当前位置:文档之家› φ1700x7000mm井式炉的温度场模拟研究和优化设计

φ1700x7000mm井式炉的温度场模拟研究和优化设计

φ1700x7000mm井式炉的温度场模拟研究和优化设计
φ1700x7000mm井式炉的温度场模拟研究和优化设计

基于单片机的温度测量系统设计

基于STC单片机的温度测量系统的研究 摘要:本文针对现有温度测量方法线性度、灵敏度、抗振动性能较差的不足,提出了一种基于STC单片机,采用Pt1000温度传感器,通过间接测量铂热电阻阻值来实现温度测量的方案。重点介绍了,铂热电阻测量温度的原理,基于STC实现铂热电阻阻值测量,牛顿迭代法计算温度,给出了部分硬件、软件的设计方法。实验验证,该系统测量精度高,线性好,具有较强的实时性和可靠性,具有一定的工程价值。 关键词:STC单片机、Pt1000温度传感器、温度测量、铂热电阻阻值、牛顿迭代法。 Study of Temperature Measurement System based on STC single chip computer Zhang Yapeng,Wang Xiangting,Xu Enchun,Wei Maolin Abstract:A method to achieve temperature Measurement by the Indirect Measurement the resistance of platinum thermistor is proposed. It is realized by the single chip computer STC with Pt1000temperature sensor.The shortcomings of available methods whose Linearity, Sensitivity, and vibration resistance are worse are overcame by the proposed method. This paper emphasizes on the following aspects:the principle of temperature measurement by using platinum thermistor , the measurement of platinum thermistor’s resistance based on STC single chip computer, the calculating temperature by Newton Iteration Method. Parts of hardware and software are given. The experimental results demonstrate that the precision and linearity of the method is superior. It is also superior in real-time character and reliability and has a certain value in engineering application. Keywords: STC single chip computer,Pt1000temperature sensor,platinum thermistor’s resistance,Newton Iteration Method 0 引言 精密化学、生物医药、精细化工、精密仪器等领域对温度控制精度的要求极高,而温度控制的核心正是温度测量。 目前在国内,应用最广泛的测温方法有热电偶测温、集成式温度传感器、热敏电阻测温、铂热电阻测温四种方法。 (1) 热电偶的温度测量范围较广,结构简单,但是它的电动势小,灵敏度较差,误差较大,实际使用时必须加冷端补偿,使用不方便。 (2) 集成式温度传感器是新一代的温度传感器,具有体积小、重量轻、线性度好、性能稳定等优点,适于远距离测量和传输。但由于价格相对较为昂贵,在国内测温领域的应用还不是很广泛。 (3) 热敏电阻具有灵敏度高、功耗低、价格低廉等优点,但其阻值与温度变化成非线性关系,在测量精度较高的场合必须进行非线性处理,给计算带来不便,此外元件的稳定性以及互换性较差,从而使它的应用范围较小。 (4)铂热电阻具有输出电势大、线性度好、灵敏度高、抗振性能好等优点。虽然它 的价格相对于热敏电阻要高一些,但它的综合性能指标确是最好的。而且它在0~200°C范

基于Proteus的多路温度测控系统设计

毕业设计方案 题目基于Proteus的多路温 度测控系统设计 学院自动化与电气工程 专业自动化 班级1001 学生xxxxxxx 学号xxxxxxxxxxx 指导教师xxxxxx 二〇一四年三月三十一日

