当前位置:文档之家› 色谱方法验证指南-FDA

色谱方法验证指南-FDA

色谱方法验证指南-FDA
色谱方法验证指南-FDA

色谱方法验证审评指南

色谱方法通常用于原料、药物、药物制剂和生物体液中化合物的定性和定量。涉及的成分包括手性的或非手性的药物、过程杂质、残留溶媒、附加剂如防腐剂、分解产物、从容器和密闭包装或制造过程中带入的可提取和可过滤的杂质、植物药中的农药和代谢物等。

试验方法的目的是得到可信赖的和准确的数据,无论是用于验收、出厂、稳定性或药物动力学研究。得到的数据用于药品开发或批准后的定性和定量,试验包括原料的验收、药物和药物制剂的出厂、过程检验(In- process testing)的质量保证和失效期的建立。

方法的验证是由药品的开发者或使用者来检验其方法是否达到预期的可靠性、准确度和精密度的过程。得到的数据成为方法的验证资料的一部分交给CDER.。

方法的验证对于完成机构满足档案要求不是一次性的,开发者和使用者都应验证其方法的耐用度或耐久性(ruggedness or robustness.),其他的分析者、用其它相当的仪器,在其它的日期或地点,在药品生产期限(有效期)全过程,方法都应能够重现。如果产生数据的方法是可靠的,那么所得到的验收、出厂、稳定性或药物动力学的数据就是可信赖的。验证的过程和方法的设计应在开发过程中重要的数据产生之前,如果方法改变了,还应该再验证。

. 色谱类型

色谱是一种技术,通过该技术,样品中的组分载入液相或气相中,通过在固定相上由吸附—解吸附来完成。

A. 高效液相色谱 (HPLC)

HPLC分离是基于在样品在流动相液体和固定相之间的不同分配。一般地说HPLC大体分为以下几种(未考虑其重要性顺序)

1. 手性液相色谱

2. 离子交换色谱

3. 离子对/亲和色谱

4. 正相色谱

5. 反相色谱

6. 分子排阻色谱

1. 手性液相色谱

分离光学异构体可在手性固定相上,用衍生化试剂或在非手性固定相上用流动相添加剂形成非对对映体来实现。用作杂质试验方法时,如果光学异构体杂质在光学异构体药物之前洗脱,要增加灵敏度。

2. 离子交换色谱

分离基于荷电功能团,样品负离子(X - )为阴离子,样品正离子((X + )为阳离子,一般用pH程序洗脱。

3. 离子对/亲和色谱

分离基于与目标样品的专一的化学相互作用。更普遍的反相型用缓冲液和加入的对离子(与被分离的样品荷相反电荷)分离。分离受pH、离子强度、温度、浓度和共存的有机溶剂类型的影响。亲和色谱,一般用于大分子,使用配合体(共价结合在固体基质上的生物活性分子),与其同类的抗原(分析介质)反应,生成可逆转的复合物,通过改变缓冲条件洗脱。

4. 正相色谱

正相色谱为用有机溶剂为流动相和极性的固定相。此时较小极性的组分比较大极性组分更快地洗脱。

5. 反相色谱

报给CDER的最通常的实验方法是反相HPLC方法,最通常用紫外检测器。

反相色谱,一种键合相的色谱技术,用水作基本溶剂,选择性也受溶剂强度、柱温和pH的影响,一般来说较大极性比较小极性组分洗脱更快。

紫外检测器可以用于所有色谱,这类检测器要注意的是灯老化后的灵敏度降低,其灵敏度因(仪器)的设计和/或者制造厂家的不同有小的变异。需要指出,用紫外检检测器和反相HPLC组合得到的色谱图不一定能真实的反映事实,原因是:

?极性比目标化合物大得多的化合物可能被掩盖(在溶剂前沿或死体积时同时洗脱)。

?极性比目标化合物小得多的化合物洗脱出来晚,甚至保留在柱上。

?紫外吸收系数较低和最大吸收不同的化合物在检测相对较低浓度的目标分析物时不能被检出,因为通常只有一个检测波长。

6. 排阻色谱

也叫凝胶渗漉(permeation)或滤过,分离基于化合物分子大小或水动力学(hydrodynamic)容积。比多孔柱填料孔径大得多的分子最先洗脱,小分子进入孔隙洗脱晚,其余的洗脱速率取决于其分子的相对大小。B. 气相色谱(GC)

气相色谱基于挥发性样品由作为流动相的载气运载,通过色谱柱内的固定相时发生吸附和解吸附过程进行分离。

通常气相色谱分析的样品是低分子量化合物,这些化合物是易挥发的和高温时稳定的。在这一方面,药物和药物制剂中的残留溶剂适于气相色谱分析。生成化学衍生物可达到易挥发和热稳定的目的。

常用的检测器是用于含碳化合物的火焰离子化检测器(FID),用于卤代化合物的电子捕获式检测器(ECD),用于含硫和含磷化合物的火焰光度检测器(FPD),以及用于含氮或磷化合物的氮磷检测器(NPD)。气相色谱也能实现手性分离。填充柱迅速被毛细管取代来改进分离度和分析时间,在气相色谱上分析物位置与HPLC一样,用保留时间(Rt)表示。

C. 薄层色谱(TLC)

薄层色谱是一种最简便普通的色谱技术,分离基于在一端浸于溶剂混合物(流动相)中的薄层板(固定相)上点的样品移动进行分离,整个系统在密封的缸中进行。

对于本身没有颜色的化合物,检出技术包括荧光、紫外和喷雾显色剂(通用的和专一的)。分析物在薄层板上的位置用Rf值来表示,Rf值为化合物的移动距离与溶剂前沿的比值。

三种方法,气相、液相和薄层中,薄层色谱是最普通的试验方法,因为薄层板上所有的组分都可用适宜的检测技术检出。然而通常不如HPLC那么准确和灵敏。虽然选用适宜的检测技术,TLC法能见到分析的“全图”(whole picture) ,但比HPLC分析变异较大。

. 参考标准品(对照品)

参考标准品为经充分鉴定的高纯度化合物,色谱方法更大程度上依赖参考标准品来提供准确的数据。因而参考标准品的质量和纯度是很重要的,有二类参考标准品,化学的和放射性的。后者应考虑放射标记纯度和化学纯度。

按照提交方法验证的样品和分析数据,指南中的二类化学参考标准品如下:

?USP / NF参考标准品,不需要鉴定。

· 非总目录标准品,应用合理方法制备,并经充分鉴定,以保证其鉴别、含量、质量和纯度达到最高。

应该指出

?大多数USP / NF参考标准品未标示化合物纯度。

?对非USP参考标准品,提出纯度的校正数应包括在试验方法的计算中。

· 提供的参考标准品中没有以下杂质,诸如合成过程的结构相似的杂质和其它的过程杂质,如重金属、残留溶剂、水分(结合的和非结合的)、植物来源制剂中的农药和分解产物等。

