当前位置:文档之家› 数学分支之偏微分方程

数学分支之偏微分方程

数学分支之偏微分方程
数学分支之偏微分方程

偏微分方程的起源

如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。

在科学技术日新月异的发展过程中,人们研究的许多问题用一个自变量的函数来描述已经显得不够了,不少问题有多个变量的函数来描述。比如,从物理角度来说,物理量有不同的性质,温度、密度等是用数值来描述的叫做纯量;速度、电场的引力等,不仅在数值上有不同,而且还具有方向,这些量叫做向量;物体在一点上的张力状态的描述出的量叫做张量,等等。这些量不仅和时间有关系,而且和空间坐标也有联系,这就要用多个变量的函数来表示。

应该指出,对于所有可能的物理现象用某些多个变量的函数表示,只能是理想化的,如介质的密度,实际上“在一点”的密度是不存在的。而我们把在一点的密度看作是物质的质量和体积的比当体积无限缩小的时候的极限,这就是理想化的。介质的温度也是这样。这样就产生了研究某些物理现象的理想了的多个变量的函数方程,这种方程就是偏微分方程。

微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。这些著作当时没有引起多大注意。1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。这样就由对弦振动的研究开创了偏微分方程这门学科。

和欧拉同时代的瑞士数学家丹尼尔·贝努利也研究了数学物理方面的问题,提出了解弹性系振动问题的一般方法,对偏微分方程的发展起了比较大的影响。拉格朗日也讨论了一阶偏微分方程,丰富了这门学科的内容。

偏微分方程得到迅速发展是在十九世纪,那时候,数学物理问题的研究繁荣起来了,许多数学家都对数学物理问题的解决做出了贡献。这里应该提一提法国数学家傅立叶,他年轻的时候就是一个出色的数学学者。在从事热流动的研究中,写出了《热的解析理论》,在文章中他提出了三维空间的热方程,也就是一种偏微分方程。他的研究对偏微分方程的发展的影响是很大的。

偏微分方程的内容

偏微分方程是什么样的?它包括哪些内容?这里我们可从一个例子的研究加以介绍。

弦振动是一种机械运动,当然机械运动的基本定律是质点力学的F=ma,但是弦并不是质点,所以质点力学的定律并不适用在弦振动的研究上。然而,如果我们把弦细细地分成若干个极小极小的小段,每一小段抽象地看作是一个质点,这样我们就可以应用质点力学的基本定律了。

弦是指又细又长的弹性物质,比如弦乐器所用的弦就是细长的、柔软的、带有弹性的。

演奏的时候,弦总是绷紧着具有一种张力,这种张力大于弦的重量几万倍。当演奏的人用薄片拨动或者用弓在弦上拉动,虽然只因其所接触的一段弦振动,但是由于张力的作用,传播到使整个弦振动起来。

用微分的方法分析可得到弦上一点的位移是这一点所在的位置和时间为自变量的偏微分方程。偏方程又很多种类型,一般包括椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程。上述的例子是弦振动方程,它属于数学物理方程中的波动方程,也就是双曲型偏微分方程。

偏微分方程的解一般有无穷多个,但是解决具体的物理问题的时候,必须从中选取所需要的解,因此,还必须知道附加条件。因为偏微分方程是同一类现象的共同规律的表示式,仅仅知道这种共同规律还不足以掌握和了解具体问题的特殊性,所以就物理现象来说,各个具体问题的特殊性就在于研究对象所处的特定条件,就是初始条件和边界条件。

拿上面所举的弦振动的例子来说,对于同样的弦的弦乐器,如果一种是以薄片拨动弦,另一种是以弓在弦上拉动,那么它们发出的声音是不同的。原因就是由于“拨动”或“拉动”的那个“初始”时刻的振动情况不同,因此产生后来的振动情况也就不同。

天文学中也有类似情况,如果要通过计算预言天体的运动,必须要知道这些天体的质量,同时除了牛顿定律的一般公式外,还必须知道我们所研究的天体系统的初始状态,就是在某个起始时间,这些天体的分布以及它们的速度。在解决任何数学物理方程的时候,总会有类似的附加条件。

就弦振动来说,弦振动方程只表示弦的内点的力学规律,对弦的端点就不成立,所以在弦的两端必须给出边界条件,也就是考虑研究对象所处的边界上的物理状况。边界条件也叫做边值问题。

当然,客观实际中也还是有“没有初始条件的问题”,如定场问题(静电场、稳定浓度分布、稳定温度分布等),也有“没有边界条件的问题”,如着重研究不靠近两端的那段弦,就抽象的成为无边界的弦了。

在数学上,初始条件和边界条件叫做定解条件。偏微分方程本身是表达同一类物理现象的共性,是作为解决问题的依据;定解条件却反映出具体问题的个性,它提出了问题的具体情况。方程和定解条件合而为一体,就叫做定解问题。

