气进入电捕焦油器除焦后,直接进入间冷器,与下段煤气混合,在混合中完成降温,混合后煤气进入电捕轻油器,捕除轻油,煤气经加压风机加压后送往水雾捕滴器脱水送往用户。

两段式煤气发生炉自上而下由干馏段和气化段组成,首先煤从炉顶煤仓经两段下煤阀进入炉体,煤在干馏段经过充分的干燥和长时间的低温干馏,逐渐形成半焦,进入气化段,炽热的半焦在气化段与炉底鼓入的气化剂充分反应,经过炉内还原层,氧化层而形成灰渣,由炉栅驱动从灰盆自动排出。煤在低温干馏的过程中,以挥发分析出为主生成的煤气称为干馏煤气,组成两段炉的顶部煤气,约占总煤气量的 40% ,其热值较高( 6700KJ/nm3)温度较低(120°C ),并含有大量的焦油。这种焦油为低温干馏产物,其流动性较好,可采用静电除尘器捕集起来,作为化工原料和燃料。在气化段,炽热的半焦和气化及经过还原,氧化等一系列化学反应生成的煤气,称为气化煤气。组成两段炉的底部煤气,约占总煤气量的 60% ,其热值相对较低( 6400KJ/nm3),温度较高( 450°C 左右 ) 因煤在干馏段低温干馏时间充足,进入气化段的煤已变成半焦,因此生成的气化煤气不含焦油,又因距炉栅灰层较近,所以含有少量飞灰。底部煤气就可经旋风除尘器及风冷器等设备来处理,这样对于使用冷静化煤气的用户,便可不采用水洗法就能使用上冷静化煤气,从而避免了大量酚水无法处理的缺陷。

3.2m 两段式冷煤气站(厂房为钢结构)

2.6m 两段式冷煤气站(厂房为混凝土结构)2.0m 两段式冷煤气站

煤气站特点:

(一)在整个冷煤气净化工艺中,本公司对底部煤气的处理采用旋风除尘器,强制风冷器来进行,改变了我国两段炉常用的双竖管、洗涤塔用水冷却工艺,即节约了生产用水,又消除了因使用传统工艺带来的酚水量太大弊端,从而彻底杜绝了国内传统的两段炉对环境的污染问题。顶部煤气中的大量焦油采用 37 管电捕器捕集,因其流动性良好,可直接输送到焦油池储存。

混合煤气采用油洗冷却器冷却,此设备的特点是,煤气的冷却不与水直接接触,而是管板式间接冷却,再通过煤气自身冷凝下来的饱和水(含酚)循环使用洗涤煤气,使煤气站酚水减至最少量,此少量酚水为正增长,它的输送储存皆密闭进行。

在整个工艺中,对焦油的捕集采用二级电捕,以确保在冷煤气净化过程中焦油的含量在 40mg/m3以下。顶部煤气用 37 管电捕焦,煤气在其中最大流速为 0.6m /s ,低于《发生炉煤气站设计规范》(GB50195-94 )中的 61管电捕青油器,

煤气在其中的最大流速为 0.65m /s 低于《发生炉煤气站设计规范》

( GB50195-94 )中的 0.8m /s 的要求。本工艺自动化程度高,对于重要参数如上段煤气温度、气化剂温度、煤气站负荷实行自动调节,运行安全,便于操作,是一种比较先进的煤炭制气工艺。(二)国内的两段炉是在单段炉的基础上又加一段干馏段,由于没有经过严格测验,其干馏段各参数及结构不尽合理,这样煤的干馏就不会充分,致使气化段煤气含有焦油,此部分焦油已经高温裂解,也已无法处理,只好采用水洗处理,洗涤水也含有大量沥青焦油,因而无法避免单段炉冷净化煤气工艺的环境污染缺陷。本公司两段炉在几十年的试验基础上设计出来,并经工业性应用后多次改进定型的一种成熟粗放型,其显著特点如下:

o 底部煤气由 36 个耐火通道提取,并有 6 个底部煤气调节阀来调节整个炉膛面的燃烧平衡。

o底部煤气另设一路中心管提取,其作用为:

o与周边 36 个耐火通道共同组成干馏加热空间,形成内外两层环形圈辐射热源。

o与周边 36 个耐火通道共同组成炉膛断面燃烧平衡系统,避免了国内两段炉燃烧中心黑洞问题,能很方便的调节炉膛燃烧情况。

o采用高灰盆水封,高气化压力运行,发生炉气化程度高,产气量大。

o炉栅驱动除灰及下煤采用液压系统,通过 PLC 机实现自动控制。

o水夹套为压力容器,使用寿命非常长。

综上所述,由本公司生产的两段炉具有最优的干馏段与气化段比例及良好的干馏结构,其干馏段所产生的煤气只含焦油不含灰尘,气化煤气只含少许灰尘不含焦油,为彻底解决煤气站酚水污染及挥发酚对大气的污染问题奠定了坚实的基础。

(三)型号主要有:Φ2.0m Φ2.6m Φ3.0m Φ3.2m

热脱焦煤气站:两段炉有上下两个煤气出口,可输出不同热值的煤气,其气化效率和热效率均比单段式炉高。炉体由原常压结构改为压力容器承压结构,去掉了煤气站外配的蒸汽锅炉增加了废热锅炉,充分利用煤气余热,自产0.25-0.3Mpa 的蒸汽,大大提高了系统蒸汽产量,满足了煤气站自身的需要。煤炭经过炉体彻底干馏下段,煤气基本不含焦油,上段煤气含有少量轻质焦油,不易阻塞管道。两段式煤气炉热值高,稳定性好,操作弹性大,自动化程度高,劳动强度低,无污染,节水显著,占地面积少,长期运行成本低等特点。煤气发生炉的全部重量改为由地下基础承担,可采用简单的钢结构的厂房,降低工程造价、缩短了施工工期。冷煤气站:在热炉基础上,增加净化设备,使煤气更加洁净,加压输送,增加了煤气的压力的稳定性。