· 如果在方法中规定,用前参考标准品要干燥除去残留溶剂、非结合水分和有时是结合水(取决于干燥条件),对易潮解的化合物总是包括干燥步骤的。但另一方面干燥可能导致结晶水的损失或引起热敏感化合物的降解。

色谱方法用外标法和内标法进行定量。

A. 外标法

当参考标准品与样品在不同的色谱图上进行分析时,用外标法。定量基于样品的峰面积/高(HPLC或GC)或强度(TLC)与分析对象、参考标准品的比值。

更适合用外标法的样品如下:

1.样品具有单一的目标浓度和狭窄的浓度范围,例如验收和出厂检验。

2.简便的样品制备操作。

3. 增加走基线的时间,为检测可能的额外峰,如杂质试验。

B. 内标法

加入一种已知纯度并且在分析中不产生干扰的化合物至样品混合液中,定量基于被分析的化合物与内标的响应比值与参考标准品得到的比值进行比较。这一方法很少用于TLC。

更适合用内标法的样品如下:

1.复杂的样品制备过程,如多次提取。

2.低浓度的样品(灵敏度是确定的),如药代动力学的研究。

3.在样品分析中预计是很宽的浓度范围,如药物动力学研究。

虽然CDER不规定方法应该用内标或外标法用于定量,但一般的看法是用于验收、稳定性和TLC用外标法,对生物体液和GC用内标法。

工作浓度为方法中规定的被分析对象的目标浓度。保持样品浓度与标准的浓度相近可以改善方法的准确性。建议

1.如果参考标准品的纯度校正因子已知,那么在计算中应该包括。

2.在方法中要规定标准品和样品的工作浓度。

. 药物和药物制剂HPLC验证的参数

虽然许多种HPLC都可采用,但最普遍上报的方法都是用紫外检测器的反相HPLC法,以此作为验证参数的例子。这一方法验证的规定可以扩展到其它检测器和其它色谱。对于验收、出厂或稳定性试验,准确性应最佳化,因为要表明实测值和真值的差异是最为关注的。

A. 准确性

准确性是衡量测量实验值和真值的接近程度。推荐药物和药物制剂的准确性研究在标示量的80%、100%和120%的水平上来进行的,这与“The Guideline for Submitting Samples and Analytical Data for method Validation”的规定是一致的。

对于药物制剂,准确性试验通常是将已知量的药物[按重量或体积(溶于稀释剂)] 以分析对象检测浓度的线性范围量加到空白处方内来完成的。对于液体制剂,这是真实的回收率;而对于诸如片剂、栓剂、透皮吸收制剂等,这不能检测稀释剂中的赋形剂与活性成分间可能产生的作用。实际上要做一个已知活性药物量的单个剂量单位(single unit)来进行回收试验是困难的。准确性试验评价在赋形剂存在时,在分析药物制剂的色谱条件下,试验方法的专属性。但这只是样品制备过程和色谱过程中的回收率,而不是制造过程的影响。

在每个推荐检测浓度重复进样,其重复进样的RSD提供了分析方法的变动性,或是试验方法的精密程度。重复性的均值以标示量的%来表示,这表明试验方法的准确程度。

建议

回收试验在每个水平上(标示量的80%、100%和120%)至少做3份,均数用来估计准确性的,RSD是估计样品分析精密度的。

B. 检出限和定量限

这些限度通常用于药物和药物制剂中有关物质的测定。限度的规定连同药物和药物制剂出厂和稳定性有关的调整杂质量的方法一起要上报。

检出限度是样品中分析对象在实验条件下可被检出的最低限度,但不要求定量。定量限度是样品中分析对象在实验条件下,以可接受的精密度和准确性定量测定的最低浓度。

使用UV检测器时,保证低浓度化合物的检测精密度是困难的,这是由于检测器的灯随着寿命的延长可能

逐渐减小其灵敏度,不同检测器制造厂家的躁声水平也不同。在低浓度时,保证每次试验方法能达到检出限度和定量限度是必要的。指定的杂质无对照品,但是又要保证检出限,额外峰可能不出现或出现。对评价额外峰检出的可行的粗糙方法是用以分析对象峰面积的百分比的要求作为检出限。例如检出限要求分析对象峰面积50000的0.01% ,那么给出面积计数为5,则不能检出。

虽然USP表示检出限和定量限分别用躁声水平的2或3和10 倍表示,但这一概念不是很实际的。在方法研究阶段,用不同的检测器分析样品时,检测器的躁声水平是不同的。在定量限水平的试验方法中使用对照品(由申报者提供)能保证杂质可被检出和被定量。

检测器灵敏度因型号和制造厂家的不同而异,见表1。用二种商用检测器分析一种化合物,这些数据不应作为二种检测器灵敏度预期的比例。在设定这些限度时,因为还有起部分作用的其它参数,如灯和柱的寿命,但它们是不知道的。

表1 二种商用检测器的检出灵敏度限度比较

检测器1 检测器2

定量限度 0.21% 0.07%

检出限度 0.16% 0.05%

人们应该注意,基线躁声不应解释为额外峰。如果样品的稀释剂与流动相所用的溶剂不同(比例或类型),亦可能在死体积处见到波动。

如果有目标化合物的参考标准品,那么要使用接近定量限的或按规定配制的标准溶液。记录没有参考标准品的杂质峰时,推荐使用药物的稀释液作为参考标准溶液。然后对方法要进行校正,测定的高低浓度都要在药物检出线性范围内,否则用相同色谱图下面积或峰高的%表示是有偏差的。应该注意得到的用面积计数的额外峰不能被认为是取决于该化合物UV吸收系数或吸收度的检出响应。

建议

1. 分析重现性和进样重现性数据应在定量限度范围内。

2. 在试验方法的定量限的浓度处,用一外加的参考标准溶液。

C.线性

符合比耳定律的可检出的线性范围取决于被分析化合物和所用的检测器。工作样品的浓度和准确性试验样品的浓度应在线性范围内。

图1和2表明UV响应和浓度的(a)线性和非线性关系。有一点应该注意,当记录杂质峰时(用母体药物的%面积表示),如果使用非线性的浓度曲线部分,观察到的杂质可能不是理论计数的真实反映。另外,仅当杂质和母体化合物的吸收系数或吸收度值相同时才能得到真实的量。杂质参考标准品通常是必需的。

建议

检测的线性范围取决于试验方法的目的,用于含量测定方法的推荐范围为不得过±20%,以峰面积%计的测定杂质的范围是目标浓度的+20%,低至药物或杂质的定量限。在大多数情况下,回归系数要 >0.999,截距和斜率应标明。

D. 精密度

精密度为在相同分析条件下的一组测量值相互接近的程度。ICH定义精密度含有3个部分,即重复性(repeatability)组间精密度(intermediate precision)和重现性(reproducibility)。在USP 1990 ,1225页中的耐用度(ruggedness)具体体现在这一指南的组间精密度,重现性和耐久性(robustness)概念中。