求偏微分方程的定解问题可以先求出它的通解,然后再用定解条件确定出函数。但是一般来说,在实际中通解是不容易求出的,用定解条件确定函数更是比较困难的。

偏微分方程的解法还可以用分离系数法,也叫做傅立叶级数;还可以用分离变数法,也叫做傅立叶变换或傅立叶积分。分离系数法可以求解有界空间中的定解问题,分离变数法可以求解无界空间的定解问题;也可以用拉普拉斯变换法去求解一维空间的数学物理方程的定解。对方程实行拉普拉斯变换可以转化成常微分方程,而且初始条件也一并考虑到,解出常微分方程后进行反演就可以了。

应该指出,偏微分方程的定解虽然有以上各种解法,但是我们不能忽视由于某些原因有许多定解问题是不能严格解出的,只可以用近似方法求出满足实际需要的近似程度的近似解。

常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,在数学上是拉普拉斯方程的边值问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。

随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。

偏微分方程数值解期末试题及标准答案

偏微分方程数值解试题(06B ) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1)(n R x x b x Ax x J ∈-=,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2),()()()(2 000x Ax x b Ax x J x x J λλλλ?+-+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若n R x ∈0满足b Ax =0,则对于任意的x ,)(),(2 1)0()1()(00x J x Ax x x J >+==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:?????==∈=+-=0 )(,0)(),()('b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。 解: 设}0)(),,(|{11=∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

偏微分方程的历史与应用

偏微分方程的历史及应用 数学与信息科学学院 09级数学与应用数学专业 学号 09051140129 姓名项猛猛 摘要 偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。许多领域中的数学模型都可以用偏微分方程来描述,很多重要的物理、力学等学科的基本方程本身就是偏微分方程。偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。本文旨在介绍偏微分方程的起源和历史,以及偏微分方程在人口调查、传染病动力学等实际问题中的应用。了解偏微分方程曲折的发展史并了解其广阔的应用前景,从而激励读者更深入的学习和研究偏微分方程。 关键字偏微分方程偏微分方程历史偏微分方程应用 引言 偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁.本文阐述了偏微分方程的发展历史及在实际生活中的应用,为以后更深入的研究及更广的应用提供了例证。 正文 一、偏微分方程的起源及历史 微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶偏微分方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。这些著作当时没有引起多大注意。1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。这样就由对弦振动的研究开创了偏微分方程这门学科。 和欧拉同时代的瑞士数学家丹尼尔·贝努利也研究了数学物理方面的问题,提出了解弹性系振动问题的一般方法,对偏微分方程的发展起了比较大的影响。拉格朗日也讨论了一阶偏微分方程,丰富了这门学科的内容。 对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支------数学物理方程的建立。 J.达朗贝尔(D’Alembert)(1717-1783)、L.欧拉(Euler)(1707-1783)、D.伯努利(Bernoulli)(1700-1782)、J.拉格朗日(Lagrange)(1736-1813)、P.拉普拉斯(Laplace)(1749-1827)、S.泊松(Poisson)(1781-1840)、J.傅里叶(Fourier)(1768-1830)等人的工作为这一学科分支奠定了基础。它们在考察具体的数学物理问题中,所提出的思想与方法,竟适用于众多类型的微分方程,成为十九世纪末偏微分方程一般理论发展的基础。 十九世纪,偏微分方程发展的序幕是由法国数学家傅里叶拉开的,他于1822

《数学物理方法》各章节作业题

《数学物理方法》各章节作业题 要求:每章讲完后的下一周同一时间将作业收齐并交到辅导教师(2016级硕士生刘璋诚、王俊超和2015级硕士生魏弋翔、 徐鹏飞)处。例如,第一周星期四讲完第一章,则第二周 星期四上课时交第一章的作业,以此类推。 说明:若无特别标注,下面的页码均指梁昆淼编《数学物理方法》。 (第三版的页码用红字标出,第四版的页码用蓝字标出) 希望:若对我的讲授和布置的作业有任何批评和建议,欢迎同学们及时指出和告知,不胜感激。(最好用E-mail:) 辅导答疑安排:待定 辅导答疑教师:刘璋诚、王俊超、魏弋翔、徐鹏飞 第一部分复变函数论 “第一章复变函数的一般概念”作业题(2月23日交)

第5页(第三版)第6页(第四版): 第1题中(1),(2),(4),(6),(10); 第2题中(1),(2),(3),(7); 第3题中(2),(3),(7),(8); 第9页(第三版)第8页(第四版): 第2题中(1),(3),(7),(9); 第3题。 “第二章复变函数的导数”作业题(2月27日交) 第13页(第三版)第12页(第四版):习题; 第18页(第三版)第16页(第四版): 第1题; 第2题中(2),(3),(4),(8),(10),(11); 第23页(第三版)第20页(第四版): 第1题 第3题。 “第三章复变函数的积分”作业题(3月6日交) 第38页(第三版)第31页(第四版): 第1题,第2题; 补充题1:有一无限长的均匀带电导线与Z轴平行,且与XY平面相交于 ,线电荷密度为λ,求此平面场的复势,并说明积分