1500m3煤气储气柜两段炉鼓风系统两段炉操作系统静电除焦系统结构图:

技术指标

工艺流程

两段式煤气发生炉冷站工艺流程图

两段式煤气发生炉操作规程

两段式煤气发生炉操作规程 1.冷煤气站 煤 两段式煤气发生炉产生的煤气分为上段煤气和下段煤气。上段煤气先进入一级电捕焦油器脱除重质焦油及灰尘,其工作温度80-150℃之间,再进入间冷器,在间冷器内煤气冷却至35-45℃左右。下段煤气经旋风除尘器除尘,继而进入余热换热器,煤气温度降至200-230℃,再进入风冷器冷却,温度降至65-80℃,通过间冷器冷却至35-45℃。被间冷器冷却后的上、下段煤气进入二级电捕焦油器脱油、除尘,通过煤气加压机输送到用户。 二、发生炉及净化设备

要紧结构及工作原理: 两段式煤气发生炉由料仓、给煤机构、干馏段、气化段、出渣结构、汽包等六大部分组成。分离好的20-60mm煤块,通过输煤系统储存于料仓,料仓中的煤通过给煤机构,依照需要平均地加入干馏段与下部上升的制气进行热交换,温度逐步上升。煤中的机械水析出,以后是结晶水析出,随着煤块位置下降,煤块温度不断上升,煤块进行着复杂的热分解,析出不同馏分的挥发份,直到900℃以上差不多终止。残留的部分为固定碳 及灰份,与外部鼓入的水蒸汽与空气组成的气化剂反应,生成H 2、CO 2 、CO、CH 4 、N 2 等 气化反应产物,同时放出大量的热,除了满足吸热反应外,均表现为气体的闲热带入上部,残留的灰份由出灰机排出。 气化段上升的热煤气,在干馏段充分热交换以后,由炉顶出口引出,称为上段煤气。温度约80-120℃,约占煤气产量的40%。气化段生成的煤气除了一部分作为载热气流上升进入干馏段外,另一部分从炉内中心管砖壁及中心收集管引出,称为下段煤气,温度约400-600℃,约占煤气产量的60%。

要紧结构及工作原理: 电捕焦油器又称静电除尘器,要紧由筒体、电晕极、沉淀极、分气隔板、绝缘子箱

合成氨工艺流程

合成氨工艺流程标准化管理部编码-[99968T-6889628-J68568-1689N]

将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到~,送入脱硫塔,用溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机~后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到~MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。

煤气发生炉工作原理与结构

煤气发生炉工作原理与煤气发生炉煤气成分 在一般的煤气发生炉中,煤是由上而下、气化剂则是由下而上地进行逆流运动,它们之间发生化学反应和热量交换。 一、煤气发生炉内部 在煤气发生炉中形成了几个区域,一般我们称为“层”。 按照煤气发生炉内气化过程进行的程序,可以将发生炉内部分为六层:1、灰渣层;2、氧化层(又称火层);3、还原层;4、干馏层;5、干燥层;6、空层。 其中氧化层和还原层又统称为反应层,干馏层和干燥层又统称为煤料准备层。

(1)灰渣层:煤燃烧后产生灰渣,形成灰渣层,它在发生炉的最下部,覆盖在炉篦子之上。其主要作用为: A、保护炉篦和风帽,使它们不被氧化层的高温烧坏; B、预热气化剂,气化剂从炉底进入后,首先经过灰渣层进行热交换,使灰渣层温度降低,气化剂温度升高。一般气化剂能预热达300-450℃左右。 C、灰渣层还起了布风作用,使进入的气化剂在炉膛内尽量均匀分布。 (2)氧化层:也称为燃烧层(火层)。从灰渣中升上来的气化剂中的氧与碳发生剧烈的燃烧而生成二氧化碳,并放出大量的热量。它是气化过程中的主要区域之一,其主要反应是:C+O2→CO2+97650大卡。 氧化层的高度一般为所有燃料块度的3-4倍,一般为100-200毫米。气化层的温度一般要小于煤的灰熔点,控制在1200℃左右。 (3)还原层:在氧化层的上面是还原层。赤热的碳具有很强的夺取氧化物中的氧而与之化合的本领,所以在还原层中,二氧化碳和水蒸气被碳还原成一氧化碳和氢气。这一层也因此而得名,称为还原层。 其主要反应为:CO+C→2CO+38790大卡,H2O+C→H2+CO+28380大卡,2H2O+C→CO2+2H2+17970大卡。 由于还原层位于氧化层之上,从上升的气体中得到大量热量,因此还原层有较高的温度约800-1100℃,这就为需要吸收热量的还原反应提供了条件。而严格地讲,还原层还有第一、第二之分,下部温度较高的地方称第一还原层,温度达950-1100℃,其厚度为300-400毫米左右;第二层为700-950℃之间,其厚度为第一还原层1.5倍,约在450毫米左右。 (4)干馏层:干馏层位于还原层的上部,由还原层上升的气体随着热量的被消耗,其温度逐渐下降,故干馏层温度约在150-700℃之间,煤在这个温度下,

50万吨年煤气化生产工艺

咸阳职业技术学院生化工程系毕业论文(设计) 50wt/年煤气化工艺设计 1.引言 煤是由古代植物转变而来的大分子有机化合物。我国煤炭储量丰富,分布面广,品种齐全。据中国第二次煤田预测资料,埋深在1000m以浅的煤炭总资源量为2.6万亿t。其中大别山—秦岭—昆仑山一线以北地区资源量约2.45万亿t,占全国总资源量的94%;其余的广大地区仅占6%左右。其中新疆、内蒙古、山西和陕西等四省区占全国资源总量的81.3%,东北三省占 1.6%,华东七省占2.8%,江南九省占1.6%。 煤气化是煤炭的一个热化学加工过程,它是以煤或煤焦原料,以氧气(空气或富氧)、水蒸气或氢气等作气化剂,在高温条件下通过化学反应将煤或煤焦中的可燃部分转化为可燃性的气体的过程。气化时所得的可燃性气体称为煤气,所用的设备称为煤气发生炉。 煤气化技术开发较早,在20世纪20年代,世界上就有了常压固定层煤气发生炉。20世纪30年代至50年代,用于煤气化的加压固定床鲁奇炉、常压温克勒沸腾炉和常压气流床K-T炉先后实现了工业化,这批煤气化炉型一般称为第一代煤气化技术。第二代煤气化技术开发始于20世纪60年代,由于当时国际上石油和天然气资源开采及利用于制取合成气技术进步很快,大大降低了制造合成

