当前位置:文档之家› 数学分支

数学分支

数学分支
数学分支

数学分支学科的历史发展

摘要:数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。这三大类数学构成了整个数学的本体与核心。在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。本文简要介绍数学三大核心领域中十几门主要分支学科的有关历史发展情况。

关键字:代数学几何学分析学

代数学范畴

一、算术

算术有两种含义,一种是从中国传下来的,相当于一般所说的“数学”,如《九章算术》等。另一种是从欧洲数学翻译过来的,源自希腊语,有“计算技术”之意。现在一般所说的“算术”,往往指研究自然数(正整数)、分数、小数的简单性质,及其加、减、乘、除、乘方、开方运算法则的一门学科,是数学中最基础的部分,中国古代将数学和数学书也统称为算术。如果是在高等数学中,则有“数论”的含义。作为现代小学课程内容的算术,主要讲的是自然数、正分数以及它们的四则运算,并通过由计数和度量而引起的一些最简单的应用题加以巩固。

算术是数学中最古老的一个分支,它的一些结论是在长达数千年的时间里,缓慢而逐渐地建立起来的。它们反映了在许多世纪中积累起来,并不断凝固在人们意识中的经验。

自然数是在对于对象的有限集合进行计算的过程中,产生的抽象概念。日常生活中要求人们不仅要计算单个的对象,还要计算各种量,例如长度、重量和时间。为了满足这些简单的量度需要,就要用到分数。

现代初等算术运算方法的发展,起源于印度,时间可能在10世纪或11世纪。它后来被阿拉伯人采用,之后传到西欧。15世纪,它被改造成现在的形式。在印度算术的后面,明显地存在着我国古代的影响。

19世纪中叶,格拉斯曼第一次成功地挑选出一个基本公理体系,来定义加法与乘法运算;而算术的其它命题,可以作为逻辑的结果,从这一体系中被推导出来。后来,皮亚诺进一步完善了格拉斯曼的体系。

算术的基本概念和逻辑推论法则,以人类的实践活动为基础,深刻地反映了世界的客观规律性。尽管它是高度抽象的,但由于它概括的原始材料是如此广泛,因此我们几乎离不开它。同时,它又构成了数学其他分支的最坚实的基础。

二、代数学

数学的一门重要分科。由算术发展而来。用字母表示数,研究数和字母以及字母表达式的运算和变换。早期代数学围绕求解代数方程和方程组而展开,主要包括:方程根的个数及分布,方程可解性的条件,方程根与系数的关系等。19世纪后期,代

数学的研究对象扩大到向量、矩阵等更一般元素的运算规律,并采用公理化的方法,探究群、环、域等抽象代数结构的本质特性,从而形成近世代数学(又称抽象代数学)。另:韦达在其《分析引论》中第一次有意识地使用系统的代数字母与符号,有不同的字母代表已知量和未知量。他把符号性代数称作“类的算术”,同时规定了算术与代数的分界,认为代数运算施行于事物的类或形式,算术运算施行于具体的数。这就使代数成为研究一般类型的形式和方程的学问,因其抽象而应用更为广泛。

代数大致分为以下几类:

基本代数:学习以位置标志符标记常数和变数的符号,与掌控包含这些符号的表示式及方程式的法则,来记录实数的运算性质。 (通常也会涉及到中等代数和大学代数的部分范围。)

基本代数大体主要分为初等代数和高等代数。

(一)初等代数

作为中学数学课程主要内容的初等代数,其中心内容是方程理论。代数一词的拉丁文原意是“归位”。代数方程理论在初等代数中是由一元一次方程向两个方面扩展的:其一是增加未知数的个数,考察由有几个未知数的若干个方程所构成的二元或三元方程组(主要是一次方程组);其二是增高未知量的次数,考察一元二次方程或准二次方程。初等代数的主要内容在16世纪便已基本上发展完备了。

古巴比伦(公元前19世纪~前17世纪)解决了一次和二次方程问题,欧几里得的《原本》(公元前4世纪)中就有用几何形式解二次方程的方法。我国的《九章算术》(公元1世纪)中有三次方程和一次联立方程组的解法,并运用了负数。3世纪的丢番图用有理数求一次、二次不定方程的解。13世纪我国出现的天元术(李冶《测圆海镜》)是有关一元高次方程的数值解法。16世纪意大利数学家发现了三次和四次方程的解法。

代数学符号发展的历史,可分为三个阶段。第一个阶段为三世纪之前,对问题的解不用缩写和符号,而是写成一篇论文,称为文字叙述代数。第二个阶段为三世纪至16世纪,对某些较常出现的量和运算采用了缩写的方法,称为简化代数。三世纪的丢番图的杰出贡献之一,就是把希腊代数学简化,开创了简化代数。然而此后文字叙述代数,在除了印度以外的世界其它地方,还十分普通地存在了好几百年,尤其在西欧一直到15世纪。第三个阶段为16世纪以后,对问题的解多半表现为由符号组成的数学速记,这些符号与所表现的内容没有什么明显的联系,称为符号代数。

16世纪韦达的名著《分析方法入门》,对符号代数的发展有不少贡献。16世纪末,维叶特开创符号代数,经笛卡尔改进后成为现代的形式。

“+”、“-”号第一次在数学书中出现,是1489年魏德曼的著作。不过正式为大家所公认,作为加、减法运算的符号,那是从1514年由荷伊克开始的。1540年,雷科德开始使用现在使用“=”。到1591年,韦达在著作中大量使用后,才逐渐为人们所接受。1600年哈里奥特创用大于号“>”和小于号“<”。1631年,奥屈特给出“×”、“÷”作为乘除运算符。1637年,笛卡尔第一次使用了根号,并引进用字母表中头前的字母表示已知数、后面的字母表示未知数的习惯做法。至于“≮”、“≯”、“≠”这三个符号的出现,那是近代的事了。

数的概念的拓广,在历史上并不全是由解代数方程所引起的,但习惯上仍把它放在初等代数里,以求与这门课程的安排相一致。公元前4世纪,古希腊人发现无理数。公元前2世纪(西汉时期),我国开始应用负数。1545年,意大利的卡尔达诺开始使用虚数。1614年,英国的耐普尔发明对数。17世纪末,一般的实数指数概念才逐步形成。

(二)高等代数

在高等代数中,一次方程组(即线性方程组)发展成为线性代数理论;而—、二次方程发展成为多项式理论。前者是向量空间、线性变换、型论、不变量论和张量代数等内容的一门近世代数分支学科,而后者是研究只含有一个未知量的任意次方程的一门近世代数分支学科。作为大学课程的高等代数,只研究它们的基础。

1683年关孝和(日本人)最早引入行列式概念。关于行列式理论最系统的论述,则是雅可比1841年的《论行列式的形成与性质》一书。在逻辑上,矩阵的概念先于行列式的概念;而在历史上,次序正相反。凯雷在1855年引入了矩阵的概念,在1858年发表了关于这个课题的第一篇重要文章《矩阵论的研究报告》。

19世纪,行列式和矩阵受到人们极大的关注,出现了千余篇关于这两个课题的

文章。但是,它们在数学上并不是大的改革,而是速记的一种表达式。不过已经证明它们是高度有用的工具。

多项式代数的研究始于对3、4次方程求根公式的探索。1515年,菲洛解决了被简化为缺2次项的3次方程的求解问题。1540年,费尔拉里成功地发现了一般4次方程的代数解法。人们继续寻求5次、6次或更高次方程的求根公式,但这些努力在200

多年中付诸东流。

1746年,达朗贝尔首先给出了“代数学基本定理”的证明(有不完善之处)。这个定理断言:每一个实系数或复系数的n次代数方程,至少有一个实根或复根。因此,一般地说,n次代数方程应当有n个根。1799年,22岁的高斯在写博士论文中,

给出了这个定理的第一个严格的证明。1824年,22岁的阿贝尔证明了:高于4次的一般方程的全部系数组成的根式,不可能是它的根。1828年,年仅17岁的伽罗华创立了“伽罗华理论”,包含了方程能用根号解出的充分必要条件。

抽象代数:讨论代数结构的性质,例如群、环、域等。这些代数结构是在集合上定义运算而来,而集合上的运算则适合某些公理。

1843年,哈密顿发明了一种乘法交换律不成立的代数——四元数代数。第二年,格拉斯曼推演出更有一般性的几类代数。1857年,凯雷设计出另一种不可交换的代数——矩阵代数。他们的研究打开了抽象代数(也叫近世代数)的大门。实际上,减弱或删去普通代数的某些假定,或将某些假定代之以别的假定(与其余假定是相容的),就能研究出许多种代数体系。