?-l z dz α的物理意义。 补充题2:计算()?-l n z dz α,n为正整数,且n≠+1。 “第四章 复数级数”作业题(3月16日交) 第46页(第三版) 第37页(第四版):第3题,第4题; 第52页(第三版) 第41页(第四版):(1),(3),(4),(8); 第60页(第三版) 第47页(第四版): (1),(2),(4),(5),(9),(11),(15); 第64页(第三版) 第50页(第四版):习题。 “第五章 留数定理”作业题(3月23日交) 第71页(第三版) 第55页(第四版): 第1题中(1),(2),(3),(5),(9),(10); 第2题中(1),(4); 第3题; 第81页(第三版) 第63页(第四版): 第1题中(4),(5),(7),(8); 第2题中(4),(6); 第3题中(1),(2),(7),(8)。 第二部分 积分变换

(完整版)偏微分方程的MATLAB解法

引言 偏微分方程定解问题有着广泛的应用背景。人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。 偏微分方程 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用 1.1 MATLAB简介 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 1.2 Matlab主要功能 数值分析 数值和符号计算 工程与科学绘图 控制系统的设计与仿真 数字图像处理 数字信号处理 通讯系统设计与仿真 财务与金融工程 1.3 优势特点 1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 2) 具有完备的图形处理功能,实现计算结果和编程的可视化; 3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,

Matlab求解微分方程组及偏微分方程组

第四讲 Matlab 求解微分方程(组) 理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介 1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解. 注意,系统缺省的自变量为t 2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一. (2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解. (3)如果要获得微分方程问题在其他指定时间点012,,,,f t t t t 上的解,则令 tspan 012[,,, ]f t t t t =(要求是单调的). (4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供了多种求解器solver ,对于不同的ODE 问题,采用不同的solver.

20世纪数学发展概述

韩山师范学院 成人教育学生毕业论文 (2012届) 韩山师范学院教务处制

诚信声明 我声明,所呈交的毕业论文是本人在老师指导下进行的研究工作及取得的研究成果.据我查证,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,我承诺,论文中的所有内容均真实、可信. 毕业论文作者签名:签名日期:年月日

摘要 在人类文明进程中,数学作为科学的推动力或直接的参与者,起到了不可或缺的作用.20世纪,数学蓬勃发展,并向其他科学技术领域更加广泛和深入地渗透. 20世纪的数学与经典数学相比发生了翻天覆地的变化.因此, 研究20世纪数学的发展具重要的意义.本文将主要通过两个方面来展现20世纪数学发展的概貌:介绍20世纪数学发展趋势的主要特征,陈述20世纪数学的大事记. 关键词:20世纪;数学;发展趋势;大事记

Abstrac Mathematics as the driving force of science or as a direct participant plays an indispensable role in the progress of human civilization. In 20th century, mathematics developed quickly and infiltrated other science and technology field more deeply and widely. Therefore, it is significant to study the development of mathematics in the 20th century. The paper will show the general picture of the development of mathematics in the 20th century in two aspects: introducing the main characteristics of the development of mathematics in the 20th century, and giving memorabilia of mathematics in the 20th century. Key words : 20th century; mathematics; development tendency; memorabilia