气的投资和生产成本,导致世界上制取合成气的原料转向了天然气和石油为主,使煤气化新技术开发的进程受阻,20世纪70年代全球出现石油危机后,又促进了煤气化新技术开发工作的进程,到20世纪80年代,开发的煤气化新技术,有的实现了工业化,有的完成了示范厂的试验,具有代表性的炉型有德士古加压水煤浆气化炉、熔渣鲁奇炉、高温温克勒炉(ETIW)及干粉煤加压气化炉等。 近年来国外煤气化技术的开发和发展,有倾向于以煤粉和水煤浆为原料、以高温高压操作的气流床和流化床炉型为主的趋势。 2.煤气化过程 2.1煤气化的定义 煤与氧气或(富氧空气)发生不完全燃烧反应,生成一氧化碳和氢气的过程称为煤气化。煤气化按气化剂可分为水蒸气气化、空气(富氧空气)气化、空气—水蒸气气化和氢气气化;按操作压力分为:常压气化和加压气化。由于加压气化具有生产强度高,对燃气输配和后续化学加工具有明显的经济性等优点。所以近代气化技术十分注重加压气化技术的开发。目前,将气化压力在P>2MPa 情况下的气化,统称为加压气化技术;按残渣排出形式可分为固态排渣和液态排渣。气化残渣以固体形态排出气化炉外的称固态排渣。气化残渣以液态方式排出经急冷后变成熔渣排出气化炉外的称液态排渣;按加热方式、原料粒度、汽化程度等还有多种分类方法。常用的是按气化炉内煤料与气化剂的接触方式区分,主要有固定床气化、流化床气化、气流床气化和熔浴床床气化。 2.2 主要反应 煤的气化包括煤的热解和煤的气化反应两部分。煤在加热时会发生一系列的物理变化和化学变化。气化炉中的气化反应,是一个十分复杂的体系,这里所讨论的气化反应主要是指煤中的碳与气化剂中的氧气、水蒸汽和氢气的反应,也包括碳与反应产物之间进行的反应。 习惯上将气化反应分为三种类型:碳—氧之间的反应、水蒸汽分解反应和甲烷生产反应。 2.2.1碳—氧间的反应 碳与氧之间的反应有: C+O2=CO2(1)

煤气发生炉安全设计要求通用版

操作规程编号:YTO-FS-PD641 煤气发生炉安全设计要求通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

煤气发生炉安全设计要求通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 煤气是使用最广泛的一种可燃气体。燃烧无烟、火力强、易点燃且不污染环境,所以被广泛应用于工业生产,如陶瓷、耐火材料、金属加工等。煤气是由煤等固体燃烧或重油等液体燃料经干馏气化等过程而得的气体产物。它的主要成份是氢气、一氧化碳和轻烃类。着火温度在500℃—600℃之间,与空气混合成一定比例后,遇火会爆炸。所以煤气在生产以及输配过程中,一旦发生爆炸,往往会造成人员伤亡和财产的巨大损失,因此切实落实煤气发生站的防火设计显得尤为重要。 一、防火间距方面。 根据《建筑设计防火规范》GBJ16—87的规定,煤气发生炉煤气站与相邻厂房应满足10m的防火间距,与民用建筑应满足25m的防火间距。对于产气量小于6000立方/小时的小型煤气站,《发生炉煤气站设计规范》中规定,可与煤气用户的车间相毗连,但应设防火墙。这里的无间距要求,只是对直接使用该煤气发生炉煤气且相邻外墙为防火墙的车间而言的,对非煤气用户的车间仍应满足

两段式煤气发生炉与单段式煤气发生炉应用特点详解

两段式煤气发生炉与单段式煤气发生炉应用特点详解工业煤气分为高炉煤气、水煤气、半水煤气、发生炉煤气、焦炉煤气等。发生炉煤气的生产装置又分为两段式煤气发生炉与单段式煤气发生炉,两种煤气发生炉的原理都是以块状煤为原料,用蒸汽与空气的混合气体作气化剂,生产以CO和H2为主要可燃成分的发生炉煤气。 一、两段式煤气发生炉 两段式煤气发生炉产生的煤气分为上段煤气和下段煤气。上段煤气先进入一级电捕焦油器脱除重质焦油及灰尘,其工作温度在80~150℃,再进入间冷器,在间冷器内煤气冷却至35~45℃左右。下段煤气经旋风除尘器除尘,继而进入余热换热器,煤气温度降至200~230℃,再进入风冷器冷却,温度降至65~80℃,通过间冷器冷却至35~45℃。被间冷器冷却后的上、下段煤气进入二级电捕焦油器脱油、除尘,通过煤气加压机输送到用户。 两段式煤气发生炉流程示意图 应用特点: 1、双段煤气发生炉生产煤气,气化效率高、热效率高、生产运行成本较低、自动化程度高、劳动强度低、操