1870年,克隆尼克给出了有限阿贝尔群的抽象定义;狄德金开始使用“体”的说法,并研究了代数体;1893年,韦伯定义了抽象的体;1910年,施坦尼茨展开了体的一般抽象理论;狄德金和克隆尼克创立了环论;1910年,施坦尼茨总结了包括群、代数、域等在内的代数体系的研究,开创了抽象代数学。

1926年,诺特完成了理想(数)理论;1930年,毕尔霍夫建立格论,它源于1847年的布尔代数;第二次世界大战后,出现了各种代数系统的理论和布尔巴基学派;1955年,嘉当、格洛辛狄克和爱伦伯克建立了同调代数理论。

到现在为止,数学家们已经研究过200多种这样的代数结构,其中最主要德若当代数和李代数是不服从结合律的代数的例子。这些工作的绝大部分属于20世纪,它们使一般化和抽象化的思想在现代数学中得到了充分的反映。

抽象代数是研究各种抽象的公理化代数系统的数学学科。典型的代数系统有群、环、域等,它们主要起源于19世纪的群论,包含有群论、环论、伽罗华理论、格论、线性代数等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。抽象代数已经成了当代大部分数学的通用语言。

现在,可以笼统地把代数学解释为关于字母计算的学说,但字母的含义是在不断地拓广的。在初等代数中,字母表示数;而在高等代数和抽象代数中,字母则表示向量(或n元有序数组)、矩阵、张量、旋量、超复数等各种形式的量。可以说,代数已经发展成为一门关于形式运算的一般学说了。

线性代数:专门讨论矢量空间,包括矩阵的理论。是代数学的一个分支。早期研究线性方程组的解法,后来拓展为研究一般向量空间的结构,以及线性变换的标

准形式和不变量等。不仅在其他数学分支,而且在物理学、经济学和工程技术等方面都有广泛的应用。

线性代数的研究最初出现于对行列式的研究上。行列式当时被用来求解线性方程组。莱布尼茨在1693年使用了行列式。随后,加布里尔·克拉默在1750年推导出求解线性方程组的克莱姆法则。然后,高斯利用高斯消元法发展出求解线性系统的理论。这也被列为大地测量学的一项进展。现代线性代数的历史可以上溯到19世纪中期的英国。1843年,哈密顿发现了四元数。1844年,赫尔曼·格拉斯曼发表了他的著作《线性外代数》,包括了今日线性代数的一些主题。1848年,詹姆斯·西尔维斯特引入了矩阵。阿瑟·凯莱在研究线性变换时引入了矩阵乘法和转置的概念。很重要的是,凯莱使用了一个字母来代表一个矩阵,因此将矩阵当做了聚合对象。他也意识到矩阵和行列式之间的联系。不过除了这些早期的文献以外,线性代数主要是在二十世纪发展的。在抽象代数的环论开发之前,矩阵只有模糊不清的定义。随着狭义相对论的到来,很多开拓者发现了线性代数的微妙。进一步的,解偏微分方程的克莱姆法则的例行应用导致了大学的标准教育中包括了线性代数。

泛代数:讨论所有代数结构的共有性质。以一般代数系统为研究对象的一个数学分支。在诸如矩阵群、置换群、变换群等具体的群概念基础上,经过抽象概括而得出抽象群的概念;与此类似,可以在一般的群、环、布尔代数、模、格、半群等等概念之上再抽象,得出能概括它们的共性的更加一般的概念。这种方法和任务,早在1898年A.N.怀特海就已提出了,但是直到20世纪30年代末期在G.伯克霍夫的著名工作之后,泛代数才真正发展起来。

计算代数:讨论在电脑上进行数学的符号运算的演算法。

逻辑代数:又称“布尔代数”、“开关代数”。研究逻辑问题的一门数学。是现代数学中的一个重要分支。由英国数学家布尔提出。其逻辑变量的取值仅为“0”和“1”。基本逻辑运算有“与”、“或”、“非”等。是设计计算机的有力工具。

三、数论

数学是科学的皇后,数论是数学的皇后。 --卡尔·弗里德里希·高斯

数论是纯粹数学的分枝,专门研究整数的性质,产生了很多一般人也能理解而又悬而未解的问题,如哥德巴赫猜想。很多诸如此类的问题虽然形式上十分初等,但事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。

数论是数学的一个分科,主要研究正整数的性质及其有关的规律。按研究方法的不同,大致可分为初等数论﹑代数数论﹑几何数论﹑解析数论等。

初等数论:是研究数的规律,特别是整数性质的数学分支。它是数论的一个最古老的分支。它以算术方法为主要研究方法,主要内容有整数的整除理论、同余理论、连分数理论和某些特殊不定方程。换言之,初等数论就是用初等、朴素的方法去研究数论。意指使用不超过高中程度的初等代数处理的数论问题,最主要的工具包括整数的整除性与同余。重要的结论包括中国余数定理、费马小定理、二次互逆律等等。古希腊毕达哥拉斯是初等数论的先驱。他与他的学派致力于一些特殊整数(如亲和数、完全数、多边形数)及特殊不定方程的研究。公元前4世纪,欧几里德的《几何原本》通过102个命题,初步建立了整数的整除理论。他关于“素数有无穷多个”的证明,被认为是数学证明的典范。中国古代对初等数论的研究有着光辉的成就,《周髀算经》、《孙子算经》、《张邱建算经》、《数书九章》等古文献上都有记载。孙子定理比欧洲早500年,西方常称此定理为中国剩余定理,秦九韶的大衍求一术也驰名世界。初等数论不仅是研究纯数学的基础,也是许多学科的重要工具。它的应用是多方面的,如计算机科学、组合数学、密码学、信息论等。如公开密钥体制的提出是数论在密码学中的重要应用。

解析数论:是在初等数论无法解决的情况下发展起来的,因为,如果有了一个可以表达所有素数的素数普遍公式,一些由解析数论范围的内容,就自动转到初等数论的范围内。例如孪生素数猜想。以及哥德巴赫猜想。它借助微积分及复分析的技术来研究关于整数的问题,主要又可以分为积性数论与加性数论两类。积性数论借由研究积性生成函数的性质来探讨质数分布的问题,其中质数定理与狄利克雷定理为这个领域中最著名的古典成果。加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题。此外例如筛法、圆法等等都是属于这个范畴的重要议题。

代数数论:引申代数数的话题,关于代数整数的研究,主要的研究目标是为了更一般地解决不定方程的问题,而为了达到此目的,这个领域与代数几何之间有相当关

联, 比如类域论(class field theory) 就是此间的颠峰之作.它是数论的一个重要分支。它以代数整数,或者代数数域为研究对象,不少整数问题的解决要借助于或者归结为代数整数的研究。因之,代数数论也是整数研究的一个自然的发展。代数数论的发展也推动了代数学的发展。引申代数数的话题,关于代数整数的研究,主要的研究目标是为了更一般地解决不定方程的问题,而为了达到此目的,这个领域与代数几何之间的关联尤其紧密。代数数论主要起源于费马大定理的研究。法国数学家P. de费马在学习与翻译丢番图的《算术》一书时,在书边上写下了著名的"大定理",即方程x^n + y^n = z^n(n>2)没有xyz≠0的整数解。

算术几何:研究有理系数多变数方程组的有理数点, 其结构(主要是个数)和该方程组对应的代数簇的几何性质之间的关系,有名的费玛猜想 , Mordell 猜想, Weil 猜想, 和七个一百万问题中的 Birch-Swiner-Dyer 猜想都属此类。

几何数论:又称数的几何,应用几何方法研究某些数论问题的一个数论分支。几何数论是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。主要在于透过几何观点研究整数(在此即格点)的分布情形。几何数论研究的基本对象是“空间格网”。在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。最著名的定理为闵可夫斯基不等式(Minkowski 定理)。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才可以深入研究。

计算数论:借助电脑的算法帮助数论的问题,例如素数测试和因数分解等和密码学息息相关的话题。

超越数论:研究数的超越性,其中对于欧拉常数与特定的 Zeta 函数值之研究尤其令人感到兴趣。

组合数论:利用组合和机率的技巧,非构造性地证明某些无法用初等方式处理的复杂结论。这是由艾狄胥开创的思路。

以正整数作为研究对象的数论,可以看作是算术的一部分,但它不是以运算的观点,而是以数的结构的观点,即一个数可用性质较简单的其它数来表达的观点来研究数的。因此可以说,数论是研究由整数按一定形式构成的数系的科学。

早在公元前3世纪,欧几里得的《原本》讨论了整数的一些性质。他证明素数的个数是无穷的,他还给出了求两个数的公约数的辗转相除法。这与我国《九章算术》

中的“更相减损法”是相同的。埃拉托色尼则给出了寻找不大于给定的自然数N的全部素数的“筛法”:在写出从1到N的全部整数的纸草上,依次挖去2、3、5、7……的倍数(各自的2倍,3倍,……)以及1,在这筛子般的纸草上留下的便全是素数了。