偏微分方程的应用

偏微分方程在生物学上的应用 刘富冲pb06007143 1偏微分方程的发展 偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。许多领域中的数学模型都可以用偏微分方程来描述,物理学中的许多基本方程本身就是偏微分方程。早在微积分理论刚形成后不久,人们就开始用偏微分方程来描述、解释或预见各种自然现象,并将所得到的研究方法和研究成果运用于各门科学和工程技术中,不断地取得了显著的成效,显示了偏微分方程对于人类认识自然界基本规律的重要性。逐渐地,以物理、力学等各门科学中的实际问题为背景的偏微分方程的研究成为传统应用数学中的一个最主要的内容,它直接联系着众多自然现象和实际问题,不断地提出和产生出需要解决的新课题和新方法,不断地促进着许多相关数学分支(如泛函分析、微分几何、计算数学等)的发展,并从它们之中引进许多有力的解决问题的工具。偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。 在国外,对偏微分方程的应用发展是相当重视的。很多大学和研究单位都有应用偏微分方程的研究集体,并得到国家工业、科学部门及军方、航空航天等方面的大力资助。比如在国际上有重大影响的美国的Courant研究所、法国的信息与自动化国立研究所等都集中了相当多的偏微分方程的研究人员,并把数学模型、数学方法、应用软件及实际应用融为一体,在解决实际课题、推动学科发展及加速培养人才等方面都起了很大的作用。 2偏微分方程的应用 在科技和经济发展中,很多重要的实际课题都需要求解偏微分方程,为相应的工程设计提供必要的数据,保证工程安全可靠且高效地完成任务。 在很多的实际课题中,有不少课题(特别是国防课题)是不能或很难用工程试验的方法来进行研究的(一方面是危险系数大,另一方面是耗费大),因此就需要尽可能地减少试验的次数或在试验前给出比较准确的预计。 随着电子计算机的出现及计算技术的发展,电子计算机成为解决这些实际课题的重要工具。但是有效地利用电子计算机,必须具备如下先决条件: 针对所考虑的实际问题建立合理的数学模型,而这些能精确描述问题的模型大都是通过偏微分方程给出的。 对相应的偏微分方程模型进行定性的研究。 根据所进行的定性研究,寻求或选择有效的求解方法。 编制高效率的程序或建立相应的应用软件,利用电子计算机对实际问题进行模拟。 因此,总体上来说,上述这些先决条件都属于偏微分方程应用的研究范围,这些问题解决的好坏直接影响到使用电子计算机所得结果的精确性及耗费的大小。如果解决得好,就会对整个问题的解决起到事半功倍的效果。 到目前为止,偏微分方程已经在解决有关人口问题、传染病动力学、高速飞行、石油开发及城市交通等方面的实际课题中做出了重大的贡献。 下面主要讲一下大家比较熟悉的人口问题及传染病动力学问题,详细阐述偏微分方程在解决实际问题中的应用。

数学的发展历史

数学的发展历史 数学是一门伟大的科学,数学作为一门科学具有悠久的历史,与自然科学相比,数学更是积累性科学,它是经过上千年的演化发展才逐渐兴盛起来。同时数学也反映着每个时代的特征,美国数学史家克莱因曾经说过:"一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显"。"数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说"。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。而数学的历史更从另一个侧面反映了数学的发展。但有一点值得注意的是,人是这一方面的创造者,因此人本身的作用起着举足轻重的作用,首先表现为是否爱数学,是否愿为数学贡献毕生的精力。正是这主导着数学。 数学史是研究数学发展历史的学科,是数学的一个分支,和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。 数学出现于包含著数量、结构、空间及变化等困难问题内。一开始,出现于贸易、土地测量及之后的天文学;今日,所有的科学都存在着值得数学家研究的问题,且数学本身亦存在了许多的问题。而这一切都源于数学的历史。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。从历史时代的一开始,数学内的主要原理是为了做测量等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构方面的研究。数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。 数学发展具有阶段性,因此根据一定的原则把数学史分成若干时期。目前通常将数学发展划分为以下五个时期: 1.数学萌芽期(公元前600年以前); 2.初等数学时期(公元前600年至17世纪中叶); 3.变量数学时期(17世纪中叶至19世纪20年代); 4.近代数学时期(19世纪20年代至第二次世界大战); 5.现代数学时期(20世纪40年代以来)

偏微分方程数值解例题答案

二、改进的Euler 方法 梯形方法的迭代公式(1.10)比Euler 方法精度高,但其计算较复杂,在应用公式(1.10)进行计算时,每迭代一次,都要重新计算函数),(y x f 的值,且还要判断何时可以终止或转下一步计算.为了控制计算量和简化计算法,通常只迭代一次就转入下一步计算.具体地说,我们先用Euler 公式求得一个初步的近似值1+n y ,称之为预测值,然后用公式(1.10)作一次迭代得1+n y ,即将1+n y 校正一次.这样建立的预测-校正方法称为改进的Euler 方法: 预测: ),,(1n n n n y x hf y y +=+ 校正 : )].,(),([2 111+++++=n n n n n n y x f y x f h y y (1.15) 这个计算公式也可以表示为 11(,), (,), 1(). 2p n n n c n n p n p c y y hf x y y y hf x y y y y ++?=+??=+?? ?=+??? 例1 取步长0.1h =,分别用Euler 方法及改进的Euler 方法求解初值问题 d (1),01, d (0) 1. y y xy x x y ?=-+≤≤???=? 解 这个初值问题的准确解为()1(21)x y x e x =--. 根据题设知 ).1(),(xy y y x f +-= (1) Euler 方法的计算式为 )],1([1.01n n n n n y x y y y +?-=+ 由1)0(0==y y , 得 ,9.0)]101(1[1.011=?+??-=y ,8019.0)]9.01.01(9.0[1.09.02=?+??-=y 这样继续计算下去,其结果列于表9.1. (2) 改进的Euler 方法的计算式为 110.1[(1)],0.1[(1)], 1(), 2p n n n n c n p n p n p c y y y x y y y y x y y y y ++?=-?+?=-?+??? ?=+??? 由1)0(0==y y ,得