1. 重复性

a. 进样重复性

灵敏度是检出样品中分析对象浓度小量的变化的能力。灵敏度可以通过系统适用性试验中的进样重现性的规定来部分的控制。

多次注射均一样品(制备的溶液)测量的灵敏度和精密度,表明在色谱条件下测定当天HPLC仪器的性能。

这一信息作为验证数据和系统适用性试验的一部分。以百分变异系数(CV%)或相对标准偏差(RSD)的规定来测定其分析的变异限度。值越接近人们可以期待结果更精密或对结果的变化更灵敏。这是假设在系统适用性试验后色谱仪功能未失常的情况下的。然而要注意这不是考虑由药品制造和实验室样品制备引起的变异。作为进样和R t的变异的例子,表2提供了在进样过程中色谱系统漏液时收集的数据。四个重复的样品分别进样,注意其峰面积的变异和保留时间的漂移。从性能良好的系统得到的一组典型数据见表3。表2 进样中色谱系统系统漏液时的重复性数据

样品 R t 峰面积ΔR t Δ峰面积

A1A2 5.625.66 21556992120466 0.04 35233

B1B2 5.876.13 22056592288355 0.26 82696

C1 C2 6.216.48 22270662265279 0.27 38213

D1 D2 6.736.99 25818882602016 0.26 20128

表3 色谱系统功能正常时的进样重复性数据

剂型 N 均数±SD RSD

吸入溶液 10 1993162±5029 0.25%

吸入用溶液 10 1722253±6288 0.37%

胶囊 10 1744320±3133 0.18%

建议

作为方法验证的一部分,建议最少10次进样,RSD≤1%。对于药物或药物制剂中的活性成分出厂和稳定性研究,其RSD≤1%。系统适用性试验的精密度RSD至少5次进样。对低浓度杂质,较高的变异系数可以接受。

b. 分析重复性

分析重复性由同一分析者在相同的实验条件下进行的多次测量,用RSD表示。实际上,它常常与准确性一起进行研究,见 . A部分准确性项下。

2. 组间精密度

组间精密度以前作为持久稳定性的一部分。该数据用来评价在与方法研究过程不同的条件下的方法可靠性。目的是保证同样的样品在方法研究期后进行分析能得到相同的结果。

取根据时间和条件,方法可以在多天、多个分析工作者和多台仪器上试验。

良好的系统适用性试验规定可以部分地保证试验方法的组间精密度。因此设定严格的但实际的系统适用性试验的规定是重要的。

建议

作为最低要求,在 .A部分准确性项下得到的数据可分为二种不同的情况,来表明试验方法的组间精密度。

3. 重现性

按ICH定义,重现性表示协作研究的实验室间的精密度。要求有多个实验室,但由于企业的规模的原因,不总是能实现的。

建议

如果组间精密度完成了,重现性一般不要求。

E. 范围

范围是指被研究的分析对象的高低浓度间的距离。也可见 .A部分的A和C的准确度和线性项下。

.A部分的A和C的准确度和线性项下推荐的范围能用于其它分析对象,如防腐剂。

F. 回收率

回收率是用目标化合物的量或重量在介质中的理论量的百分数来表示的。

目标化合物应该得到全部回收。在样品制备过程中,目标化合物从处方的赋形剂中回收;处方的模型范围包括简单的水溶液至复杂的乳剂,同时从对容器或密闭包装如玻璃瓶和定量阀的可能的吸附中回收。通常样品制备过程简单,回收变异小,回收率数据的收集在A部分准确度项下讨论。

G. 耐久性(Robustness )

ICH定义耐久性是测量方法不受小的但客观存在的参数变异的影响的能力。耐久性能被良好的系统适用性规定部分的保证。因此设置严格的但可行的系统适用性试验是重要的。

部分或全部改变试验条件,如柱的寿命、柱型号、柱温、流动相中缓冲液的pH、试剂等通常是可以的。

建议

耐久性研究得到的数据一般不上报,但建议作为方法验证的一部分。

H. 样品溶液的稳定性

药物或药物制剂依法制备的溶液的稳定性要按试验方法进行评价,大多数实验室供试品在试验条件下,用自动进样器过夜运行来完成。在试验操作完成前,在实验室环境下,样品在溶液中放数小时。特别要注意能通过水解、光分解或玻璃器皿的吸附而降解的药品。

建议

在常规实验条件下,样品溶液的稳定性的试验应提供一个试验周期的数据,如24小时。在例外情况,样品溶液制备或贮存要多天,那么应该选择一个合适的稳定性试验时间。

I. 专属性/选择性

分析对象应不受其它化合物的干扰,同时与其它化合物也应能很好的分离。应该得到一个代表性的HPLC 色谱图或概述上报,该图或概述应能显示加入的已知化合物或加速试验的样品产生的其它峰与母体目标化合物能基线分离。其它峰的的例子如下:

?对于药物或原料,被考虑的有关物质是从合成过程中来的过程杂质(包括异构体)、残留农药、溶剂以及从天然来源中提取的其它成分。

?对于制剂,有关物资可能是存在在活性物质中的杂质、降解物、赋形剂与活性物质的相互作用产物、额外的成分,如从赋形剂或制造过程中引进的残留溶媒;以及从容器和密闭包装或从制备过程中引进的可滤过和可提取的杂质。

药物加速试验的数据要上报,根据申报的药品和“Guideline for Submitting Samples and Analytical Data for Methods validation”的要求,使用酸、碱水解、温度、光分解、氧化等方法进行加速试验。样品、包括杂质、防腐剂以及空白样品等的加速或不加速的样品的有代表性的色谱图要上报。与杂质试验方法一起,色谱图应表明存在的杂质的检出限 / 定量限要求。色谱图应该是清楚的、有标识的、有时间或时间刻度并且衰减应标明。

注意点

1.主峰可以扩展,如通过增加浓度、改变衰减使可以见到大小合适的额外峰以评价反映稳定性的能力。见.B 部分检出限和定量限的建议。

2.基线应在刻度上面,因离开刻度的基线(见到的是一条平直的线)可能掩盖小峰。

峰的纯度通过二极管阵列检测器测定,然而目标化合物中存在的低浓度的额外化合物可能不干扰或不影响分析物的UV光谱。

图3和图4说明用二极管阵列检测器的UV光谱图和色谱图。为三维色谱图,为普通色谱图。分析物在4.7分钟流出,应该注意UV光谱图的质量对低浓度化合物是差的。

当用加速试验的样品时,应选择合适的检测器和积分仪,如为能检测0.1%低浓度的降解物,母体峰的检出限至少是0.1%,或面积计数是合理的。

建议

加速和未加速的样品的有代表性的色谱图应上报。包括杂质试验方法、防腐剂等,连同有关的空白样品也一起上报。有代表性的色谱图要以加入已知的额外化合物来标明其选择性。

J. 系统适应性规格和试验

HPLC收集的准确度和精密度数据开始于性能良好的色谱系统。系统适应性

规定和试验则是帮助达到这一目的的参数。本节解释图5指出的术语,并提供

建议和说明。

图中Wx为在5%(0.05)或10%(0.10)峰高处测得的峰宽

f 为在W处峰最大值至峰前沿的距离

t0为死体积或不保留成分的洗脱时间

tR为分析对象的保留时间

tW为直线外推基线处的峰宽

1. 容量因子(k’)

k’=(tR-t0)/t0

容量因子是目标峰对死体积,即不保留成分的洗脱时间的比值。

建议

目标峰应该与其他峰和死体积良好地分离。一般k’>2.