当两个整数之差能被正整数m除尽时,便称这两个数对于“模”m同余。我国《孙子算经》(公元4世纪)中计算一次同余式组的“求一术”,有“中国剩余定理”之称。13世纪,秦九韶已建立了比较完整的同余式理论——“大衍求一术”,这是数论研究的内容之一。

丢番图的《算术》中给出了求x?+y?=z?所有整数解的方法。费尔马指出x^n +y^n=z^n在n>3时无整数解,对于该问题的研究产生了19世纪的数论。之后高斯的《数论研究》(1801年)形成了系统的数论。

数论的古典内容基本上不借助于其它数学分支的方法,称为初等数论。17世纪中叶以后,曾受数论影响而发展起来的代数、几何、分析、概率等数学分支,又反过来促进了数论的发展,出现了代数数论(研究整系数多项式的根—“代数数”)、几何数论(研究直线坐标系中坐标均为整数的全部“整点”—“空间格网”)。19世纪后半期出现了解析数论,用分析方法研究素数的分布。二十世纪出现了完备的数论理论。

几何学范畴

几何学(geometry)是研究空间关系的数学分支,有时简称为几何。几何是近代数学的两大领域之一,另外一个是研究数量关系的领域。现代概念上的几何其抽象程度和一般化程度大幅提高,并与分析、抽象代数和拓扑学紧密结合,很多分支几乎无法认出是从早期的几何学传承而来。几何学是研究空间区域关系的数学分支。“几何学”这个词,是来自阿拉伯文,原来的意义是“测量土地技术”。“几何学”这个词一直沿用到今天。在我国古代,这门数学分科并不叫“几何”,而是叫作“形学”。“几何”二字,在中文里原先也不是一个数学专有名词,而是个虚词,意思是“多少”。比如三国时曹操那首著名的《短歌行》诗,有这么一句:“对酒当歌,人生几何?”这里的“几何”就是多少的意思。谁把“几何”一词作为数学的专业名词来使用的,用它来称呼这门数学分科的呢?这是明末杰出的科学家徐光启。最早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。

几何最早的有记录的开端可以追溯到古埃及(参看古埃及数学),古印度(参看古印度数学),和古巴比伦(参看古巴比伦数学),其年代大约始于公元前3000

年。早期的几何学是关于长度,角度,面积和体积的经验原理,被用于满足在测绘,建筑,天文,和各种工艺制作中的实际需要。在它们中间,有令人惊讶的复杂的原理,以至于现代的数学家很难不用微积分来推导它们。例如,埃及和巴比伦人都在毕达哥拉斯之前1500年就知道了毕达哥拉斯定理(勾股定理);埃及人有方形棱锥的锥台(截头金字塔形)的体积的正确公式;而巴比伦有一个三角函数表。

中国文明和其对应时期的文明发达程度相当,因此它可能也有同样发达的数学,但是没有那个时代的遗迹可以使我们确认这一点。也许这是部分由于中国早期对于原始的纸的使用,而不是用陶土或者石刻来记录他们的成就。

欧几里得几何:简称“欧氏几何”。几何学的一门分科。公元前3世纪,古希腊数学家欧几里得把人们公认的一些几何知识作为定义和公理,在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。在其公理体系中,最重要的是平行公理,由于对这一公理的不同认识,导致非欧几何的产生。按所讨论的图形在平面上或空间中,分别称为“平面几何”与“立体几何”。

解析几何:用代数方法解决几何学问题的学科。解析几何中,用坐标表示点,用坐标间的关系表示和研究空间图形的性质。解析几何系指借助坐标系,用代数方法研究集合对象之间的关系和性质的一门几何学分支,亦叫做坐标几何。

解析几何包括平面解析几何和立体解析几何两部分。平面解析几何通过平面直角坐标系,建立点与实数对之间的一一对应关系,以及曲线与方程之间的一一对应关系,运用代数方法研究几何问题,或用几何方法研究代数问题。17世纪以来,由于航海、天文、力学、经济、军事、生产的发展,以及初等几何和初等代数的迅速发展,促进了解析几何的建立,并被广泛应用于数学的各个分支。在解析几何创立以前,几何与代数是彼此独立的两个分支。解析几何的建立第一次真正实现了几何方法与代数方法的结合,使形与数统一起来,这是数学发展史上的一次重大突破。作为变量数学发展的第一个决定性步骤,解析几何的建立对于微积分的诞生有着不可估量的作用。

分析学范畴

数理逻辑与数学基础:递归论, 模型论, 证明论, 公理集合证, 数理逻辑范畴论,它们都属于分析学范畴。

数理逻辑:亦称“符号逻辑”。狭义指用数学方法研究数学中的演绎思维以及数学基础的学科。广义指一切用符号和数学方法处理和研究演绎法的学问。既是数学的一个分支,又是逻辑学的一个分支。数理逻辑对数学研究和工程技术有重要意义,对一般思维中某些问题的解决也有成效。

数理逻辑是数学的一个分支,其研究对象是对证明和计算这两个直观概念进行符号化以后的形式系统。数理逻辑是数学基础的一个不可缺少的组成部分。

数理逻辑的研究范围是逻辑中可被数学模式化的部分。以前称为符号逻辑(相对于哲学逻辑),又称元数学,后者的使用现已局限于证明论的某些方面。

利用计算的方法来代替人们思维中的逻辑推理过程,这种想法早在十七世纪就有人提出过。莱布尼茨就曾经设想过能不能创造一种“通用的科学语言”,可以把推理过程象数学一样利用公式来进行计算,从而得出正确的结论。由于当时的社会条件,他的想法并没有实现。但是它的思想却是现代数理逻辑部分内容的萌芽,从这个意义上讲,莱布尼茨可以说是数理逻辑的先驱。

1847年,英国数学家布尔发表了《逻辑的数学分析》,建立了“布尔代数”,并创造一套符号系统,利用符号来表示逻辑中的各种概念。布尔建立了一系列的运算法则,利用代数的方法研究逻辑问题,初步奠定了数理逻辑的基础。十九世纪末二十世纪初,数理逻辑有了比较大的发展,1884年,德国数学家弗雷格出版了《数论的基础》一书,在书中引入量词的符号,使得数理逻辑的符号系统更加完备。对建立这门学科做出贡献的,还有美国人皮尔斯,他也在著作中引入了逻辑符号。从而使现代数理逻辑最基本的理论基础逐步形成,成为一门独立的学科。

模型论:是从集合论的论述角度对数学概念表现(representation)的研究,或者说是对于作为数学系统基础的“模型”的研究。粗略地说,该学科假定有一些既存的数学“对象”,然后研究:当这些对象之间的一些运算或者一些关系乃至一组公理被给定时,可以相应证明出什么,以及如何证明。模型论(Model theory)是数学的一个学科,模型论的一些重要定理,如紧致性定理,L-S-T 定理,省略型定理,插值定理等等,不仅对逻辑,集合论,递归论的研究有重要作用,而且也在数论、代数、拓扑等数学学科中得到应用。用模型论手法来研究逻辑系统,也叫做模型论逻辑;用模型论方法比较各种逻辑系统的强弱,分析各种逻辑系统的特点,叫抽象逻辑的模型论。用递归论方法研究模型论问题产生递归模型论。只研究有限模型的构造和判定叫有限模型论。用模型论的思想去研究代数结构、群、环、模、域等叫做代数模型论。研究模型分类的理论叫稳定性理论。现代模型论对计算机科学也有一定影响。

证明论:是数理逻辑的一个分支,它将数学证明表达为形式化的数学客体,从而通过数学技术来简化对他们的分析。证明通常用归纳式地定义的数据结构来表达,例如链表,盒链表,或者树,它们根据逻辑系统的公理和推理规则构造。因此,证明论本质上是语法逻辑,和本质上是语义学的模型论形相反。和模型论,公理化集合论,以及递归论一起,证明论被称为数学基础的四大支柱之一。

数学中的证明一向是逻辑学家研究的对象,但证明论是数学家D.希尔伯特于20世纪初期建立的,目的是要证明公理系统的无矛盾性,希尔伯特提出一整套严格的方案,规定只能用有限长的证明,要无可辩驳地给出整个数学的无矛盾性。他打算先给出公理化的算术系统的无矛盾性,再证明数学分析,集合论的无矛盾性。但1931年,K.哥德尔证明:一个包含公理化的算术的系统中不能证明它自身的无矛盾性。这就是著名的哥德尔不完备性定理。这个结果使希尔伯特方案成为不可能。但1936年,G.根岑降低了希尔伯特的要求,允许使用无穷长的证明,证明了算术公理系统的无矛盾性。到1960年,数学分析的一些片断的无矛盾性也被证明。20世纪60年代以后,证明论不再局限于无矛盾性的证明。数学证明中的结构,证明的复杂性,数学中不可判定问题都成为证明论的研究课题,1977年,J.帕里斯发现算术理论中的一个自然的而又是不可判定的命题,这是一个重大发现。它使算术中自然的不可判定命题的研究越来越受人注意。