(发展战略)数学的发展方向

第四章现代数学的发展趋势 一、现代数学的发展趋势内容概括 与古典数学相比,现代数学的发展从思想方法的角度看具有一些新的特征,本章内容通过数学的统一性、数学在自然科学和社会科学中的广泛应用、数学机械化的产生与发展及其意义、计算机促进计算数学的发展、计算机促进数学中新学科的发展这些方面来认识和理解现代数学的发展趋势。 下面从以下几个方面来分析: ● 数学的统一性 ● 数学应用的广泛性 ● 计算机与数学发展 1.数学的统一性 所谓统一性,就是部分与部分、部分与整体之间的协调一致。客观世界具有统一性,数学作为描述客观世界的语言必然也具有统一性。 数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现。它表现为数学的各个分支相互渗透和相互结合的趋势。 ● 数学的统一性发展的三个阶段 (1)数学从经验积累到严格的演绎体系建立,其特征逐步明显,在中世纪时,从研究对象和方法来看,初等数学有了一定的统一性。特别是17世纪解析几何的诞生,使数学中的代数与几何统一起来,说明统一性是数学的特征。生了变革,结果是数学分支愈来愈多,数学表现的更加多样化。因此,需要重新认识数学的统一性。为此,数学家们作了很多努力,到20世纪30年代,法国的布尔巴基(Bourbaki)学派提出,利用数学内在联系和公理化方法从数学各个分支中提炼出各种数学结构。他们认为数学的发展无非是各种结构的建立和发展,“数学好比一座大城市。城市中心有些巨大的建筑物,就好比是一个个已经建成的数学理论体系。城市的郊区正在不断地并且多少有点杂乱无章地向外伸展,他们就好像是一些尚未发育成型的正在成长着的数学新分支。与此同时,市中心又在时时重建,每次都是根据构思更加清晰的计划和更加合理的布局,在拆毁掉旧的迷宫似的断街小巷的同时,将修筑起新的更直、更宽、更加方便的林荫大道通向四方,……。” (2)布尔巴基学派在集合论的基础上建立了三个基本结构(即代数结构、序结构和拓扑结构),然后根据不同的条件,由这三个基本结构交叉产生新的结构,如分析结构、布尔代数结构等等。他们认为整个数学或大部分数学都可以按照结构的不同而加以分类,用数学结构能统一整个数学,各个数学分支只是数学结构由简单到复杂,由一般向特殊发展的产物。数学的不同分支是由这些不同的结构组成的,而这些结构之间的错综复杂的联系又把所有的分支连成一个有机整体。因此可以说,布尔巴基学派用数学结构显示了数学的统一性。 (3)20世纪下半叶,数学已经发展成一个庞大的理论体系,数学分工愈来愈细,分支愈来愈多,分支之间的联系愈来愈不明显,但是,数学学科的统一化趋势也在不断加强,主要体现在数学的不同分支领域的数学思想和数学方法相互融合,导致了一系列重大发现以及数学内部新的综合交叉学科的不断兴起:例如微分拓扑学的建立、发展;整体微分几何研究的突破;代数几何领域的进展;多复变函数理论以及其他数学分支的突破和发展都有密切的联系。

数学物理方法123章作业解答

另:()y x u u ,=,()y x v v ,=,?? ?==? ρ?ρsin ,cos y x ? ?ρ ρ ρ sin cos y u x u y y u x x u u ??+ ??= ????+ ????= ?? ρ ?????ρ?ρρ??ρ? ρ??= ??+ ??= ??+ ??- =??? ? ????+-??=???? ??????+????= ??u x u y u y v x v y v x v y y v x x v v cos sin cos sin cos )sin (111 ? ?ρ ρ ρ sin cos y v x v y y v x x v v ??+ ??= ????+ ????= ?? ρ ?????ρ?ρρ??ρ? ρ??- =??- ??- =??+ ??- =??? ? ????+-??=???? ??????+????= ??v x v y v y u x u y u x u y y u x x u u cos sin cos sin cos )sin (111 所以,有 ?????? ???-=????=??ρ?ρ?ρρv u v u 11 第18页 第2题

第27页 指出下列多值函数的支点及其阶。 (1) ) (a z - 解:根式的可能支点是∞点和根式内多项式的零点,现在来逐个考察这些点的性质。 ① a z =:在此点的邻域内任取一点 1 11φρi e a z +=(11 <<ρ),则有 2 11)(φ φ ρρi i e e a z = = - 当保持 1ρ不变 π φφ211+→(绕 a z =一周)时,有

有限差分法求解偏微分方程MATLAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程

一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程: 22(,)()u u f x t t x αα??-=??其中为常数 具体求解的偏微分方程如下: 22001 (,0)sin()(0,)(1,)00 u u x t x u x x u t u t t π???-=≤≤?????? =??? ==≥??? 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析; 4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+- (2-1) 求解区域的网格划分步长参数如下:

双曲型偏微分方程的求解及其应用[文献综述]

毕业论文文献综述 信息与计算科学 双曲型偏微分方程的求解及其应用 一、前言部分 在科学技术日新月异的发展过程中,人们研究的许多问题用一个自变量的函数来描述已经显得不够了,不少问题有多个变量的函数来描述。比如,从物理角度来说,物理量有不同的性质,温度、密度等是用数值来描述的叫做纯量;速度、电场的引力等,不仅在数值上有不同,而且还具有方向,这些量叫做向量;物体在一点上的张力状态的描述出的量叫做张量,等等。这些量不仅和时间有关系,而且和空间坐标也有联系,这就要用多个变量的函数来表示。 应该指出,对于所有可能的物理现象用某些多个变量的函数表示,只能是理想化的,如介质的密度,实际上“在一点”的密度是不存在的。而我们把在一点的密度看作是物质的质量和体积的比当体积无限缩小的时候的极限,这就是理想化的。介质的温度也是这样。这样就产生了研究某些物理现象的理想了的多个变量的函数方程,这种方程就是偏微分方程[1]。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。 其中,可以变的标准型有:椭圆型、双曲型、抛物型。而基本方程可以归结为四大类:波动、热传导、传输[2]。 随着电子计算机的出现和发展, 偏微分方程的数值解得到了前所未有的发展和应用.在科学的计算机化进程中,科学与工程计算作为工具性、方法性、边缘交叉性的新学科开始了自己的新发展.由于科学基本规律大多是通过偏微分方程来描述的,因此科学与工程计算的主要任务就是求解形形色色的偏微分方程,特别是一些大规模、非线性、几何非规则性的方程. 双曲型和抛物型方程描述了物质扩散和波动等不定常物理过程,这两类偏微分方程的定解问题在力学、热传导理论、燃烧理论、化学、空气动力学、电磁学和经济数学等方面都有

数学物理方法第十二章

第12章 第12.1节 一、数学物理问题分为正向问题和逆向问题。 正向问题,即为已知源求场;逆向问题,即为已知场求源。 前者是经典数学物理所讨论的主要内容.后者是高等数学物理所讨论的主要内容。 二、数学物理方程的类型和所描述的物理规律多数为二阶线性偏微分方程 1.振动与波(振动波,电磁波)传播满足波动方程。 2.热传导问题和扩散问题满足热传导方程。 3.静电场和引力势满足拉普拉斯方程或泊松方程。 三、三类典型的数学物理方程 1.双曲型方程(以波动方程为代表) 错误!未找到引用源。 2.抛物型方程(以热传导方程为代表) 错误!未找到引用源。 3.椭圆型方程(以泊松方程为代表) 错误!未找到引用源。当f(x,y,z)=0时,退化为拉普拉斯方程。 四、三类数学物理方程的一种最常用解法 分离变量法 -> 偏微分方程 -> 标准的常微分方程 ->标准解,即为各

类特殊函数 第12.2节 一、振动方程 1.弦的横振动 考察一根长为 l 且两端固定、水平拉紧的弦. 确定弦的微分方程的方法: 1)要研究的物理量是弦沿垂直方向的位移u(x,t) 2)被研究的物理量遵循牛顿第二定律。 3)按物理定理写出数学物理方程(即建立泛定方程) 其中必须注意两点:(a)由于数学物理方程必须反映弦上任一位置上的垂直 位移所遵循的普遍规律,所以考察点不能取在端点上,但可以取除端点之外 的任何位置作为考察点.(b)由于物理问题涉及的因素较多,往往还需要引 入适当假设才能使方程简化. 根据牛顿第二定律F =ma运动的方程可以描述为: 错误!未找到引用源。 仅考虑微小的横振动,夹角θ1 θ2为很小的量, cosθ1≈cosθ2≈1 Sinθ1≈tgθ1sinθ2≈tgθ2 ?s≈ds≈?x=dx

偏微分方程式之求解

第六章偏微分方程式之求解 在化工的领域中,有不少程序之动态是由以偏微分方程式(Partial differential equation;PDE)所描述的,例如热与质量在空间中的传递等。这些用以描述实际问题的PDE,除非具有某些特定的方程式型态及条件,否则甚难以手算的方式找出解析解。而在数值求解方面,最常被采用的方法为有限差分法(finite difference)何有限元素法(finite element)。然对于某些不熟悉数值分析及程序编写的化工人而言,欲充分了解以偏微分方程式所描述之系统动态是相当不容易的,更遑论进一步的设计与分析了。 值得庆幸的是,MATLAB 的环境中提供了一个求解PDE 问题的工具箱,让使用者得以利用简单的指令或图形接口工具输入欲解的PDE,并求解。使得PDE 之数值解在弹指之间完成,使用者不在为数值法所苦恼,轻松掌握偏微分方程式系统的动态,并可进一步进行后续之设计工作。 本章将以循渐进的方式,介绍PDE 工具箱及其用法,并以数个典型的化工范例进行示范,期能使初学者很快熟悉PDE工具箱,并使用它来设计与分析以偏微方方程式所描述的程序系统。 6.1 偏微分方程式之分类 偏微分方程式可根据其阶数(order),线性或非线性型态,以及边界条件进行分类。 6.1.1依阶数的分类 偏微分方程式是以偏微分项中之最高次偏微分来定义其阶数,例如: 一阶偏微分方程式: xy 二阶偏微分方程式: 三阶偏微分方程式: 6.1.2 依非线性程度分类