2. 精密度/进样重复性(RSD)

以RSD表示的进样精密度表明了HPLC仪器的性能,包括在样品分析时泵、色谱柱和环境的状况。应注意样品制备和制造的变异未予考虑。

建议

RSD≤1% (n≥5)

3. 相对保留时间(α)

α=k’1/k’2

相对保留时间为两个峰相对位置的比值,这不是象分离度(RS)的规定,不是基本参数。

4. 分离度(RS)

RS=(tR2-tR1)/(1/2)(tW1+tW2)

RS表示两个峰被分离好的程度。对于可信赖的定量分析,良好分离的峰对定量是必要的。

如果考虑可能的干扰峰,分离度是非常有用的参数。应选择与分析对象最接近的可能的洗脱峰。RS最小受两种被测量成分比例的影响。峰的分离度RS如图6所示。

分析对象和最接近的可能干扰峰(杂质,附加剂,分解产物,内标等)的RS >2 是合适的。

5. 拖尾因子(T)

T=Wx/2f

随着峰拖尾因子的增加定量准确性降低,因为要决定何时、在哪里峰结束,这造成积分峰面积的困难。为分析对象峰面积的最佳计算,积分变量是分析者预设的。

图7和图8表明拖尾因子对定量的影响。如果积分仪不能准确决定何时上升或下降,

那么准确性就要降低。

建议

T≤2

6. 理论塔板数(N)

N=16(tR / tW)2 = L/H

理论塔板数是对柱效的测量,它表示在单位色谱运行时间内可以有多少个峰。

在一套固定的色谱操作条件下,每个峰N 基本恒定。H或者HETP为每个塔板相当的高度,测定柱单位高度(L)的柱效。能够影响N或者H的参数包括峰位置、柱内填料颗粒的大小、流动相的流速、柱温、流动相黏度和分析物的分子量。图9表明在两种不同色谱条件下得到的A,B和C三个化合物的色谱图。B 的RtS分别为3和8.5分钟。B峰的测定说明尽管出现的峰相似,但理论塔板数是不同的。

Rt N K’

A 1.35 2007 0.51

B 3.00 4702 2.35

C 3.85 5929 3.29

Rt N K’

A 3.36 5076 0.60

B 8.46 7175 3.03

C 10.99 8742 4.23

建议

理论塔板数取决于保留时间,但一般应>2000。

一般建议

系统适应性试验对于保证色谱系统的高性能是重要的。试验要求的数量取决于试验方法的目的。对于溶出度,释放度这类试验方法k’,T,和RSD是最低推荐的系统适应性试验。对于验收、出厂、稳定性试验、或杂质和降解物的测定,用外标法或内标法;k’、T、Rs和RSD被推荐为最低系统适应性参数。实际上验证每一种方法都应当适宜数量系统适应性试验,以规定必要的系统特性。在申请者和评审者慎重时,可选择附加试验。

K. 要点

试验方法中应该注意的某些基本点

1.样品和对照品都应该溶解于流动相中,如果不可能,避免使用比流动相浓度

高得太多的有机溶剂。

2.样品和标准品浓度如果不同,应该接近。

3.样品在分析过程中应该用标准品同时测定

4.进样前样品过滤有时碰到。过滤将除去能填塞柱子的颗粒。分析对象被吸附也能发生,这对低浓度杂质尤其重要。申请者这方面的验证数据要上报。

V. 建议和结论

药物及其制剂的HPLC方法

方法不应该只验证一次,而应该由开发者或者使用者验证和设计以保证方法自始至终的持久稳定性或一致性。

药物制剂制造过程,实验室样品的制备操作和仪器性能变异都影响分析得到数据的准确性。应有适当的验证和严格的色谱性能(系统适应性规定),才能得到更可靠的数据。除药品制造过程以外的变异都应最小化。只有经过良好可信验证过的方法,用于出厂,稳定性和药物代谢动力学的数据才是有价值的。

美国FDA分析方法验证指南中英文对照

I. INTRODUCTION This guidance provides recommendations to applicants on submitting analytical procedures, validation data, and samples to support the documentation of the identity, strength, quality, purity, and potency of drug substances and drug products. 1. 绪论 本指南旨在为申请者提供建议,以帮助其提交分析方法,方法验证资料和样品用于支持原料药和制剂的认定,剂量,质量,纯度和效力方面的文件。 This guidance is intended to assist applicants in assembling information, submitting samples, and presenting data to support analytical methodologies. The recommendations apply to drug substances and drug products covered in new drug applications (NDAs), abbreviated new drug applications (ANDAs), biologics license applications (BLAs), product license applications (PLAs), and supplements to these applications. 本指南旨在帮助申请者收集资料,递交样品并资料以支持分析方法。这些建议适用于NDA,ANDA,BLA,PLA及其它们的补充中所涉及的原料药和制剂。 The principles also apply to drug substances and drug products covered in Type II drug master files (DMFs). If a different approach is chosen, the applicant is encouraged to discuss the matter in advance with the center with product jurisdiction to prevent the expenditure of resources on preparing a submission that may later be determined to be unacceptable. 这些原则同样适用于二类DMF所涉及的原料药和制剂。如果使用了其它方法,鼓励申请者事先和FDA药品评审中心的官员进行讨论,以免出现这种情况,那就是花了人力物力所准备起来的递交资料后来发现是不可用的。 The principles of methods validation described in this guidance apply to all types of analytical procedures. However, the specific recommendations in this guidance may not be applicable to certain unique analytical procedures for products such as biological, biotechnological, botanical, or radiopharmaceutical drugs. 本指南中所述的分析方法验证的原则适用于各种类型的分析方法。但是,本指南中特定的建议可能不适用于有些产品所用的特殊分析方法,如生物药,生物技术药,植物药或放射性药物等。 For example, many bioassays are based on animal challenge models, 39 immunogenicity assessments, or other immunoassays that have unique features that should be considered when submitting analytical procedure and methods validation information. 比如说,许多生物分析是建立在动物挑战模式,免疫原性评估或其它有着独特特性的免疫分析基础上的,在递交分析方法和分析方法验证资料时需考虑这些独特的性质。Furthermore, specific recommendations for biological and immunochemical tests that may be necessary for characterization and quality control of many drug substances and drug products are beyond the scope of this guidance document. 而且,许多原料药和制剂的界定和质量控制所需的生物和免疫化学检测并不在本指南的范围之内。 Although this guidance does not specifically address the submission of analytical procedures and validation data for raw materials, intermediates, excipients, container closure components, and other materials used in the production of drug