递归论或可计算性理论:是一个数理逻辑分支,研究解决问题的可行的计算方法和

计算的复杂程度的一门学科,尤其是研究递归涵数及其推广。它起源于可计算函数和图灵度的研究。它的领域增长为包括一般性的可计算性和可定义性的研究。在这些领域中,这门理论同证明论和能行描述集合论有所重叠。递归论研究的函数主要包括本原函数、原始递归函数、递归半函数和递归全函数或称一般递归函数、可摹状函数等等。

公理化集合论:用形式化公理化方法研究集合论的一个学科。数理逻辑的主要分支

之一。在数学中,公理化集合理是集合论透过建立一阶逻辑的严谨重整,以解決元素集合论中出現的悖论。集合论的基础主要由德国数学家格奥尔格·康托尔在19世紀未建立。

范畴论:是抽象地处理数学结构以及结构之间联系的一门数学理论。有些人开玩笑的称之为“一般化的抽象的胡说”.范畴论出现在很多数学分支中,以及理论计算机科学和数学物理的一些领域。所谓一个范畴就是试图抓住一类数学对象(比如群论中的群)的本质的数学结构。传统的作法是要集中注意力于这些数学对象(比如群)本身,

范畴论的作法则是要强调数学对象间保持对象结构不变的态射。以群论为例,保持对象结构不变的映射就是所谓的群同态。不同的范畴可以用函子相联系。函子是一般化了的函数。函子把一个范畴中的对象和另一个范畴中的对象联系起来,同时把前一个范畴中的态射和后一个范畴中的态射也联系起来。许多时候一些“自然构造”,比如拓扑空间的基本群,可以用函子来表达。更进一步,这些构造“自然的发生联系”。这就引出了自然变换的概念。所谓自然变换,就是把一个函子映射为另一个函子。数学中经常会遇到“自然同构”,自然同构的两个数学对象(本质上)是正则相关的。自然同构的概念可以精确的描述这一现象。

可见,数学知识博大精深,数学各个分支纵横交错,正如赫尔曼外尔说的——数学是无穷的科学。我们应该认真学习数学文化知识。

参考文献:

1、钱伟长《哥丁根学派的追求》.《文汇报》.2002-8

2、Morris Kline 《古今数学思想》1-4册.上海科学技术出版社.2006-1

3、王青建.数学史:从书斋到课堂[J].自然科学史研究,2004,23(2):148-154.

4、李文林《数学史概论》(第三版)高等教育出版社2010-9

5、(美)H.伊夫斯,《数学史概论》,欧阳绛等译,山西人民出版社,1986

6、(美)H.伊夫斯,《数学史上的里程碑》,欧阳绛等译,上海科学技术出版社,1990

7、林夏水,《数学哲学》,北京:商务印书馆,2003

数学知识在物理中的应用

高中物理中数学知识的应用

如图讨论绳子变长时,绳子的拉力和墙面的支持力如何变化?解析法: θ cos 2G F =如果绳子变长,θ角减小,θcos 变大,F 2减小;θtan 1 G F =,θ角减小,θtan 减小,F 1减小。此题图解法较容易在此省略。在力(速度、加速度)的合成与分解问 题中正弦、余弦、正切函数知识用的很多。 (2)正弦定理应用实例: 如图所示一挡板和一斜面夹住一球,挡板饶底端逆时针旋转直到水平,讨论挡板和斜面对球的弹力如何变化?此题图解法较容易在此省略。

解析法:βθαsin sin sin 12F F G == α θ sin sin 2G F = 因为θ不变α从锐角变成90 大再变小,所以F 2先变小后变大; () ()θβθβθβ βθβαβοcos cot sin sin sin 180sin sin sin sin 1-= =+= --== G G G G F β角从钝角变为零的过程中,βcot 一直变大,所以F 1一直变小。 (用到了正弦定理、诱导公式、两角和的正弦函数这种解法理论性较强。 ) (3)化θθcos sin b a +为一个角的正弦应用实例 如图所示物体匀速前进时,当拉力与水平方向夹角为多少度时最省力?动摩擦因数设为μ。 解答:匀速运动合力为零()θμθsin cos F G F -= ()() θβμμθβθβμμθμμθμμμθ μθμ++= ++= ??? ? ??++++= += sin 1sin cos cos sin 1sin 1cos 111sin cos 22222G G G G F 所以当θβ+为直角时F 最小,也就是当1 1 arcsin 2 2 2 +-= -= μπ βπ θ时F 最小。 5.组合应用实例 如图所示一群处于第四能级的原子,能发出几种频率的光子?这个还可以用一个一个查数的办法解决,如果是从第五能级开始向低能级跃迁问可以发出几种频率的光子就很难一个一个地数了。 利用组合知识很容易解决,处于第四能级有623 42 4=?==! C N 种 处于第五能级有10! 24 5!3!2!52 5=?=?= =C N 种 6.平面几何(1)三角形相似应用实例 例题1:如图所示当小球沿着光滑圆柱缓慢上升时,讨论绳子的拉力 和支持力如何变化? 由三角形相似可得 l T h G R N ==可以N 不变T 减小。 例题2:(2013新课标)水平桌面上有两个玩具车A 和B ,两者用一轻质 橡皮筋相连,在橡皮绳上有一红色标记R 。在初始时橡皮筋处于拉直状态,A 、B 和R 分别位于直角坐标系中的(0,l 2),(0,l -)和(0,0)点。已 知A 从静止开始沿y 轴正向做加速度大小为a 的匀加速运动:B 平行于x 轴朝x 轴正向匀速运动。两车此

数学分支简要

a.. 数学史 b.. 数理逻辑与数学基础 a.. 演绎逻辑学亦称符号逻辑学 b.. 证明论亦称元数学 c.. 递归论 d.. 模型论 e.. 公理集合论 f.. 数学基础 g.. 数理逻辑与数学基础其他学科 c.. 数论 a.. 初等数论 b.. 解析数论 c.. 代数数论 d.. 超越数论 e.. 丢番图逼近 f.. 数的几何 g.. 概率数论 h.. 计算数论 i.. 数论其他学科 d.. 代数学 a.. 线性代数 b.. 群论 c.. 域论 d.. 李群 e.. 李代数 f.. Kac-Moody代数 g.. 环论包括交换环与交换代数,结合环与结合代数,非结合环与非结合代数等 h.. 模论 i.. 格论 j.. 泛代数理论 k.. 范畴论 l.. 同调代数 m.. 代数K理论 n.. 微分代数 o.. 代数编码理论 p.. 代数学其他学科 e.. 代数几何学 f.. 几何学 a.. 几何学基础 b.. 欧氏几何学 c.. 非欧几何学包括黎曼几 何学等 d.. 球面几何学 e.. 向量和张量分析 f.. 仿射几何学 g.. 射影几何学 h.. 微分几何学 i.. 分数维几何 j.. 计算几何学 k.. 几何学其他学科 g.. 拓扑学 a.. 点集拓扑学 b.. 代数拓扑学 c.. 同伦论 d.. 低维拓扑学 e.. 同调论 f.. 维数论 g.. 格上拓扑学 h.. 纤维丛论 i.. 几何拓扑学 j.. 奇点理论 k.. 微分拓扑学 l.. 拓扑学其他学科 h.. 数学分析 a.. 微分学 b.. 积分学 c.. 级数论 d.. 数学分析其他学科 i.. 非标准分析 j.. 函数论 a.. 实变函数论 b.. 单复变函数论 c.. 多复变函数论 d.. 函数逼近论 e.. 调和分析 f.. 复流形 g.. 特殊函数论 h.. 函数论其他学科 k.. 常微分方程 a.. 定性理论 b.. 稳定性理论 c.. 解析理论 d.. 常微分方程其他学科 l.. 偏微分方程 a.. 椭圆型偏微分方程 b.. 双曲型偏微分方程 c.. 抛物型偏微分方程 d.. 非线性偏微分方程 e.. 偏微分方程其他学科 m.. 动力系统 a.. 微分动力系统 b.. 拓扑动力系统 c.. 复动力系统 d.. 动力系统其他学科 n.. 积分方程 o.. 泛函分析 a.. 线性算子理论 b.. 变分法 c.. 拓扑线性空间 d.. 希尔伯特空间 e.. 函数空间