偏微分方程式亦可以其线性或非线性情况,区分为线性 (linear),似线性 (quasilinear),以及非线性三类。 例如,以下之二阶偏微分方程式 (Constantinides and Mostoufi,1999) 可依系数 ( )之情况,进行如下表之归类 类别 情况 线性 似线性 系数 ( )为定值,或仅为 (x,y)函数 系数 ( )为依变数 (dependent variable)u 或其比方程式中之偏微 分低阶之偏微分项的函数,如 ( ) (x,y,u, u x, u y) 非线性 系数 ( )中,具有与原方程式之偏微分同阶数之变数,如 () (x,y,u, 2u x 2 , 2 u y 2, 2u x y) 另外,对于线性二阶偏微分方程式,可进一步将其分类为椭圆型 (elliptic) ,拋 物线型 (parabolic),以及双曲线型 (hyperbolic) 。具体上来说,此类偏微分方程 式二阶线性之 一般式为 系数a,b,c,d,e 和 f 是定值或为 u 的函数。若 g=0,则上式为其次是偏微分方程 式。式子 ( )之分类及代表性例子,请见下表 (c ~ u) a ~ u f 2 热传导或扩散方程式 u 2 u xt a() 2 u y 2 22 uu b( ) c( ) 2 x y x 2 d() 0 22 uu b c 2 x y y 2 d u e u fu g 0 xy 方程式类别 判断式 椭圆型 b 2 4ac 0 拋物线型 b 2 4ac 0 代表性范例 Laplace 方程式, Poisson 方程式, 22 uu 22 xy 22 uu 22 xy f (x,y) x 2 t (c ~ u) a ~ u f

偏微分方程数值解法答案

1. 课本2p 有证明 2. 课本812,p p 有说明 3. 课本1520,p p 有说明 4. Rit2法,设n u 是u 的n 维子空间,12,...n ???是n u 的一组基底,n u 中的任一元素n u 可 表为1n n i i i u c ?==∑ ,则,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???=== -=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ????=,令 () 0n j J u c ?=?,从而得到12,...n c c c 满足1 (,)(,),1,2...n i j i j i a c f j n ???===∑,通过解线性方程组,求的i c ,代入1 n n i i i u c ?==∑, 从而得到近似解n u 的过程称为Rit2法 简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1 n n i i i u c ?== ∑, 利用,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???===-=-∑∑确定i c ,求得近似解n u 的过程 Galerkin 法:为求得1 n n i i i u c ? == ∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,) n a u V f V =,对任 意 n V u ∈或(取 ,1j V j n ?=≤≤) 1 (,)(,),1,2...n i j i j i a c f j n ???===∑的情况下确定i c ,从而得到近似解1 n n i i i u c ?==∑的过程称 Galerkin 法为 Rit2-Galerkin 法方程: 1 (,)(,)n i j i j i a c f ???==∑ 5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构 造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用 有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。 6. 解:对求解区间进行网格剖分,节点01......i n a x x x x b =<<<<=得到相邻节点1,i i x x -

Matlab求解微分方程(组)及偏微分方程(组)

第四讲 Matlab 求解微分方程(组) 理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介 1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解. 注意,系统缺省的自变量为t 2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一. (2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解. (3)如果要获得微分方程问题在其他指定时间点012,,, ,f t t t t 上的解,则令 tspan 012[,,,]f t t t t =(要求是单调的). (4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供

《偏微分方程概述及运用matlab求解偏微分方程常见问题》要点

北京航空航天大学 偏微分方程概述及运用matlab求解微分方 程求解常见问题 姓名徐敏 学号57000211 班级380911班 2011年6月

偏微分方程概述及运用matlab求解偏微分 方程常见问题 徐敏 摘要偏微分方程简介,matlab偏微分方程工具箱应用简介,用这个工具箱解方程的过程是:确定待解的偏微分方程;确定边界条件;确定方程所在域的几何形状;划分有限元;解方程 关键词MATLAB 偏微分方程程序 如果一个微分方程中出现的未知函数只含有一个自变量,这个方程叫做常微分方程,也简称微分方程:如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 一,偏微分方程概述 偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。许多领域中的数学模型都可以用偏微分方程来描述,很多重要的物理、力学等学科的基本方程本身就是偏微分方程。早在微积分理论刚形成后不久,人们就开始用偏微分方程来描述、解释或预见各种自然现象,并将所得到的研究方法和研究成果运用于各门科学和工程技术中,不断地取得了显著的成效,显示了偏微分方程对于人类认识自然界基本规律的重要性。逐渐地,以物