液相色谱分析方法建立

一. 方法建立的步骤 二.开始前应知道 1. 样品的性质 在开始方法建立之前,我们应该检查自己对样品的了解程度,并明确分离目标。 表 1 有关样品组分和性质的重要信息 所含化合物的数目 化合物的化学结构(官能团) 化合物的分子量 化合物的pKa值 化合物的UV光谱图 化合物在样品中的浓度范围 样品的溶解度 样品的化学成分能够为选择HPLC分离的最佳初始条件提供有价值的线索根据已知的样品信息,HPLC方法建立有两种不甚相同的模式。一种模式依据样品的“化学性质”选择最佳初始条件,色谱工作者需很大程度依赖于过去的经验(如类似结构化合物的分离)和/或用文献资料补充现有信息而另一种模式则直接开始色谱分离,而对样品的性质不大注意这两种HPLC的方法建立模式可分别称为理沦型与经验型初始分离一旦开始,可以根据类似的思路(理论的与经验的)选择进一步的实验。 2.分离的目的 HPLC分离的目的必须十分明确,下面的问题在建立方法之初就应确定:(1)主要目的是什么?定量或定性,还是定性、定量同时做?; (2)是否有必要解析出样品的所有成分?譬如可能有必要分离出产品中的所有降解物或杂质,以使含量测定结果更加可靠,但却没必要将它们彼此完全分开。(3)如要求定量分析,准确度与精密度需多大?样品主要成分的精密度通常能达到±1—2%,特别是不需样品预处理的情况。 (4)特殊化合物可能会以不同的样品形式出现(如:原料药,一种或多种形态,环保样品等)。是否需要一种以上的HPLC方法?单一方法分离不同形态样品是否理想? (5)一次将分析多少样品?当必须同时处理大量样品时,运行时间将变得非常重要。 有时甚至为了缩短运行时间而以牺牲样品分离度作代价,如缩短柱长或加快流速。当一次分析的样品数目超过10个,运行时间一般应控制在20min以内。(6)将要使用该方法的实验室中,有哪些HPLC设备?色谱柱能否恒温系统能否做梯度洗脱?该方法是否可在不同设计与生产的设备上运行? 方法建立实验开始之前,应明确对方法的这些要求。 三. 样品的预处理和检测 1. 预处理:样品来源形式不同,可能以如下形式出现:

201507fda行业指南:分析方法验证(中英文)(下).doc

201507 FDA行业指南:分析方法验证(中英文)(下) VII. STATISTICAL ANALYSIS AND MODELS 统计学分析和模型 A. Statistics 统计学 Statistical analysis of validation data can be used to evaluate validation characteristics against predetermined acceptance criteria. All statistical procedures and parameters used in the analysis of the data should be based on sound principles and appropriate for the intended evaluation. Several statistical methods are useful for assessing validation characteristics, for example, an analysis of variance (ANOVA) to assess regression analysis R (correlation coefficient) and R squared (coefficient of determination) or linear regression to measure linearity. Many statistical methods used for assessing validation characteristics rely on population normality, and it is important to determine whether or not to reject this assumption. There are many techniques, such as histograms, normality tests, and probability plots that can be used to evaluate the observed distribution. It may be appropriate to transform the data to better fit the normal distribution or apply distribution-free (nonparametric) approaches when the observed data are

(食品安全管理)FDA清洗验证检查指南

FDA清洗验证检查指南 I.引言 自FDA各种文件(包括化学原料药检查指南、生物技术检查指南)首次提出这个问题之后,清洗过程的验证已经引发了很多讨论。FDA的文件明确指出要求对清洗过程进行验证。 本指南讨论了各种可接受(或不可接受)的验证方法,从而使FDA的检查具有一致性。但必须清楚地认识到:与其他工艺验证一样,清洗验证方法也不止一种。所有过程验证的检查标准是:检查其科学数据能否证明系统稳定一致地达到预期目的,系统结果稳定地符合预先制定的标准。 本指南仅适用于设备化学残留物的清洗验证。 II.背景 对于FDA而言,使用设备前进行清洗不是什么新要求。1963年GMP法(133.4)规定“设备应处于清洁、有序的状态”。1978年的cGMP中规定了设备清洗的章节(211.67)。要求清洗设备的主要目的还是防止污染或混料。由于设备清洗维护不当或防尘管理不当,FDA检查官曾十分注意检查卫生状况。过去FDA总是更注意检查青霉素类与非青霉素类药物之间的交叉污染、药品与甾类物质或激素之间的交叉污染问题。在过去二十年间,因实际或潜在的青霉素交叉污染问题已从市场上撤回了大量的药品。 另一个事件使FDA对交叉污染问题日益重视,即1988年从市场上撤回了消胆胺成品制剂,原因是规程不当。生产该制剂的原料药受到了农业杀虫剂生产中少量中间体和降解物质的污染。造成交叉污染的主要原因使用了回收溶媒。而回收溶媒受到了污染,原因是对溶媒桶的重复使用缺少监控。贮存杀虫剂产生的回收溶媒桶又重复地用于贮存该药品生产中的回收溶媒。而工厂没有对这些溶媒桶进行有效的监控,没有对其中的溶媒进行有效的检验,也没有对桶的清洗规程进行验证。 被杀虫剂污染的部份化学原料药运到了另一地点的第二家工厂生产制剂,使该工厂的流化床干燥器中物料袋受到了杀虫剂的污染,料造成各批产品受到污染,而该工厂根本就没有生产杀虫剂。

美国FDA分析方法验证指南中英文对照

美国FDA分析方法验证指南中英文对照 美国FDA分析方法验证指南中英文对 照 I. INTRODUCTION This guidance provides recommendations to applicants on submitting analytical procedures, validation data, and samples to support the documentation of the identity, strength, quality, purity, and potency of drug substances and drug products. 1. 绪论 本指南旨在为申请者提供建议,以帮助其提交分析方法,方法验证资料和样品用 于支持原料药和制剂的认定,剂量,质量,纯度和效力方面的文件。 This guidance is intended to assist applicants in assembling information, submitting samples, and presenting data to support analytical methodologies. The recommendations apply to drug substances and drug products covered in new drug applications (NDAs), abbreviated new drug applications (ANDAs), biologics license applications (BLAs), product license applications (PLAs), and supplements to these applications. 本指南旨在帮助申请者收集资料,递交样品并资料以支持分析方法。这些建议适 用于NDA,ANDA,BLA,PLA及其它们的补充中所涉及的原料药和制剂。 The principles also apply to drug substances and drug products covered in Type II drug master files (DMFs). If a different approach is chosen, the applicant is encouraged to discuss the matter in advance with