《数学物理方法》各章节作业题

《数学物理方法》各章节作业题 要求:每章讲完后的下一周同一时间将作业收齐并交到辅导教师(2016级硕士生刘璋诚、王俊超和2015级硕士生魏弋翔、 徐鹏飞)处。例如,第一周星期四讲完第一章,则第二周 星期四上课时交第一章的作业,以此类推。 说明:若无特别标注,下面的页码均指梁昆淼编《数学物理方法》。 (第三版的页码用红字标出,第四版的页码用蓝字标出) 希望:若对我的讲授和布置的作业有任何批评和建议,欢迎同学们及时指出和告知,不胜感激。(最好用E-mail:) 辅导答疑安排:待定 辅导答疑教师:刘璋诚、王俊超、魏弋翔、徐鹏飞 第一部分复变函数论 “第一章复变函数的一般概念”作业题(2月23日交)

第5页(第三版)第6页(第四版): 第1题中(1),(2),(4),(6),(10); 第2题中(1),(2),(3),(7); 第3题中(2),(3),(7),(8); 第9页(第三版)第8页(第四版): 第2题中(1),(3),(7),(9); 第3题。 “第二章复变函数的导数”作业题(2月27日交) 第13页(第三版)第12页(第四版):习题; 第18页(第三版)第16页(第四版): 第1题; 第2题中(2),(3),(4),(8),(10),(11); 第23页(第三版)第20页(第四版): 第1题 第3题。 “第三章复变函数的积分”作业题(3月6日交) 第38页(第三版)第31页(第四版): 第1题,第2题; 补充题1:有一无限长的均匀带电导线与Z轴平行,且与XY平面相交于 ,线电荷密度为λ,求此平面场的复势,并说明积分

?-l z dz α的物理意义。 补充题2:计算()?-l n z dz α,n为正整数,且n≠+1。 “第四章 复数级数”作业题(3月16日交) 第46页(第三版) 第37页(第四版):第3题,第4题; 第52页(第三版) 第41页(第四版):(1),(3),(4),(8); 第60页(第三版) 第47页(第四版): (1),(2),(4),(5),(9),(11),(15); 第64页(第三版) 第50页(第四版):习题。 “第五章 留数定理”作业题(3月23日交) 第71页(第三版) 第55页(第四版): 第1题中(1),(2),(3),(5),(9),(10); 第2题中(1),(4); 第3题; 第81页(第三版) 第63页(第四版): 第1题中(4),(5),(7),(8); 第2题中(4),(6); 第3题中(1),(2),(7),(8)。 第二部分 积分变换

数学在各方面的的应用

附录三关于数学在理科中应用的调查报告 我们对理科中物理、化学、计算机基础中数学知识的应用进行了相关的调查。调查过程中翻阅了大量的相关资料,并询问了不少相关的专家,现将结果公布如下: 一、物理学中的数学知识 数学是物理学的基础和工具。离开了数学,物理学几乎寸步难行。现行大学物理系的数学教材几乎囊括了所有高等数学的基础知识。理论物理和实验物理都必需具备相当高深的数学知识。 理论物理中所应用的数学知识有:空间及其拓朴、映射、实分析、群论、线性代数、方阵代数、微分流形和张量、黎曼流行、李导数、李群、矢量分析、积分变换(包括傅里叶变换和拉普拉斯变换)、偏微分方程、复变函数、球函数、柱函数、函数、格林函数、贝塞尔函数、勒让德多项式等。 实验物理中所应用的数学知识呈主要集中在概率统计学中。包括一维、多维随机变量及其分布、概率分布、大数定律、中心极限定理、参数估计、极大似然法等。其中概率分布包括伯努力分布、泊松分布、伽马分布、分布、t分布、F分布等。 从上可以看出,上述数学知识对物理专业来讲,必需了解,且有的需要深入了解。比如群论、空间及拓朴、积分变换、偏微分方程、概率分布、参数估计等。工科和理科、师范类和非师范类、物理专业和非物理专业、其物理学习中所应用的数学知识也有范围和程度上的变化。工科就没有理科要求高,物理专业中所涉及的数学知识也比非物理专业所学物理课本上的数学知识丰富的多。 二、化学中的数学知识 初等化学只是简单介绍物质的组成、结构、性质、变化及合成。除了相应的计算外,与数学的联系没有物理学那么紧密。高等化学需要更深入的研究物质,因此需要相应的高等数学知识为基础。下面我们就化学理论和化学实验两种课程来讨论。 化学理论中所应用的数学知识有:级数及其应用、幂级数与Taylor展开式、Fourier级数、Forbemus方法、Bessel方程、Euler-Maclaurh加法公式、String公式、有限差分、矩阵、一阶偏微分方程、二阶偏微分方程、常微分方程(包括一阶、二阶、线性、联立)、特殊函数(包括贝尔函数和勒让德多项式)积分变换、初步群论等。 化学实验中所应用的数学知识有:随机事件及其概率、随机变量的数字特征、随机分量及其分布、大数定理、中心极限定理、参数估计等。 从上面可以看出,化学中的数学知识主要应用于计算,因此大部分是一些数学公式和方程,并没有更深一步理论推导及逻辑思维、形象思维的要求。所以,化学专业中数学知识的要求不高,只限于了解并会套公式而已。

高中数学知识点完整结构图

高中数学知识点1 集合 123412n x A x B A B A B A n A ∈??? ????? ∈?∈?()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ?????????? ????????????≠∈?????=???=∈∈?=??=??=???真子集有个。、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。 真子集:若且(即至少存在但),则是的真子集。集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ????????=????=∈∈???=??=?=????????=???=+?=∈?=?=??==?=?,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ????? ?? ?? ?? ?? ?????????? ???????? ??????????????????????? ?????????????????????=???????

2017年高三物理总复习(专题攻略)之数学方法在物理学中的应用及高考题型答题技巧 数学方法在物理

数学方法在物理学中的应用(一) 物理学中的数学方法是物理思维和数学思维高度融合的产物,借助数学方法可使一些复杂的物理问题显示出明显的规律性,能达到打通关卡、快速简捷地解决问题的目的。高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题。可以说任何物理试题的求解过程实质上都是一个将物理问题转化为数学问题,然后经过求解再次还原为物理结论的过程。复习中应加强基本的运算能力的培养,同时要注意三角函数的运用,对于图象的运用要重视从图象中获取信息能力的培养与训练。在解决带电粒子运动的问题时,要注意几何知识、参数方程等数学方法的应用。在解决力学问题时,要注意极值法、微元法、数列法、分类讨论法等数学方法的应用。 一、极值法 数学中求极值的方法很多,物理极值问题中常用的极值法有:三角函数极值法、二次函数极值法、一元二次方程的判别式法等。 1.利用三角函数求极值 y =acos θ+bsin θ = ( + ) 令sin φ=,cos φ= 则有:y = (sin φcos θ+cos φsin θ)= sin (φ+θ) 所以当φ+θ=π2 时,y 有最大值,且y max =。 【典例1】在倾角θ=30°的斜面上,放置一个重量为200 N 的物体,物体与斜面间的动摩擦因数为μ=3 3,要使物体沿斜面匀速向上移动,所加的力至少要多大?方向如何?

解得:F =α μαθμθsin cos cos (sin ++mg 因为θ已知,故分子为定值,分母是变量为α的三角函数 y=cos + = ( cos + sin ) = (sin cos + cos sin ) = sin(+ ) 其中 sin = ,cos =,即 tan = 。 当+ = 90 时,即 = 90 - 时,y 取最大值 。 F 最小值为 ,由于 = ,即 tan = ,所以 = 60。 带入数据得 F min = 100 N,此时 = 30 。 【答案】 100 N 与斜面夹角为30 【名师点睛】 根据对物体的受力情况分析,然后根据物理规律写出相关物理量的方程,解出所求量的表达式,进而结合三角函数的公式求极值,这是利用三角函数求极值的常用方法,这也是数学中方程思想和函数思想在物理解题中的重要应用。 2.利用二次函数求极值 二次函数:y =ax 2+bx +c =a (x 2 +b a x +b 24a 2)+c -b 24a =a (x +b 2a )2+4ac -b 24a (其中a 、b 、c 为实常数),

《高等数学》知识在物理学中的应用举例

《高等数学》知识在物理学中的应用举例 一 导数与微分的应用 分析 利用导数与微分的概念与运算,可解决求变化率的问题。求物体的运动速度、加速度的问题是典型的求变化率问题。在求解这类问题时,应结合问题的物理意义,明确是在对哪个变量求变化率。在此基础上,灵活运用各类导数和微分公式解决具体问题。 例 1 如图,曲柄,r OA =以均匀角速度ω饶定点O 转动.此曲柄借连杆AB 使滑块B 沿直线Ox 运动.求连杆上C 点的轨道方程及速度.设,a CB AC == ,?=∠AOB .ψ=∠ABO y 解 1) 如图,点C 的坐标为: ψ?cos cos a r x +=, (1) .sin ψa y = (2) 由三角形的正弦定理,有 ,sin 2sin ? ψa r = o x 故得 .2sin 2sin r y r a == ψ? (3) 由(1)得 r y a x r a x 2 2cos cos --= -=ψ? (4) 由,1cos sin )4()3(2222=+=+??得 ,12422 222222=---++r y a x y a x r y 化简整理,得C 点的轨道方程为: .)3()(422222222r a y x y a x -++=- 2) 要求C 点的速度,首先对(1),(2)分别求导,得 ,sin cos 2cos sin ψψ?ω?ωr r x --=' ,2 cos ? ωr y =' 其中.?ω'=