作环境良好。煤气杂质含量少、发热值高而且产气量稳定。 2、下段煤气出口设旋风除尘器和余热换热器,使下段煤气先经除尘后再进余热换热器,煤气温度降到230℃左右,使煤气显热得到了充分回收利用,同时又副产0.294KPa的蒸汽,蒸汽可作为煤气炉探火汽封用或电捕焦油器绝缘子箱保温及焦油管道伴热用。 3、采用风冷间冷工艺,对煤气进行降温处理,避免了煤气与水直接接触产生的大量洗涤污水。 二、单段式煤气发生炉 单段式煤气发生炉料层较薄,只有气化段,没有明显的敢留短,煤炭在煤气炉进行气化反应,生成的煤气经除尘、冷却、脱硫等工艺处理,经过处理后的洁净煤气经加压输送系统供给客户。 单段式煤气发生炉流程示意图 应用优点: 1、建设投资少。主要体现在单段式煤气发生炉设备投资和土建投资较少等方面。 2、建设周期短。单段式煤气发生炉热煤气站无论是设备制造周期、设备安装调试周期还是厂房基础建设周期都要比其他炉型要缩短许多。 应用缺点: 1、煤气携灰较多,从而造成资源浪费,并造成煤气管道堵塞。 2、产生的焦油质量较差。单段式煤气发生炉干馏产生黏度较高、流动性较差的高温裂解焦油,这部分焦油不易处理和利用,而且,很容易和煤气携出的煤粉胶粘在一起,堵塞煤气管道。 3、煤气输送距离短。煤气中的焦油和煤粉在煤气管道中沉积,经常会堵塞管道,致使煤气输送阻力假发,煤气输送距离收到限制。 三、对比分析

煤气发生炉安全评价

1 概述 评价目的 为贯彻“安全第一,预防为主”的方针,加强对危险化学品的管理,保证生产装置在劳动安全卫生方面符合国家的有关法律、法规、标准和规定,确保企业生产运行安全。 找出该单位煤气站装置中存在的主要危险、有害因素及其产生危险、危害后果的主要条件。找出煤气站存在的主要安全隐患,提出消除、预防或降低装置危险性、提高装置安全运行等级的安全对策与措施,为装置的生产运行以及日常管理提供依据,并为上级主管部门实行安全监察管理提供依据。 评价依据 国家、地方有关法规、文件 1)《中华人民共和国安全生产法》[中华人民共和国主席令(2002)第70号]; 2)《危险化学品安全管理条例》[中华人民共和国国务院令(2002)第344号]; 3)《中华人民共和国消防法》(中华人民共和国主席令第4号);4)《压力容器安全技术监察规程》[劳锅字8号(1990)]; 5)《建设项目(工程)劳动安全卫生监察规定》[原劳动部(1996)3号令]; 6)《关于建设项目(工程)劳动安全卫生综合评价有关问题的通知》

[山东省安全生产监督管理局鲁安监发(2002)28号]; 7)《山东省安全生产监督管理规定》(山东省人民政府令141号);8)《××市消防管理条例》; 9)××市人民政府办公厅关于开展工业企业煤气安全专项整治活动的通知[淄政办发电(2004)19号]; 10)《关于印发〈安全评价通则〉的通知》[安监管规划字(2003)37号]。 本项目有关技术文件、资料 1)《××峰霞陶瓷有限公司专项安全评价技术服务合同书》; 2)××峰霞陶瓷有限公司煤气站项目其他有关技术资料。 评价标准、规范、规程 1)《建筑设计防火规范》(GBJ16-87,2001修订版); 2)《工业企业总平面设计规范》(GB50187-93); 3)《发生炉煤气站设计规范》(GB50195-94); 4)《工业企业煤气安全规程》(GB6222-86); 5)《建筑抗震设计规范》(GB50011-2001); 6)《建筑物防雷设计规范》(GB50057-94,2000版); 7)《爆炸和火灾危险环境电力装置设计规范》(GB50058-92);8)《工业企业噪声控制设计规范》(GBJ87-85); 9)《噪声作业分级》(LD80-1995); 10)《有毒作业分级》(GB12331-90); 11)《职业性接触有毒物程度分级》(GB5044-85);

两段式煤气发生炉项目报告

前言 我们国家是一个能源消耗大国,单位GDP能源成本是发达国家的十几倍。人均能源占有量却十分有限。随着国民经济的快速发展,我国的能源结构正面临着严峻的挑战。原油供求矛盾已十分突出,价格脱缰上扬。影响了耗能品的竞争力,寻求一种价格低廉,供应充足的新型环保替代能源是众多燃油企业的当务之急。 煤炭是我国的第一能源品种,储量相当丰富,每年都大量出口国外,价格与燃油比要稳定的多,国家发改委明文要求推广煤代油技术。煤炭直接利用存在着效率低、污染重、不易传输等缺点,应用领域受到了很大制约。煤转油和煤转气是开发煤炭用途的基本方向。煤转油处于研发中试阶段,尚不实用,煤转气是一种十分成熟的技术,已有几十年的使用历史,被广泛应用于化工、建材、冶金等行业。 煤气发生炉是一种把煤转换成燃气的热工设备,目前市场上存在着多种形式的发生炉,但根据气化的过程原理可分为单段与双段两种结构形式。单段炉结构比较简单,投资也比较省。但其最大的缺点是用水直接冷却洗涤煤气,造成了严重的水体污染,同时自动化程度也比较低,越来越不适合现代化工业生产的要求,逐渐被节能环保、自动化程度高的两段炉所替代。吉尼斯陶瓷发展有限公司现租用南昌灯泡厂一座一段式煤气发生炉。根据中华人民共和国国家发展和改革委员会《产业结构调整指导目录(2005年本)》第40号令,一段式固定煤气发生炉属于限制类,将被淘汰。因此,公司决定投资300万在公司内新建两段式煤气发生炉作为辊道干燥窑和烧成窑供应燃料。两段式煤气发生炉是我国八十年代发展起来的一种新型的煤气生产设备。该设备集焦化、气化于一身,所产煤气质量好、热值高。特别适用于需高热值煤气的工业窑炉如陶瓷业的辊动窑、玻璃业的池窑以及其它加热炉等,也适合用作小型民用的城市煤气。另外,该设备具有热效率高,煤气成本低;煤气生产过程中因采用先进的工艺,无二次污染,能达到国家环保要求。 根据《中华人民共和国环境保护法》、《建设项目环境保护管理条例》和《江西省建设项目环境保护条例》的有关规定,南昌吉尼斯陶瓷发展有限公司委托南昌大学环境工程研究所对两段式煤气发生炉项目进行环境影响评价工作。