美国FDA药物分析程序及方法验证指导原则(中文版)

药品及生物制品的分析方法和方法验证指导原则 目录 1.介绍...................... (1) 2.背景..................... .. (2) 3.分析方法开发. ..................... . (3) 4.分析程序内容.............................................. ......... ..................................... .. 3 A.原则/范围 (4) B.仪器/设备............................................. . (4) C.操作参数.............................................. .. (4) D.试剂/标准............................................. . (4) E.样品制备.............................................. .. (4) F.标准对照品溶液的制备............................................ .. (5) G.步骤......... ....................................... (5) H.系统适应性..... (5) I.计算 (5) J.数据报告 (5) 5.参考标准和教材............................................ (6) 6分析方法验证用于新药,仿制药,生物制品和DMF (6) A.非药典分析方法............................................. (6) B.验证特征 (7) C.药典分析方法............................................. .. (8) 7.统计分析和模型 (8) A.统计 (8) B.模型 (8) 8.生命周期管理分析程序 (9) A.重新验证 (9) B.分析方法的可比性研究............................................ . (10) 1.另一种分析方法............................................... .. (10) 2.分析方法转移的研究 (11) C.报告上市后变更已批准的新药,仿制药,或生物制品 (11) 9.美国FDA方法验证............................................... . (12) 10.参考文献

美国FDA分析方法验证指南中文译稿[1]

1 II. 背景 (2) III. 分析方法的类型 (3) A. 法定分析方法 (3) B. 可选择分析方法 (3) 3 C. 稳定性指示分析 (3) IV. 对照品…………………………………………………………………………… 4 A. 对照品的类型 (4) B. 分析报告单 (4) C. 对照品的界定 (4) V. IND 中的分析方法验证 (6) VI. NDA, ANDA, BLA 和PLA 中分析方法验证的内容和格式 (6) A. 原则 (6) B. 取样 (7) C. 仪器和仪器参数 (7) D. 试剂 (7) E. 系统适应性实验 (7) F. 对照品的制备 (7) G. 样品的制备 (8) H. 分析方法 (8) L. 计算 (8) J. 结果报告 (8) VII. NDA,ANDA,BLA 和PLA 中的分析方法验证 (9) A.非法定分析方法 (9) 1.验证项目 (9) 2. 其它分析方法验证信息 (10) a. 耐用性 (11) b. 强降解实验 (11) c. 仪器输出/原始资料 (11) 3.各类检测的建议验证项目 (13) B.法定分析方法 (15) VIII. 统计分析………………………………………………………………………… 15 A. 总则 (15)

C. 统计 (16) IX. 再验证 (16) X. 分析方法验证技术包:内容和过程…………………………………………… 17 A. 分析方法验证技术包 (17) B. 样品的选择和运输 (18) C. 各方责任 (19) XI. 方法……………………………………………………………………………… 20 A. 高效液相色谱(HPLC) (20) B. 气相色谱(GC) (22) C. 分光光度法,光谱学,光谱法和相关的物理方法 (23) D. 毛细管电泳 (23) E. 旋光度 (24) F. 粒径相关的分析方法 (25) G. 溶出度 (26) H. 其它仪器分析方法 (27) 附件A:NDA,ANDA,BLA 和PLA 申请的内容 (28) 附件B:分析方法验证的问题和延误 (29) 参考文献…………………………………………………………………………………… 30 术语表……………………………………………………………………………………… 32 This guidance provides recommendations to applicants on submitting analytical procedures, validation data, and samples to support the documentation of the identity, strength, quality, purity, and potency of drug substances and drug products. 1. 绪论 本指南旨在为申请者提供建议,以帮助其提交分析方法,方法验证资料和样品用于支持 原料药和制剂的认定,剂量,质量,纯度和效力方面的文件。 This guidance is intended to assist applicants in assembling information, submitting samples, and presenting data to support analytical methodologies. The recommendations apply to drug substances and drug products covered in new drug applications (NDAs), abbreviated new drug applications (ANDAs), biologics license applications (BLAs), product license applications (PLAs), and supplements to these applications.

2011版FDA最新工艺验证指南

FDA工艺验证指南新旧版透彻比较解读 【整理者提醒】 1-左侧文本为2011年1月最新修订版本,右侧文本为2008年11月草案版本。 2-蓝色文本为修订后文本或者新增加文本。 3-下划线文本是比旧版本增加的部分内容。 4-删除线文本表示该部分存在于旧版本中,在新版本中删除。 5-注释前面加【注释】2字注明。 6-Zhulikou431关于FDA2008年11月草案彻底解读版本可以在丁香园论坛搜索到,欢迎下载阅读、讨论。 7-不得用于商业用途,转载请注明丁香园信息。 8-增加了新旧版本的中文译文。 9-欢迎各位朋友提出宝贵建议,联系邮箱zhulikou431@https://www.doczj.com/doc/3e18480241.html,. Guidance for Industry Process Validation: General Principles and Practices Final Version January 2011 Draft 2008 I. INTRODUCTION I. INTRODUCTION 简介

This guidance outlines the general principles and approaches that FDA considers appropriate elements of process validation for the manufacture of human and animal drug and biological products, including active pharmaceutical ingredients (APIs or drug substances), collectively referred to in this guidance as drugs or products. This guidance incorporates principles and approaches that all manufacturers can use to validate manufacturing processes. 本指南概括了一般的原则与方法,这些原则与方法是FDA 认为进行工艺验证的恰当要素,这些工艺被用于生产人用药、动物用药以及生物制品,包括活性药物成分(API 或药用物质),在本指南中以上统称为药品或产品。本指南整合了一般的原则和方法,所有的生产企业都可以将这些原则和方法应用于生产工艺的验证。 This guidance outlines the general principles and approaches that FDA considers to be appropriate elements of process validation for the manufacture of human and animal drug and biological products, including active pharmaceutical ingredients (API or drug substance), collectively referred to in this guidance as drugs or products. This guidance incorporates principles and approaches that all manufacturers can use in validating a manufacturing process. 本指南概括了一般的原则与方法,这些原则与方法是FDA 认为进行工艺验证的恰当要素,这些工艺被用于生产人用药、动物用药以及生物制品,包括活性药物成分(API 或药用物质),在本指南中以上统称为药品或产品。本指南整合了一般的原则和方法,所有的生产企业都可以将这些原则和方法应用于生产工艺的验证。 This guidance aligns process validation activities with a product lifecycle concept and with existing FDA guidance, including the FDA/International Conference on Harmonisation (ICH) guidances for industry, Q8(R2) Pharmaceutical Development, Q9 Quality Risk Management, and Q10 Pharmaceutical Quality System.2 Although this guidance does not repeat the concepts and principles explained in those guidances, FDA encourages the use of modern pharmaceutical development concepts, quality risk man- agement, and quality systems at all stages of the manufacturing process lifecycle. 本指南将工艺验证活动与产品生命周期概念以及现有FDA 相关指南进行了协调;这些存在的FDA指南包括FDA/ICH指南,Q8(R2)药品研发指南、Q9质量风险管理指南和Q10制药质量体系指南。尽管本指南没有重复上述指南解释的概念和This guidance aligns process validation activities with the product lifecycle concept and with existing FDA guidance.2 2 See the FDA/International Conference on Harmonisation (ICH) guidances for industry: Q8 Pharmaceutical Development, Q9 Quality Risk Management, and when finalized, Q10 Pharmaceutical Quality System (a notice of availability for the May 2007 ICH draft guidance, Q10 Pharmaceutical Quality System, published in the Federal Register on July 13, 2007 (72 FR 38604)). We update guidance documents periodically. To make sure you have the most recent version of a guidance, check the CDER guidance page at https://www.doczj.com/doc/3e18480241.html,/cder/guidance/index.htm, the CBER guidance page at