理、力学等各门科学中的实际问题为背景的偏微分方程的研究成为传统应用数学中的一个最主要的内容,它直接联系着众多自然现象和实际问题,不断地提出和产生出需要解决的新课题和新方法,不断地促进着许多相关数学分支(如泛函分析、微分几何、计算数学等)的发展,并从它们之中引进许多有力的解决问题的工具。偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。 在国外,对偏微分方程的应用发展是相当重视的。很多大学和研究单位都有应用偏微分方程的研究集体,并得到国家工业、科学部门及军方、航空航天等方面的大力资助。比如在国际上有重大影响的美国的Courant研究所、法国的信息与自动化国立研究所等都集中了相当多的偏微分方程的研究人员,并把数学模型、数学方法、应用软件及实际应用融为一体,在解决实际课题、推动学科发展及加速培养人才等方面都起了很大的作用。 在我国,偏微分方程的研究起步较晚。但解放后,在党和国家的大力号召和积极支持下,我国偏微分方程的研究工作发展比较迅速,涌现出一批在这一领域中做出杰出工作的数学家,如谷超豪院士、李大潜院士等,并在一些研究方向上达到了国际先进水平。但总体来说,偏微分方程的研究队伍的组织和水平、研究工作的广度和深度与世界先进水平相比还有很大的差距。因此,我们必须继续努力,大力加强应用偏微分方程的研究,逐步缩小与世界先进水平的差距 二,偏微分方程的内容

从现代数学发展趋势看中学数学教学改革

从现代数学发展趋势看中学数学教学改革 一、现代数学的发展趋势 1.更高的抽象性 在纯粹数学领域中,集合论观点的渗透和公理化方法的运用极大地推动了纯粹数学向更高的抽象化发展。 2.更深入的基础探讨 随着集合论在数学各领域中的渗透和应用,它逐渐成为数学理论的坚实基础,但随后罗素悖论的出现打破了人们对集合论作为数学基础的信任,引起了关于数学基础的一系列问题。例如:(1)如何解决已发现的悖论并进一步保证在公理系统中不出现悖论。(2)如何理解“数学的存在”。(3)有无实无限,如何理解实无限。(4)数学的基础是什么。 3.更强的统一性 20世纪以来,不同学科之间的相互渗透、结合更为广泛.不同分支领域的数学思想与数学方法相互融合,导致了一系列重大发现以及数学内部新的综合交叉学科的不断兴起,数学已经渗入各个领域。特别是20世纪40年代以后,数学以空前的广度和深度向其他科学技术和人类知识领域渗透,加上电子计算机的推助,应用数学的蓬勃发展已成为当代数学的一股强大潮流。 二、顺应发展趋势的中学数学改革 (一)从现代数学的更高的抽象性看中学数学课堂的改革 现代数学越来越抽象,因此锻炼学生的抽象思维是非常关键。那么,在具体数学教学中我们又是如何改革教学,以便更好地锻炼学生的抽象思维呢? (1)现代中学数学教育注重发展学生的观察力 注重发展学生的观察力,是培养学生抽象思维的前提 正如心理学家鲁宾斯指出的那样,“任何思维,不论它是多么抽象的和多么理论的,都是从观察分析经验材料开始”。观察是智力的门户,是思维的前哨,是启动思维的按钮。观察的深刻与否,决定着创造性思维的形成。因此,引导学生明白对一个问题不要急于按想的套路求解,而要深刻地观察,去伪存真。这不但为最终解决问题奠定基础,而且也可能有创见性的寻找到解决问题的契机。(2)现代中学数学教育注重提高学生的猜想能力 提高学生的猜想能力,是培养学生抽象思维的关键 猜想是由已知原理、事实,对未知现象及其规律做出的一种假设性的命题。在我们的数学教学中,培养学生进行猜想是激发学习兴趣,发展学生思维,掌握探求知识方法的必要手段。我们要善于启发、积极指导、热情鼓励学生进行猜想,以真正达到启迪思维、传授知识的目的。 启发学生进行猜想,作为教师,首先要点燃学生主动探索之火,我们决不能急于把自己全部的秘密都吐露出来。而要“引在前”,“引”学生观察分析;“引”学生大胆设问;“引”学生各抒己见;“引”学生充分活动。让学生去想,猜想问题的结论,猜想解题的方向,猜想知识间的有机联系,让学生把各种各样的想法都讲出来,让学生成为学习的主人,推动其思维的主动性。其次,引导学生采用

相关主题
文本预览
相关文档 最新文档