煤气发生炉基础知识

煤气发生炉基础知识 由空气与自产的蒸汽混合成的汽化剂,从炉底鼓风想进入炉内,发生化学反应生成粗煤气,粗煤气从煤气发生炉上部输出,然后经除尘、净化后成为净煤气。在发生炉内各个层次的反应及排列顺序如下: . 1、干燥层:位于整个煤层的最上层,不发生化学反应,只起干燥作用,使入炉煤中的水份蒸发。 2、干馏层:干燥层的下面是干馏层,温度较上层高,可使煤干馏得到甲烷等烃类及其它气体成份。 3、还原层:处于干馏层之下,高温的CO2和未反应的气化剂继续上行,在还原层中CO2和水蒸汽与赤热的碳相互作用,发生还原反应。反应如下: C+CO2=2CO-Q C+H2O=CO+H2-Q C+2H2O=CO2+2H2-Q 4、氧化层:还原层下面是氧化层,煤中的固定碳与空气中氧发生氧化反应生成二氧化碳,并放出大量的热量,使炉内保持较高的温度,氧化层是炉内温度最高的地方。主要反应方程式如下: C+O2=CO2+Q 2C+O2=2CO+Q 2CO+O2=2CO+Q 5、灰渣层:该层位于整个煤层的最下层,对炉篦起保护作用。对进入炉内的空气由 于热的作用。 煤气产量与主要成份简述: 每公斤煤产混合煤气3m3左右,混合煤气主要可燃成分为CO,约占28%(体积比),其次为H2,约占15%,CH4约占1%左右,重烃类约占0.2%左右,其余为氮气。据资料显示,煤气中可燃物成份分别为:H2=13~18℅、CO≥25℅、CH4=1~2.5℅、CXHY=0.2~0.4℅;不燃成分主要为氮气,含量约50%。煤气经除尘器除尘后含烟尘浓度约160mg/m3,含硫(主要以硫化氢形式存在,并有少量的SO2)浓度约906mg/m3,经净化后煤气通入加热炉中燃烧。 煤气在燃烧时需混合空气燃烧,每燃烧1m3的煤气产生的烟气量按下式计算: Vy=0.725 +1.0+1.0161(a-1)Vo 式中: Vy——烟气产生量,m3; Q——煤气的低热值,5020~5670kJ/m3; a——空气过剩系数,加热炉a=1.7; Vo——理论烟气量,m3,Vo=0.209 煤气发生炉鼓风量与饱和温度的控制与调整

生产工艺流程示意图和工艺说明

AHF生产工艺流程示意图和工艺说明 干燥的萤石粉经螺旋机进入斗式提升机、卸入萤石粉储仓,再由储仓定时加入萤石计量斗,经电子秤,变频调节螺旋输送机将萤石粉定量送入反应器。 来自硫酸储槽的98%硫酸经电磁流量计、调节阀调节流量送至H2SO4吸收塔吸收尾气中的HF,而后进入洗涤塔洗涤反应气体夹带的粉尘及其夹带的重组分,然后进入混酸槽。发烟硫酸经电磁流量计、调节阀调节流量与98%硫酸配比计量后一并送至混酸槽。在混酸槽中经过混合,使SO3与98%硫酸中的水分及副反应水分充分反应,达到进料酸中水含量为零,而后进入反应器。进入反应器的萤石和硫酸严格控制配比,在加热的条件下氟化钙和硫酸进行反应。反应所需热量由通过转炉夹套的烟道气提供。烟道气来自燃烧炉由煤气燃烧产生。煤气发生炉产生的煤气经管道输送至燃烧炉。离开回转反应炉夹套的烟道气经烟道气循环风机大部分循环回燃烧炉,少量烟道气经烟囱排空。反应系统为微负压操作,炉渣干法处理。 反应生成的粗氟化氢气体,首先进入洗涤塔除去水分、硫酸和粉尘。洗涤塔出来的气体经粗冷器将其大部分水分、硫酸冷凝回洗涤塔。粗冷后的气体经HF水冷、一级冷凝器和二级冷凝器将大部分HF 冷凝,冷凝液流入粗氟化氢中间储槽;未凝气为SO2、CO2、SiF4、惰性气体及少量HF进入H2SO4吸收塔,用硫酸吸收大部分HF后进入尾气处理系统。粗HF凝液自粗HF中间储槽定量进入精馏塔,塔底为重组分物料,返回洗涤酸循环系统,塔顶HF经冷凝后进入脱气塔,从脱气塔底部得到无水氟化氢经成品冷却器冷却后进入AHF检验槽,分

析合格后进入AHF 储槽,后送至充装工序灌装槽车或钢瓶出售。从脱气塔顶排出的低沸物和部分未凝HF 气一起进入H 2SO 4吸收塔,在此大部分HF 被硫酸吸收。工艺尾气经水洗、碱洗后,除去尾气中的SiF 4及微量HF ,生成氟硅酸,废气经洗涤处理后达标排放。生产装置采用DCS 集散控制系统。 其化学反应过程如下: CaF 2+H 2SO 4?→? 2HF ↑+CaSO 4 (1) SiO 2+4HF ?→? SiF 4+2H 2O (2) SiF 4+2HF ?→ ?H 2SiF 6 (3) CaCO 3+H 2SO 4 ?→ ?CaSO 4+H 2O +CO 2 (4) ·生产采取的工艺技术主要包括7个生产装置 萤石干燥单元 萤石给料计量单元 酸给料计量单元 反应单元 精制单元 尾气回收单元 石膏处理单元 附:生产工艺流程示意图 ↓ ↓