又因为,sin 2sin ψ?a r = 对该式两边分别求导,得 .cos 2cos ψ ? ωψa r = ' 所以C 点的速度 2 2 y x V '+'=4 cos )sin cos 2cos sin (2222 ?ωψψ?ω?ωr r r + --= .)sin(cos sin 4cos cos 22ψ?ψ??ψ ω ++= r 例2 若一矿山升降机作加速度运动时,其加速度为),2sin 1(T t c a π-=式中c 及 T 为常数,已知升降机的初速度为零,试求运动开始t 秒后升降机的速度及其所走过的路程. 解: 由题设及加速度的微分形式dt dv a = ,有 ,)2sin 1(dt T t c dv π-= 对等式两边同时积分 ? ?-=v t dt T t c dv 0 ,)2sin 1(π 得: ,2cos 2D T t T c ct v ++=ππ 其中D 为常数. 由初始条件:,0,0==t v 得,2c T D π - =于是 )].12(cos 2[-+ =T t T t c v ππ 又因为,dt ds v = 得 ,)]12(cos 2[dt T t T t c ds -+ =ππ 对等式两边同时积分,可得: )].2sin 2(221[2t T t T T t c s -+=πππ

数学分支之数学物理学

数学物理学是以研究物理问题为目标的数学理论和数学方法。它探讨物理现象的数学模型,即寻求物理现象的数学描述,并对模型已确立的物理问题研究其数学解法,然后根据解答来诠释和预见物理现象,或者根据物理事实来修正原有模型。 物理问题的研究一直和数学密切相关。作为近代物理学始点的牛顿力学中,质点和刚体的运动用常微分方程来刻画,求解这些方程就成为牛顿力学中的重要数学问题。这种研究一直持续到今天。例如,天体力学中的三体问题和各种经典的动力系统都是长期研究的对象。 在十八世纪中,牛顿力学的基础开始由变分原理所刻画,这又促进了变分法的发展,并且到后来,许多物理理论都以变分原理作为自己的基础。 十八世纪以来,在连续介质力学、传热学和电磁场理论中,归结出许多偏微分方程通称数学物理方程(也包括有物理意义的积分方程、微分积分方程和常微分方程)。直到二十世纪初期,数学物理方程的研究才成为数学物理的主要内容。 此后,联系于等离子体物理、固体物理、非线性光学、空间技术核技术等方面的需要,又有许多新的偏微分方程问题出现,例如孤立子波、间断解、分歧解、反问题等等。它们使数学物理方程的内容进一步丰富起来。复变函数、积分变换、特殊函数、变分法、调和分析、泛函分析以至于微分几何、代数几何都已是研究数学物理方程的有效工具。 从二十世纪开始,由于物理学内容的更新,数学物理也有了新的面貌。伴随着对电磁理论和引力场的深入研究,人们的时空观念发生了根本的变化,这使得闵科夫斯基空间和黎曼空间的几何学成为爱因斯坦狭义相对论和广义相对论所必需的数学理论。许多物理量以向量、张量和旋量作为表达形式在探讨大范围时空结构时,还需要整体微分几何。 量子力学和量子场论的产生,使数学物理添加了非常丰富的内容。在量子力学中物质的态用波函数刻画,物理量成为算子,测量到的物理量是算子的谱。在量子场论中波函数又被二次量子化成为算子,在电磁相互作用、弱相互作用和强相互作用中描述粒子的产生和消灭。 因此,必须研究各种函数空间的算子谱、函数的谱分析和由算子所形成的代数。同时还要研究微扰展开和重正化(处理发散困难)的数学基础。此外,用非微扰方法研究非线性场论也是一个令人注目的课题。 物理对象中揭示出的多种多样的对称性,使得群论显得非常有用。晶体的结构就是由欧几里得空间运动群的若干子群给出。正交群和洛伦茨群的各种表示对讨论具有时空对称性的许多物理问题有很重要的作用。 基本粒子之间,也有种种对称性,可以按群论明确它们的某些关系。对基本粒子的内在对称性的研究更导致了杨-米尔斯理论的产生。它在粒子物理学中意义重大,统一了弱相互作用和电磁相互作用的理论,提供了研究强子结构的工具。这个理论以规范势为出发点,而它就是数学家所研究的纤维丛上的联络(这是现代微分几何学中非常重要的一个概念)。有关纤维丛的拓扑不变量也开始对物理学发挥作用。 微观的物理对象往往有随机性。在经典的统计物理学中需要对各种随机过程的统计规律

数学物理方法123章作业解答

另:()y x u u ,=,()y x v v ,=,?? ?==? ρ?ρsin ,cos y x ? ?ρ ρ ρ sin cos y u x u y y u x x u u ??+ ??= ????+ ????= ?? ρ ?????ρ?ρρ??ρ? ρ??= ??+ ??= ??+ ??- =??? ? ????+-??=???? ??????+????= ??u x u y u y v x v y v x v y y v x x v v cos sin cos sin cos )sin (111 ? ?ρ ρ ρ sin cos y v x v y y v x x v v ??+ ??= ????+ ????= ?? ρ ?????ρ?ρρ??ρ? ρ??- =??- ??- =??+ ??- =??? ? ????+-??=???? ??????+????= ??v x v y v y u x u y u x u y y u x x u u cos sin cos sin cos )sin (111 所以,有 ?????? ???-=????=??ρ?ρ?ρρv u v u 11 第18页 第2题

第27页 指出下列多值函数的支点及其阶。 (1) ) (a z - 解:根式的可能支点是∞点和根式内多项式的零点,现在来逐个考察这些点的性质。 ① a z =:在此点的邻域内任取一点 1 11φρi e a z +=(11 <<ρ),则有 2 11)(φ φ ρρi i e e a z = = - 当保持 1ρ不变 π φφ211+→(绕 a z =一周)时,有

数学物理方法第十二章

第12章 第12.1节 一、数学物理问题分为正向问题和逆向问题。 正向问题,即为已知源求场;逆向问题,即为已知场求源。 前者是经典数学物理所讨论的主要内容.后者是高等数学物理所讨论的主要内容。 二、数学物理方程的类型和所描述的物理规律多数为二阶线性偏微分方程 1.振动与波(振动波,电磁波)传播满足波动方程。 2.热传导问题和扩散问题满足热传导方程。 3.静电场和引力势满足拉普拉斯方程或泊松方程。 三、三类典型的数学物理方程 1.双曲型方程(以波动方程为代表) 错误!未找到引用源。 2.抛物型方程(以热传导方程为代表) 错误!未找到引用源。 3.椭圆型方程(以泊松方程为代表) 错误!未找到引用源。当f(x,y,z)=0时,退化为拉普拉斯方程。 四、三类数学物理方程的一种最常用解法 分离变量法 -> 偏微分方程 -> 标准的常微分方程 ->标准解,即为各

类特殊函数 第12.2节 一、振动方程 1.弦的横振动 考察一根长为 l 且两端固定、水平拉紧的弦. 确定弦的微分方程的方法: 1)要研究的物理量是弦沿垂直方向的位移u(x,t) 2)被研究的物理量遵循牛顿第二定律。 3)按物理定理写出数学物理方程(即建立泛定方程) 其中必须注意两点:(a)由于数学物理方程必须反映弦上任一位置上的垂直 位移所遵循的普遍规律,所以考察点不能取在端点上,但可以取除端点之外 的任何位置作为考察点.(b)由于物理问题涉及的因素较多,往往还需要引 入适当假设才能使方程简化. 根据牛顿第二定律F =ma运动的方程可以描述为: 错误!未找到引用源。 仅考虑微小的横振动,夹角θ1 θ2为很小的量, cosθ1≈cosθ2≈1 Sinθ1≈tgθ1sinθ2≈tgθ2 ?s≈ds≈?x=dx