液相色谱仪的原理和分析方法

液相色谱仪的原理及分析方法 高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9′107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。 特点: 1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~350×105Pa。 2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于1h 。 3. 高效:近来研究出许多新型固定相,使分离效率大大提高。 4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。 5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于400 以上)的有机物(这些物质几乎占有机物总数的75% ~80% )原则上都可应用高效液相色谱法来进行分离、分析。据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱法的主要类型及其分离原理

高效液相色谱法的计算方法

高效液相色谱法的计算方法 高效液相色谱法是用高压输液泵将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,经进样阀注入供试品,由流动相带入柱内,在柱内各成分被分离后,依次进入检测器,色谱信号由记录仪或积分仪记录。 1、对仪器的一般要求 所用的仪器为高效液相色谱仪。色谱柱的填料和流动相的组分应按各品种项下的规定。常用的色谱柱填料有硅胶和化学键合硅胶。后者以十八烷基硅烷键合硅胶最为常用,辛基键合硅胶次之,氰基或氨基键合硅胶也有使用;离子交换填料,用于离子交换色谱;凝胶或玻璃微球等,用于分子排阻色谱等。注样量一般为数微升。除另有规定外,柱温为室温,检测器为紫外吸收检测器。 在用紫外吸收检测器时,所用流动相应符合紫外分光光度法(附录ⅣA)项下对溶剂的要求。 正文中各品种项下规定的条件除固定相种类、流动相组分、检测器类型不得任意改变外,其余如色谱柱内径、长度、固定相牌号、载体粒度、流动相流速、混合流动相各组分的比例、柱温、进样量、检测器的灵敏度等,均可适当改变,以适应具体品种并达到系统适用性试验的要求。一般色谱图约于20分钟内记录完毕。 2、系统适用性试验 按各品种项下要求对仪器进行适用性试验,即用规定的对照品对仪器进行试验和调整,应达到规定的要求;或规定分析状态下色谱柱的最小理论板数、分离度和拖尾因子。 (1)色谱柱的理论板数(N,用于定量表示色谱柱的分离效率,简称柱效)。 在选定的条件下,注入供试品溶液或各品种项下规定的内标物质溶液,记录色谱图,量出供试品主成分或内标物质峰的保留时间tR(以分钟或长度计,下同,但应取相同单位)和半高峰宽(W h/2),按n=5.54(t R/Wh/2)2计算色谱柱的理论板数,如果测得理论板数低于各品种项下规定的最小理论板数,应改变色谱柱的某些条件(如柱长、载体性能、色谱柱充填的优劣等),使理论板数达到要求。 (2) 分离度(R)

FDA分析方法验证指南

(中英对照)美国FDA 分析方法验证指南

目 录 1.绪论 (4) II.背景 (5) III.分析方法的类型 (7) A. 法定分析方法 (7) B. 替代分析方法 (7) C. 稳定性指示分析 (8) IV 标准品 (8) A.标准品的类型 (8) B.分析报告单 (9) C.标准品的界定 (9) V.IND中的分析方法验证 (11) VI.NDA,ANDA,BLA和PLA中分析方法的内容和格式 (12) A.基本方法 (12) B.取样 (12) C.仪器和仪器参数 (12) D.试剂 (13) E.系统适应性实验 (13) F.标准品的制备 (14) H.操作过程 (14) J.计算 (14) K.结果报告 (14) VII.NDA,ANDA,BLA和PLA中的分析方法验证 (16) A.非药典分析方法 (16) 1)验证项目 (16) 2)其它分析方法验证信息 (17) a.耐用性 (18) b.强降解实验 (19) c.仪器输出/原始资料 (19)

3)各类检测的推荐验证项目 (21) B.药典分析方法 (24) VIII.统计分析 (25) A.基本原则 (25) B.对比研究 (25) C.统计 (25) IX.再验证 (26) X.分析方法验证资料:内容和数据处理 (27) A.分析方法验证资料 (27) B.样品的选择和运输 (29) C.各方职责 (30) XI.方法学 (32) A.高效液相色谱(HPLC) (32) B.气相色谱(GC) (35) C.分光光度法,光谱法和相关的物理方法 (37) D.毛细管电泳(CE) (37) E.旋光度 (39) F.粒径分析相关的分析方法 (40) G.溶出度 (41) H.其它仪器分析方法 (43) 附录A NDA, ANDA, BLA 和PLA申请的内容 (44) 附录B 析方法验证的问题和延误 (45) 参考文献 (46) 术语表 (48)

药品生产验证指南

第三篇检验方法和清洁验证、无菌保证 第一章检验方法验证 第一节概述 一、引言 药品的生产过程中,原料、中间体、成品均需进行检验,检验结果既是过程受控的依据, 也是评价产品质量的重要依据,检验结果应具有准确可靠。而检验方法的验证为检验结果的 准确及可靠提供了有力保障。 国内外在检验方法的验证方面已有了许多法规、规定。如美国食品药品管理局 (Food and Drug Administration,简称FDA)1994 年11 月公布了《色谱方法的验证》(Validation of Chromatographic Methods);1987 年2 月公布新品注册相关的《送样及上报检验方法验证资料 指南》)(Guidance for Submitting Samples and Analytical Data for Methods Validation);人用药品 注册技术要求国际互认协会(the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use,简称 ICH)1995 年3 月颁布了 《分析方法的验证》》(Text on Validation of Analytical Procedures),规定了需进行验证的方法的 种类和应考察的项目,还对分析方法、专属性、准确度、精密度、重现性作出明确定义,从 而统一了各国药典和法规对这些术语的解释;作为对《分析方法的验证》的补充、扩展,ICH