煤气发生炉安全设计要求

煤气发生炉安全设计要求 煤气是使用最广泛的一种可燃气体。燃烧无烟、火力强、易点燃且 不污染环境,所以被广泛应用于工业生产,如陶瓷、耐火材料、金属加 工等。煤气是由煤等固体燃烧或重油等液体燃料经干馆气化等过程而得 的气体产物。它的主要成份是氢气、一氧化碳和轻炷类。着火温度在 500C—600C之间,与空气混合成一定比例后,遇火会爆炸。所以煤气在 生产以及输配过程中,一旦发生爆炸,往往会造成人员伤亡和财产的巨 大损失,因此切实落实煤气发生站的防火设计显得尤为重要。 一、防火间距方面。 根据〈〈建筑设计防火规范》GBJ16-87的规定,煤气发生炉煤气站 与相邻厂房应满足10m的防火间距,与民用建筑应满足25m的防火间 距。对于产气量小于6000立方/小时的小型煤气站,〈〈发生炉煤气站 设计规范》中规定,可与煤气用户的车间相毗连,但应设防火墙。这里 的无间距要求,只是对直接使用该煤气发生炉煤气且相邻外墙为防火墙 的车间而言的,对非煤气用户的车间仍应满足10m的防火间距。 二、设备安全方面。 在实际的煤气生产中,煤气发生炉多为半敞开式生产,所使用的煤气发生炉为固定床式全气化炉。这类制气系统是在高压下运行,没有外界空气吸入的可能,但也因为其压力高,设备和管道系统的密封性也要求高,因此应在设备薄弱处或易受爆破气浪直接冲击的部位装设爆破阀。〈〈发生炉煤气设计规范》GB50195-94中只规定了在电气滤清器及洗涤塔上装设爆破阀。但笔者认为除上述两处之外还应在除尘器及分管道的末端安装防爆膜。因为在正常生产过程中,除尘器中的水封已撤去直接与煤气管路相

连通,一旦出现故障,密封煤气管道是中往除尘器中紧急注水来实现的,若操作失误,易形成负压,极容易吸入空气,而引发爆炸。并且还应在煤气发生炉的炉顶、煤气出口处煤气总管和分管的末端增设放散管。该放散管上应设取样嘴,以利检修吹扫管道时,检测煤气的含量。放散管的直径根据炉的容积来确定,若容积大于或等于1立方,放散管不应小于100毫米;若小于1立方, 放散管不应小于50毫米。这样才能做到煤气在管路中的放空不留死角,从而有效地降低因回火造成煤气管路爆炸的机率。 三、电气设备方面。 虽然在〈〈发生炉煤气设计规范》GB50195-94上确定了主厂房的底层及操作层属非爆炸危险环境,对煤气用户车间未做要求,但在发生炉顶部及管道敷设车间仍应属于爆炸危险环境。因为煤气在炉内以及管道中是以高压维持且分管道上设置有放散管,极易泄漏。而且发生炉的加煤和出灰是依靠煤锁斗和灰锁斗来封闭炉内高压煤气的,须将锁斗内的高压煤气释放,才能进行,一旦密封不严或操作失误,煤气便会喷出,极易形成爆炸性混合气体。所以在这部分的照明及动力用电仍应采用防爆设计和增设CO气体报警器,以更好地满足消防安

m×1两段式煤气发生炉设计方案word参考模板

××××管业有限公司 φ3.2m×1两段式煤气发生炉(热脱)煤气站 设 计 方 案 环保工程有限公司

一、φ3.2m两段式煤气发生炉简介 目前,我国混合型煤气炉,主要有单段式和两段式之分,而两段式煤气炉,其气化和综合效率均比单段式煤气炉高,操作弹性大,劳动强度低,煤种适应性强,(适用于烟煤),特别是煤气站因全部采用闭路循环,无环境污染,节水显著,长期运行费用低廉而被广泛采用。 我公司是生产煤气发生炉的专业厂家,多年来的生产和实践,培养和拥有了一支从事设计、制造、安装及销售服务的专业技术队伍。公司以“追求质量”为原则,“信誉第一”为宗旨,以供货时间短,价格低、服务优,赢得了广大用户的信赖。我公司在兄弟单位两段式煤气炉基础之上,与公司的技术协作单位:中国煤炭科学研究总院共同开发的新型两段式煤气炉,主要适用于陶瓷、化工、冶炼、玻璃等行业。集众家之长,结合用户使用情况,在煤气站工艺中作了许多适用且有益的改进,使两段式煤气炉结构更加合理,使用更加方便,工程造价更加低廉,施工周期更加缩短。 二、工艺流程简述(见附表一) 二段式煤气发生炉制气属于空气鼓风连续制气方式:炉体水夹套自产的低压蒸汽和鼓风空气混合组成的饱和气作为气化剂,(饱和温度一般控制在55~65℃之间)。经过干式止回阀从煤气炉底部风管经过炉栅进入气化炉内,在气化段内与逆向加入的原料煤所形成的热半焦发生气化反应生成热煤气。其中有近70 %左右的热煤气经过中心钢管及环型炉墙内的通道导出,形成下段煤气;其余约30 %左右的热煤气直接对干馏段中的烟煤加热、干燥、干馏,与干馏煤气混合形成上段煤气。 (1)上段煤气的产生 入炉的烟煤被气化段产生的热煤气加热首先失去内外水分(90~150℃),继而逐渐被干馏(150~550℃)脱出挥发分,挥发分成份为焦油、烷烃类气体、