数学分支

1、20世纪的数学 ——从局部到整体 复分析(函数论):整体性质是一个特定函数与众不同的特性,局部展开只是看待他们的一种方式。 微分方程:解不必是一个显函数,不一定要用好的公式来描述,解的奇异性是真正决定整体性质的。 微分几何:要想了解曲面的整体图像以及伴随它们的拓扑时,经典结果到大范围的转变就自然了,当考虑小范围到大范围时,最有意义的性质就是拓扑性质。 数论:讨论有限个素数到讨论全部素数,在数论发展中起到重要作用,并且拓扑的思想深深影响了数论。 物理学:物理学的全部内容就是从经典的小范围出发(相当于一个微分方程),可以预计大范围内正在发生的内容。 ——维数的增加 复变函数:经典的复变函数主要详细讨论一个复变量理论并加以精细,推广到多个变量发生在20世纪,n个变量的理论的研究有全新的特性出现,多变量研究占据愈来愈来重要地位,这是本世纪的主要成就。 微分几何:过去微分几何学家主要研究曲线和曲面,现在研究n维流形,研究多个独立和非独立向量值函数。 线性代数:从有限维线性空间到无限维Hilbert空间,就是泛函空间。 ——从交换到非交换 这是代数学最主要特征之一。Hamilton四元数,Grassmann外代数,Caley的矩阵工作,Galois的群论。这些将非交换乘法引入代数理论的基石,是20世纪代数的“面包和黄油”。矩阵和非交换乘法在物理中产生量子理论,Heisenberg对易关系是非交换代数在物理中的一个最重要的应用例子,后来被von Neumann推广到算子代数理论中。 ——从线性到非线性 Euclid几何都是线性的,而非欧几何的各个阶段到Riemann几何,所讨论的基本是非线性的。 微分几何:孤立子理论代表非线性微分方程的无法预料的有组织行为,混沌理论代表非线性微分方程的无法预料的无组织行为,它们基本是非线性的。

高中数学知识结构图(理科)

高中数学知识结构图 集合的概念与表示方法 集合集合的性质 集合之间的关系与运算 解析法 函数的概念与表示方法列表法 图像法 定义域 函数的三要素对应关系 值域 单调性 奇偶性 函数的性质周期性 极值 最值一次、二次函数 反比例函数 基本初等函数指数函数与对数函数图像、性质和应用函数函数的分类幂函数 复合函数三角函数 分段函数 函数图像及其变换平移、对称、翻折和伸缩变换 概念 反函数存在条件 与原函数的关系 函数与方程函数的零点对应方程的解 函数的应用建立函数模型 任意角弧度制与三角函数 同角三角函数关系 诱导公式 三角函数中的公式和角、差角公式 二倍角公式与半角公式 三角函数和差化积与积化和差公式 正弦函数三要素 三角函数余弦函数性质 正切函数图像及其变换 正弦定理 解三角形余弦定理 三角形面积

柱体结构 椎体 空间几何体台体三视图和直观图 球体 简单组合体表面积与体积 点、直线、平面的位置关系 点、直线、平面的关系直线、平面平行的性质和判定 直线、平面垂直的性质和判定立体几何点到点的距离 点到直线的距离 空间距离点到平面的距离 直线到平面的距离 平行平面间的距离 异面直线形成的角 空间的角直线与平面形成的角 倾斜角、斜率和截距 点斜式 斜截式 直线直线与方程两点式 截距式 一般式 直线之间的位置关系垂直与平行的条件 圆与方程一般方程与标准方程 几何圆点与圆的位置关系 位置关系直线与圆的位置关系 圆与圆的位置关系 解析几何 圆锥曲线椭圆定义及标准方程 双曲线性质 离心率 点到点的距离 点到直线的距离 平面距离点到圆的距离 两平行线的距离 直线到圆的距离 相离圆的距离 对称问题中心对称关于点对称 轴对称关于直线对称 平面向量概念 向量加减法 向量运算向量的数乘 向量的数量积 空间向量几何意义及应用

数学在各学科中的作用

数学在各学科中的作用 当今世界的科技每时每刻都在飞速地发展,物理,化学,生物,建筑,信息技术等等各式各样的学科无一不在现代生活中展现着他们的魅力,,然而,在所有这些学科的背后,还有一门科学在支撑着它们,那就是数学。数学有一种独特的抽象性,正是因为数学抽象,其结论应用十分广泛。数字由许许多多事物抽象而来,它不代表任何意义,也正是因为它不代表任何意义,所以它可以应用在任何地方。2+3=5不仅适用于人,也适用于书、本、笔等等。 在数学中,同一个方程式完全可能代表着互不相干的事物的某种相同规律。同一个拉普拉斯方程可能代表许多不同的物理现象。某种生物种类群体的数量变化可能与市场某种商品的价格涨落满足同一数学模型。数学在其它学科中有特殊的地位与作用。数学是各门科学的语言。物理定律及原理都是用数学语言描述的,数学在力学与物理学中的地位与作用是人所共知的。 物理学应该是应用数学最多的学科之一,数学公式使描述物理现象变得简单而一般。动力学中最基本的概念——加速度的定义本质上就是一个导数,缺少了导数的概念,又怎么会有加速度的定义呢?解决理想的运动学问题会用到微分方程的概念,微分方程的理论使解决复杂的运动问题变得可能。数学的功底也是一个优秀的物理学家所必备的,在此,我们不妨举两位大物理学家的例子。法拉弟是一位伟大的实验物理学家,他通过实验发现了电场、磁场、电力线、磁力线、电与磁的对称关系等,但他数学功底不够(相对来说),不能把他的实验结果上升为理论(没有可操作性)。而另一位电磁学的大师麦克斯韦确有很好的数学功底,他用微分方程和向量代数等数学方法,完整地揭示上述现象,并于1862年发表了划时代的论文《论物理的力线》,使得这些理论有了广泛的应用。今天的无线广播、电视、雷达通讯,遥控等,都是以它为基础的。所以说,如果没有数学的发展,物理学也难有突破。物理学和数学就像一对亲密无间的伙伴,永远密不可分。而物理学,正是数学在实际学科中应用的最好体现。 信息科学是二十世纪才发展起来的一门科学,我们如今的生活已经处处融入了这门科学。计算机帮我们解决了以往难以解决的复杂问题,互联网让世界变得越来越小,数字通信技术让人与人之间变得很近。而信息科学的基础就是数学,没有布尔代数,如何会有电子系统中0和1编码段?没有矩阵理论,如何解决复杂的工程建设规划问题?没有数学中许许多多的算法,又如何在计算机上展现出美妙的图案?可以这样比喻,信息科学正是在数学的肥沃土壤中长出的一朵美丽娇艳的花。我们作为北邮的大学生,应该充分认识到这一点,注重打好我们自己的良好数学功底,为以后的深造作好准备。 当然,不仅仅是理科才会用到数学,就连艺术也离不开数学。15世纪欧洲文艺复兴时期,绘画艺术之所以能有惊人的发展,正是得益于数学的分支——几何学的进步。一幅画要想逼真生动的展现现实世界,就要用到投影和几何学的原理。达芬奇是文艺复兴时期的代表人物,他不仅是一位画家,也是一位几何学家,发明家和梦想家。它的每一幅作品无一不是建立在严谨的投影规则之上的,也正因为此,他的画才那样细腻,那样准确,那样迷人。此外,雕塑,徽标设计,建筑等等都离不开数学,2006年德国世界杯的徽标就是由几个外切圆组成的笑脸构成的。 数学是美的,因为他融入了生活,融入了世界的每一个角落。马克思曾说“只有当一门学科应用了数学之后,它才成为了一门真正的科学”。每一门科学中都体现着数学的价值,在人类即将写下的历史中,数学仍将不断地发展,随之而来的,就是科学和社会的进步。

数学分支

数学分支介绍——常微分方程 微分方程的概念 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。 物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式。但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布·贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。 常微分方程的内容 如果在一个微分方程中出现的未知函数只含一个自变量,这个方程就叫做常微分方程,也可以简单地叫做微分方程。

高中数学知识结构框图

高中数学知识结构框图必修一:第一章集合 集合含义与表示 基本关系 基本运算 列举法{a,b,c,…} 描述法{x|p(x)} 图象法 包含关系 相等关系 交集:A∩B={x|x∈A且x∈B} 并集:A∪B={x|x∈A或x∈B} 补集:{|} U C A x x U x A =∈? 且 韦恩图; 数轴 子集; 真子集 函数概念 定义域 对应关系 值域 表示 解析法 图象法 列表法 性质 单调性 定义 图象特征 最值 奇偶性 定义 图象特征:对称性 映射映射的概念上升或下降 第二章函数