于1996 年11 月颁了《分析方法的验证:方法学》 (Validation of Analytical Procedures.Methodology);美国药典第24 版 <1225>规定了《药典方法的验证)) (Validation of Compendial Methods);中国药典 2000 版附录ⅩⅨA 规定了《药品质量标准分析方法验证》。 这些法规、规定从不同方面对检验方法的验证作了规定,它们是实施检验方法验证的重要依 据。本章将着重讨论检验方法验证的基本内容,并以示例形式介绍验证的基本实践,以使本 章的内容具有可操作性。 方法验证有以下几个先决条件,在进行方法验证以前,必须逐条进行检查[1]。 (1) 仪器已经过校正且在有效期内。 (2) 人员人员应经过充分的培训,熟悉方法及所使用的仪器。 (3) 参照品参照品的来源一般有 3 个:购自法定机构(如中国生物制品检定所)的法定参 照品;购自可靠的供应商,如Sigma,Merck 等;自备参照品,其纯度和性能可自行检测或 由法定检验机构检测。 (4) 材料所用材料,包括试剂、实验用容器等,均应符合试验要求,不给实验带来污 染、误差。如进行高效液相色谱分析时,所用试剂应为色谱级;检查铁盐时使用的盐酸不得 含有铁盐等。 (5) 稳定性应在开始进行方法验证前考察试验溶液和试剂的稳定性,确保在检验周期 内试验溶液和试剂是稳定的。使用自动进样器,一般是预先配制好一系列样品溶液置进样器 中,依次进样。这时要确保进样周期内样品溶液是稳定的。

FDA指南中文版

目录表 I. 导言 (1) II. 背景 (2) III. 分析方法的类型 (3) A. 法定分析方法 (3) B. 可选择分析方法 (3) 3 C. 稳定性指示分析 (3) IV. 对照品 (4) A. 对照品的类型 (4) B. 分析报告单 (4) C. 对照品的界定 (4) V. IND中的分析方法验证 (6) VI. NDA, ANDA, BLA 和PLA中分析方法验证的内容和格式 (6) A. 原则 (6) B. 取样 (7) C. 仪器和仪器参数 (7) D. 试剂 (7) E. 系统适应性实验 (7) F. 对照品的制备 (7) G. 样品的制备 (8) H. 分析方法 (8) L. 计算 (8) J. 结果报告 (8) VII. NDA,ANDA,BLA和PLA中的分析方法验证 (9) A. 非法定分析方法 (9) 1.验证项目 (9) 2. 其它分析方法验证信息 (10) a. 耐用性 (11)

b. 强降解实验 (11) c. 仪器输出/原始资料 (11) 3.各类检测的建议验证项目 (13) B. 法定分析方法 (15) VIII. 统计分析 (15) A. 总则 (15) B. 比较研究 (16) C. 统计 (16) IX. 再验证 (16) X. 分析方法验证技术包:内容和过程 (17) A. 分析方法验证技术包 (17) B. 样品的选择和运输 (18) C. 各方责任 (19) XI. 方法 (20) A. 高效液相色谱(HPLC) (20) B. 气相色谱(GC) (22) C. 分光光度法,光谱学,光谱法和相关的物理方法 (23) D. 毛细管电泳 (23) E. 旋光度 (24) F. 粒径相关的分析方法 (25) G. 溶出度 (26) H. 其它仪器分析方法 (27) 附件 A:NDA,ANDA,BLA和PLA申请的内容 (28) 附件 B:分析方法验证的问题和延误 (29) 参考文献 (30) 术语表 (32) I. INTRODUCTION This guidance provides recommendations to applicants on submitting analytical

色谱方法验证指南-FDA

色谱方法验证审评指南 色谱方法通常用于原料、药物、药物制剂和生物体液中化合物的定性和定量。涉及的成分包括手性的或非手性的药物、过程杂质、残留溶媒、附加剂如防腐剂、分解产物、从容器和密闭包装或制造过程中带入的可提取和可过滤的杂质、植物药中的农药和代谢物等。 试验方法的目的是得到可信赖的和准确的数据,无论是用于验收、出厂、稳定性或药物动力学研究。得到的数据用于药品开发或批准后的定性和定量,试验包括原料的验收、药物和药物制剂的出厂、过程检验(In- process testing)的质量保证和失效期的建立。 方法的验证是由药品的开发者或使用者来检验其方法是否达到预期的可靠性、准确度和精密度的过程。得到的数据成为方法的验证资料的一部分交给CDER.。 方法的验证对于完成机构满足档案要求不是一次性的,开发者和使用者都应验证其方法的耐用度或耐久性(ruggedness or robustness.),其他的分析者、用其它相当的仪器,在其它的日期或地点,在药品生产期限(有效期)全过程,方法都应能够重现。如果产生数据的方法是可靠的,那么所得到的验收、出厂、稳定性或药物动力学的数据就是可信赖的。验证的过程和方法的设计应在开发过程中重要的数据产生之前,如果方法改变了,还应该再验证。 . 色谱类型 色谱是一种技术,通过该技术,样品中的组分载入液相或气相中,通过在固定相上由吸附—解吸附来完成。 A. 高效液相色谱 (HPLC) HPLC分离是基于在样品在流动相液体和固定相之间的不同分配。一般地说HPLC大体分为以下几种(未考虑其重要性顺序) 1. 手性液相色谱 2. 离子交换色谱 3. 离子对/亲和色谱 4. 正相色谱 5. 反相色谱 6. 分子排阻色谱 1. 手性液相色谱 分离光学异构体可在手性固定相上,用衍生化试剂或在非手性固定相上用流动相添加剂形成非对对映体来实现。用作杂质试验方法时,如果光学异构体杂质在光学异构体药物之前洗脱,要增加灵敏度。 2. 离子交换色谱 分离基于荷电功能团,样品负离子(X - )为阴离子,样品正离子((X + )为阳离子,一般用pH程序洗脱。 3. 离子对/亲和色谱 分离基于与目标样品的专一的化学相互作用。更普遍的反相型用缓冲液和加入的对离子(与被分离的样品荷相反电荷)分离。分离受pH、离子强度、温度、浓度和共存的有机溶剂类型的影响。亲和色谱,一般用于大分子,使用配合体(共价结合在固体基质上的生物活性分子),与其同类的抗原(分析介质)反应,生成可逆转的复合物,通过改变缓冲条件洗脱。 4. 正相色谱 正相色谱为用有机溶剂为流动相和极性的固定相。此时较小极性的组分比较大极性组分更快地洗脱。 5. 反相色谱 报给CDER的最通常的实验方法是反相HPLC方法,最通常用紫外检测器。 反相色谱,一种键合相的色谱技术,用水作基本溶剂,选择性也受溶剂强度、柱温和pH的影响,一般来说较大极性比较小极性组分洗脱更快。

相关主题
文本预览
相关文档 最新文档