两段式煤气发生炉产气原理

http: 两段式煤气发生炉产气原理 两段式煤气发生炉分上段和下段煤气出口,首先煤从炉顶煤仓经两组下煤阀进入炉内,煤在干馏段经过充分的干燥和干馏,逐渐形成半焦,进入气化段,炽热的半焦在气化段与炉底鼓入的气化剂充分反应,经过炉内还原层、氧化层进行汽化,由炉栅驱动从灰盆自动排出灰渣,煤在干馏的过程中,将挥发分析出生成上段干馏煤气,约占总煤气量的40%,其热值较高(7400KJ/NM),温度较底(120℃),并含有大量的焦油.这种焦油为低温干馏产物,其流动性较好,可采用静电除尘器捕集起来,作为化工原料和燃料.在气化段,炽热的半焦和汽化剂经过氧化、还原等一系列化学反应生成的煤气,称为下段煤气,约占总煤气量的60%,其热值相对较低 (6000KJ/NM),温度较高(450℃),因煤在干馏段低温干馏时间充足,进入气化段的煤已变成半焦,因而生成的煤气基本不含焦油.底部煤气经旋风除尘器、风冷器等设备进行除尘降温进入间冷器,与上段煤气汇合进入电捕轻油器得到进一步净化,保证了净化煤气的质量,满足了用户生产的需要。 (风冷)两段式煤气发生炉是由干馏段和气化段组成的煤气化设备。它以40-60mm的烟煤为原料,在煤气炉上段中进行干馏,干馏生成的半焦进入两段炉的下段进行气化反应,煤的干馏和氧化集中在同一气化炉内完成,对生成的干馏煤气和氧化煤气经优化配置的后处理设备分别进行除尘、除油、冷却、脱硫等工艺处理。经过处理后的洁净煤气经加压输送系统供给工业窑炉作为燃料使用。根据不同窑炉对煤气质量的要求分别有两段式热脱焦油煤气、两段式冷净式煤气工艺。整个系统包括煤提升系统、供煤系统、供风系统、轻焦油捕集及回收系统、酚水处理及酚水焚烧系统、自动控制系统、煤气贮存及加压输出系统。 本公司两段炉系英国FWH公司在几十年的实验基础上设计出来,并经工业性应用后多次改进定型的一种先进煤制气设备,其显著特点如下: (1)底部煤气由36个耐火通道提取,并有6个底部煤气调节阀来调节整个炉膛面的燃烧平衡。 (2)底部煤气另设一路中心管提取,其作用为:

煤气发生炉设计规范

1 总则 1.0.1 为使发生炉煤气站的设计能保证安全生产,节约能源,保护环境,做到技术先进,经济合理,制定本规范。 1.0.2 本规范适用于工业企业新建、扩建和改建的常压固定床发生炉煤气站和煤气管道的设计。对扩建和改建的工程,应合理地充分利用原有的设备、管道、建筑物和构筑物。 本规范不适用于水煤气站和水煤气管道的设计。 1.0.3 发生炉煤气站的环境保护设施,必须与主体工程同时设计,各项有害物质的排放和噪声的危害必须严格控制,并应符合国家现行有关标准的规定。 1.0.4 发生炉煤气站和煤气管道的设计,除应符合本规范外,尚应符合国家现行有关标准、规范的规定。 2 术语 2.0.1 发生炉煤气站producer gas station 为生产煤气而设置的主厂房、煤气排送机间、空气鼓风机间、煤和灰渣贮运、循环水系统以及辅助设施等建筑物和构筑物的总称。 2.0.2 运煤栈桥overhead bridge for coal conveyer 运输煤、焦炭或灰渣的胶带走廊。 2.0.3 破碎筛分间crasher and screen room 装有煤或焦炭的破碎设备或筛分设备的房间。 2.0.4 受煤斗coal receiving hopper 在煤场内或机械化运煤设备前的贮煤斗。 2.0.5 末煤pulverized coal 粒度为0—13mm的煤。 2.0.6 机械化运输transport by conveyer 胶带输送机、多斗提升机、刮板机和水力除灰渣等运输方式。 2.0.7 半机械化运输transport by simple machine 单轨电葫芦、单斗提升机、电动牵引小车、有轨手推矿车和简易运煤机械等运输方式。 2.0.8 磁选分离设施magnetic separator 在运煤系统上装磁选设备、悬吊式磁铁分离器、电磁胶带轮。 2.0.9 小型煤气站small type gas station 在标准状态下,煤气设计产量小于或等于6000m3/h的煤气站。 2.0.10 中型煤气站medium type gas station 在标准状态下,煤气设计产量介于6000m3/h小型煤气站和50000m3/h大型煤气站之间的煤气站。

两段式煤气发生炉说明书

双段煤气煤说明书 1. 煤气发生炉的简介 D3.0两段煤气发生炉是带有干馏段连续鼓风的煤气发生炉,采用液压程控自动加煤机,煤气发生炉有上下两个出口,煤从给料装置进入干馏 段,逐级到由下段上来的煤气直接接触和经隔墙间接接触加热而均匀干 馏,干馏出来的煤气和轻质焦油随下段上来的煤气合在一起从上段顶煤 气出口出炉,经过干馏的煤落入下段时已是焦炭或半焦,气化后的煤气如 上所述除一部分进入上段外,大部分经中间隔墙和环状隔墙由底煤气出 口出炉,这部分煤气不带焦油,上下段煤气的比例视用户需要可在1/3;2/3 左右调节,与普通煤气发生炉相比,煤气发热量约高420~630千焦/标立方 米(100~150千卡/标立方米)上段顶煤气所含焦油基本为低温焦油,带灰尘 少,流动性好,易于清除,下段底煤气中不含焦油。 采用两段煤气发生炉,如用作清洗煤气(冷煤气),水处理较为简单,且有两种不同发热量的煤气供选用,不需要两种发热量时经过清洗 系统后仍可合并供用户,如为热煤气,轻质焦油不易在管道内沉积,煤 气输送距离远,可减少繁重的管道清理工作。 两段煤气发生炉适用于机械,冶金,建材,轻工等业。 2.规格和性能 2.1主要技术规格 炉膛内径 3.0m 炉膛断面积 7.07㎡ 水套受热面积 16.5㎡ 水套压力 0.07Mpa 干馏段高度 5.75m