第三章基本初等函数(Ⅰ) 基本初等函数(Ⅰ) 指 数 与 指 数 函 数 指 数 根式n a 分数指数幂(0,,*,1) m n m n a a a m n N n =>∈> 无理数指数幂 运算性质 指 数 函 数 定义(0,1) x y a a a =>≠ 图象: “一撇或一捺”,过点(0,1).见教材P91 性质: 位于x轴上方,以x轴为渐近线 对 数 与 对 数 函 数 对 数 定义:x a N x a N = 若则叫以为底的对数 运算性质 对 数 函 数 定义:log(0,1) a y x a a =>≠ 图象:位于y轴右侧,以y轴为渐近线.见教材P103 性质:过点(1,0) log()log log log log log log log a a a a a a n a a M N M N M M N N M n M ?=+ =- = () () r s r s r s rs r r r a a a a a ab a b + = = = 幂 函 数 定义:y xα = 具体的五 个幂函数 2 3 1 2 1 y x y x y x y x y x- = = = = = 特征:过点(1,1), 当0 α>时在(0,) +∞ 上递增;当0 α<时, 在(0,) +∞上递减。 换底公式: log log(0,1,0,1,0) log c a c b b a a c c b a =>≠>≠> 图象:P109

《高等数学》知识在物理学中的应用举例

《高等数学》中的积分在物理学中的应用 积分的应用(力学,磁场,速度。) 分析 利用积分的概念与运算,可解决一些关于某个区域累积量的求解问题。求物体的转动惯量、求电场强度等问题都是典型的求关于某个区域累积量的问题。在求解这类问题时,应结合问题的物理意义,明确是在对哪个变量,在哪个区域上进行累积。并应充分利用区域的对称性,这样可将复杂的积分问题简化,降低积分的重数,较简捷地解决具体问题。 例1 一半径为R 的非均质圆球,在距中心r 处的密度为:),1(22 0R r αρρ-= 式中0ρ和α都是常数。试求此圆球饶直径转动时的回转半径。 解:设dm 表示距球心为r 的一薄球壳的质量,则 dr R r r dr r dm )1(22 2 02 απρρπ-==, 所以此球对球心的转动惯量为 .3557)1(50220 4 002 α πραπρ-=-==? ?R dr R r r dm r I R R (1) 在对称球中,饶直径转动时的转动惯量为 I I 3 2 = ', (2) 又因球的质量为 ?? -=-==R R R dr R r r dm m 030220 2 0.1535)1(α πραπρ (3) 又饶直径的回转半径 ,m I k ' = (4) 由(1)-(4),得.21351014R k α α --= 例2 试证明立方体饶其对角线转动时的回转半径为2 3d k =,式中d 为对角 线的长度。

解:建立坐标系,设O 为立方体的中心,轴,Ox ,Oy Oz 分别与立方体的边平行。由对称性知,,Ox ,Oy Oz 轴即立方体中心惯量的主轴。设立方体的边长为.a 由以上所设,平行于Ox 轴的一小方条的体积为adydz ,于是立方体饶Ox 的转动惯量为 .6 )(2 2222 22 a m dydz z y a I a a a a x = +=? ? --ρ 根据对称性得:.6 2 a m I I I z y x = == 易知立方体的对角线与,Ox ,Oy Oz 轴的夹角都为,θ且,3 1cos =θ故立方体 饶对角线的转动惯量为 .6 cos cos cos 2 222a m I I I I z y x = ++=θθθ (1) 又由于 a d 3=, (2) 饶其对角线转动时的回转半径为 ,m I k = (3) 由(1)-(3)得.2 3d k = 例 3 一个塑料圆盘,半径为,R 电荷q 均匀分布于表面,圆盘饶通过圆心垂直盘面的轴转动,角速度为ω,求圆盘中心处的磁感应强度。 解:电荷运动形成电流,带电圆盘饶中心轴转动,相当于不同半径的圆形电流。圆盘每秒转动次数为 πω2,圆盘表面上所带的电荷面密度为2 R q πσ=,在圆盘上取一半径为r ,宽度为dr 的细圆环,它所带的电量为rdr dq πσ2?=,圆盘转动时,与细圆环相当的圆环电流的电流强度为 rdr rdr dI ωσπ ω πσ?=? ?=22, 它在轴线上距盘心x 处的P 点所产生的磁感应强度为 rdr x r r x r dI r dB ωσμμ2 322 2 02 322 20) (2) (2+= +=

数学分支

数学分支 (根据基金委网站数学学科代码编辑2006-01-19中国数学会)基础数学 应用数学 计算数学与科学工程计算

数学研究方向 基础数学 数论: 解析数论代数数论丢番图分析、超越数论、模型式与模函数论、数论的应用; 代数学: 群论、群表示论、李群、李代数、代数群、典型群、同调代数、代数K理论、Kac-Moody 代数、环论、代数(可除代数)、体、编码理论与方法、序结构研究; 几何学: 整体微分几何、代数几何、流形上的分析、黎曼流形与洛仑兹流形、齐性空间与对称空间、调和映照及其在理论物理中的应用、子流形理论、杨--米尔斯场与纤维丛理论、辛流形; 拓扑学: 微分拓扑、代数拓扑、低维流形、同伦论、奇点与突变理论、点集拓扑; 函数论: 多复变函数论、复流形、复动力系统、单复变函数论、Rn中的调和分析的实方法、非紧半单李群的调和分析、函数逼近论; 泛函分析: 非线性泛函分析、算子理论、算子代数、泛函方程、空间理论、广义函数; 常微分方程: 泛函微分方程、特征与谱理论及其反问题、定性理论、稳定性理论、分支理论、混沌理论、奇摄动理论、复域中的微分方程、动力系统; 偏微分方程: 连续介质物理与力学及反应、扩散等应用领域中的偏微分、非线性椭圆(和抛物)方程、几何与数学物理中的偏微分方程、微局部分析与一般偏微分算子理论、研究中的新方法和新概念、调混合型及其它带奇性的方程、非线性波、非线性发展方程和无穷维动力系统; 数学物理: 规范场论、引力场论的经典理论与量子理论、孤立子理论、统计力学、连续介质力学等方面的数学问题; 概率论: 马氏过程、随机过程、随机分析、随机场、鞅论、极限理论、平稳过程、概率论在调和分析几何及微分方程等方面的应用、在物理生物化学管理中的概率论问题; 数理逻辑与数学基础: 递归论, 模型论, 证明论, 公理集合证, 数理逻辑在人工智能及计算机科学中的应用. 组合数学:组合计数, 组合设计, 图论, 线性计算几何, 组合概率方法.

例谈数学知识在物理中的应用

例谈数学知识在物理中的应用 新的物理学科的考试说明对学生的能力考核从五个方面提出了具体的要求:一是理解能力,二是推理能力,三是分析综合能力,四是应用数学知识处理物理问题的能力,五是实验能力,尤其是创新实验能力。其中对应用数学知识处理物理问题的能力具体说明是:要求学生能够根据具体问题列出物理量之间的关系式,进行相关推导和求解,并根据计算结果得出物理结论;必要时能灵活运用几何图形、图像或函数关系式进行表达、分析。 数学是与物理联系最为紧密的学科之一。随着高考改革的深入及素质教育的全面推开。各学科之间的渗透不断加强,作为对理解能力和演绎推理能力及运算能力都有很高要求的物理学科,在平时的教学中,及时灵活地渗透数学知识,培养学生运用数学知识解决物理问题的能力尤为重要。我们在平时的教学中要随时注重数学知识和物理内容的整合。 运用数学工具解决物理问题的能力,主要指两个方面。一是从物理现象与过程出发,经过概括、抽象,把物理问题转化为数学问题;二是综合运用数学知识,例如比例关系、函数关系、不等式关系、几何关系、极值关系等,正确、简洁地进行有关问题的求解。 1、运用数学语言和方法表述物理概念、物理规律,便于理解。 物理中有大量的物理概念和物理规律,其中有很多概念的引入,就是通过数学语言来描述的。例如,金属导体两端的电压与其流过的电流成正比。为了描述它们的比例系数,引入了电阻R的概念。同类的概念还有,电容器的电容C、电场强度E、物体运动的速度v、加速度a等。不过,物理知识毕竟与数学知识不同,所以教师在教授这类物理概念和物理规律时,要特别强调它们的物理含义和成立条件,不能进行简单的数学类推。例如:对于电阻的定义式R=U/I,我们就不能说成R与U成正比,与I成反比。 物理规律是对各种物理现象或物理变化的精辟概括。是人类智慧的结晶。为了便于表述或理解,有许多规律使用了数学方法。例如在研究理想气体状态参量间的制约关系时,使用了P-V、V-T、P-T图像。又如为了分析线圈在匀强磁场中匀角速转动过程中,线圈中的磁通量、瞬时感应电动势、感应电流随时间的变化规律,采用了正弦波图像的数学方法。除了图像描述外,物理中几乎所有的规律都可以写成数学解析式的公式。 2、恰当选用数学工具解决各类物理问题,化繁为简。 中学物理中,除了大量用到初等数学的各种基本运算和方程、恒等变换等数学知识外,在许多问题中,还可以灵活运用数学中的其他知识,另辟捷径,化繁为简。

相关主题
文本预览
相关文档 最新文档