速 0.15—1.5r/h(无级变速) 发生炉总重 108t 其中耐火砖 59t 操作荷重 150t 2.2操作性能指标 选用燃料 不粘结煤,弱粘结煤,长焰煤,部分褐煤,自由膨胀指数<2.0,罗加指数<2.0 使用燃料粒度 20—40mm,25—50mm,30—60mm 燃料消耗量 2000-2670Kg/h 煤气产量(按煤的吕种而定) 顶煤气 7400--7800 Kj/N㎡ 底煤气 5500--6000 Kj/N㎡ 混合 6450—6900Kj/N㎡ 煤气出口温度:顶煤气 100--150℃ 底煤气 500--600℃ 煤气出口压力:顶煤气 1.47Kpa 底煤气 1.47Kpa 炉底最大鼓风压力 6.0Kpa 探火孔汽封压力 0.294Mpa 水套蒸汽压力 550Kg/h

合成氨工艺流程

工艺流程说明: 将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到1.9~2.0Mpa,送入脱硫塔,用A.D.A.溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机12.09~13.0Mpa后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到30.0~32.0 MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。 上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。 二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。 CO变换:一氧化碳对氨催化剂有毒害,因此在原料气进入合成氨工序之前必须将一氧

煤气发生炉制气方案

发生炉制气方案 发生炉煤气在我国作为燃气较为普遍,其原因是一次性投资少,工艺流程简单、操作方便、原料供应广泛、操作安全,热值为1200~1400大卡/Nm3,适应于建材行业(玻璃、地板砖、陶瓷)作燃气热源。采用发生炉煤气为炉窑提供补充热源,便于炉窑温度控制,可有效提高产品的成品率。 1.原料要求 发生炉对原料的适应性比较广,一般可采用焦炭、无烟煤、不粘煤或弱粘煤。本方案考虑环境及污水治理问题,推荐选择无烟煤或焦炭为原料。对原料的品质要求如下: 原料粒度:无烟煤6~75mm,焦碳6~75mm 灰份:<25% 机构强度≥65% 热稳定性≥65% 灰熔点ST>1250℃。 2.工艺流程及主要气化指标 本设计采用Φ3.3m发生炉二台(一开一备)。图1示出了发生炉制气工艺流程方框图。 煤(焦)通过连续加料方式加入到气化炉内,炽热的煤(焦)与外来加入的蒸汽、空气在气化炉内发生气化反应,生成粗煤气,经除尘器除去较大颗粒的飞灰,再经洗涤箱、洗涤塔、洗涤除去细灰和部分焦油,使粗煤气温度降至45℃,再经焦碳过滤器、电辅焦油器除去剩余焦油,

经气体压缩机加压,送去窑炉作净燃气使用。 图1 发生炉主要技术指标: 干煤气主要成份% CO2CO H2CH4N2 5~7 24~30 14~18 1~3 48~53 产气量Nm3/h 5800~7800 煤气热值大卡/Nm3 1200~1400 煤(焦)消耗kg/h 1600~3000 最气化指标取决于原料品质。

3.主要设备一览表 设备名称台数备注 上煤机 1 料仓 1 自动加料器1+1 与气化炉相配空气鼓风机1+1 发生炉1+1 Φ3.3m 凉水塔 1 旋风除尘1+1 洗涤箱1+1 洗涤塔 1 焦碳过滤器1+1 电辅焦油器 1 气体压缩机1+1 污水池 1 澄清池 1 污水泵1+1 循环泵1+1 软水泵1+1 汽包 1

两段式煤气发生炉工艺

二段式煤气发生炉煤气站工艺: 合格原料煤由皮带机输送提升至主厂房储煤仓,再经双滚筒液压加煤机加入炉内,煤受到来自气化段煤气的加热干馏,干馏后半焦状态下的煤炭在气化段与气化剂(空气,蒸汽)发生反应,气化段生成的煤气分为两部分,一部分从两段炉下段煤气出口经旋风除尘器出炉,另一部分向上经中心管与干馏煤气混合从上段煤气出口出炉。下段出口煤气经旋风除尘器降温除尘后进入强制风冷器,继续除尘降温,然后进入间冷器进一步降温。上段出口煤气进入电捕焦油器除焦后,直接进入间冷器,与下段煤气混合,在混合中完成降温,混合后煤气进入电捕轻油器,捕除轻油,煤气经加压风机加压后送往水雾捕滴器脱水送往用户。 两段式煤气发生炉自上而下由干馏段和气化段组成,首先煤从炉顶煤仓经两段下煤阀进入炉体,煤在干馏段经过充分的干燥和长时间的低温干馏,逐渐形成半焦,进入气化段,炽热的半焦在气化段与炉底鼓入的气化剂充分反应,经过炉内还原层,氧化层而形成灰渣,由炉栅驱动从灰盆自动排出。煤在低温干馏的过程中,以挥发分析出为主生成的煤气称为干馏煤气,组成两段炉的顶部煤气,约占总煤气量的 40% ,其热值较高( 6700KJ/nm3)温度较低(120°C ),并含有大量的焦油。这种焦油为低温干馏产物,其流动性较好,可采用静电除尘器捕集起来,作为化工原料和燃料。在气化段,炽热的半焦和气化及经过还原,氧化等一系列化学反应生成的煤气,称为气化煤气。组成两段炉的底部煤气,约占总煤气量的 60% ,其热值相对较低( 6400KJ/nm3),温度较高( 450°C 左右 ) 因煤在干馏段低温干馏时间充足,进入气化段的煤已变成半焦,因此生成的气化煤气不含焦油,又因距炉栅灰层较近,所以含有少量飞灰。底部煤气就可经旋风除尘器及风冷器等设备来处理,这样对于使用冷静化煤气的用户,便可不采用水洗法就能使用上冷静化煤气,从而避免了大量酚水无法处理的缺陷。 3.2m 两段式冷煤气站(厂房为钢结构) 2.6m 两段式冷煤气站(厂房为混凝土结构)2.0m 两段式冷煤气站 煤气站特点:

相关主题
文本预览
相关文档 最新文档