学院自动化与电气工程专业自动化 学生xxxxxxx 学号xxxxxxxxxxx 设计题目基于Proteus的多路温度测控系统设计 一、选题背景与意义 1.课题背景及研究意义 随着新技术的不断开发与应用,近年来单片机发展十分迅速,一个以微机应用为主的新技术革命浪潮正在蓬勃兴起,单片机的应用已经渗透到电力、冶金、化工、建材、机械、食品、石油等各个行业。传统的温度采集方法不仅费时费力,而且精度差,单片机的出现使得温度的采集和数据处理问题能够得到很好的解决。温度是工业对象中的一个重要的被控参数。然而所采用的测温元件和测量方法也不相同;产品的工艺不同,控制温度的精度也不相同。因此对数据采集的精度和采用的控制方法也不相同。传统的控制方式以不能满足高精度,高速度的控制要求,如温度控制表温度接触器,其主要缺点是温度波动范围大,由于他主要通过控制接触器的通断时间比例来达到改变加热功率的目的,受仪表本身误差和交流接触器的寿命限制,通断频率很低。近几年来快速发展了多种先进的温度控制方式,如:PID控制,模糊控制,神经网络及遗传算法控制等。这些控制技术大大的提高了控制精度,不但使控制变得简便,而且使产品的质量更好,降低了产品的成本,提高了生产效率。本系统所使用的加热器件是电炉丝,功率为三千瓦,要求温度在400~1000℃。静态控制精度为2.43℃。 本设计使用单片机作为核心进行控制。单片机具有集成度高,通用性好,功能强,特别是体积小,重量轻,耗能低,可靠性高,抗干扰能力强和使用方便等独特优点,在数字、智能化方面有广泛的用途。 2.国内外现状 温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。成熟的温控产品主要以“点位”控制及常规的PID控制器为主,它们只能适应一般温度系统控制,而用于较高控制场合的智能化、自适应控制仪表,国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少。随着我国经济的发展及加入WTO,我国政府及企业对此都非常重视,对相关企业资源进行了重组,相继建立了一些国家、企业的研发中心,开展创新性研究,使我国仪表工业得到了迅速的发展。 单片机是指一个集成在一块芯片上的完整计算机系统。尽管他的大部分功能集成在一块小芯片上,但是它具有一个完整计算机所需要的大部分部件:CPU、内存、内部和外部总线系统,目前大部分还会具有外存。同时集成诸如通讯接口、定时器,实时时钟等外围设备。而现在最强大 - 1 - 济南大学

热处理设备及仪表

1,气孔率:耐火材料中开口气孔及闭口气孔的体积之和与耐火材料总体积百分比。 2,耐火度:耐火材料软化到一定程度时的温度,表示耐火材料抗高温的一种性能。 3,高温结构强度:耐火材料在高温下抵抗压缩变形的能力,即一定形状的耐火材料加一定载荷(1.98)后,按规定速度升温,记录温度与耐火材料压缩变形情况。 4,导热系数:表示耐火材料传热能力,其物理意义是:厚度1米的耐火材料,在1小时内,当两面温度差为1℃时,通过1平方米面积上所传导的热量。常以符号λ表示,单位是kg?m/m2?h?℃。 5,透气性:表示耐火材料透过气体的能力。以透气度(即透气系数)表示。即在两面气压差为9.8pa时,1小时内透过厚度为1米,面积为1平方米的气体量(以升记)。单位是升?米/米2?小时。 6,氧势:氧化反应达到平衡时氧的分压。 7,碳势:又称碳位或碳的化学位,是化学热力学的参数,是表示碳炉气在一定温度下改变钢表面含碳量的能力。 8,集肤效应:当交流电通过导体时,电流将集中在导体表面流过,这种现象叫集肤效应。频率越高,趋肤效应越显著。 9,尖角效应:在感应加热时,有些工件形状不规则,使感应磁场和感应电流在工件上分布不均匀,从而影响工件淬硬层的均匀性,这种现象称为尖角效应。 10,圆环效应:在感应加热过程中,电流有时沿圆环形导体通过,此时磁力线最集中的地方时圆环内侧表面上,这种现象称为圆环效应。 11,真空:通常将低于正常气压的低压空间称为真空。真空度愈高表示压强愈低,其计量单位是N/m2。1Pa等于7.5X10-3mmHg。低真空(133~13.3Pa)、中真空(13.3~1.33X10-2Pa)、高真空(1.33X10-2~1.33X10-4Pa)和超高真空(<1.33X10-4Pa)。 12,真空度:表示真空状态下气体的稀薄程度,通常用压力值来表示 13,理论空气需要量:每一公斤燃料完全燃烧所需要的空气量。 14,空气过剩系数:实际空气需要量Ln与理论空气需要量之比为空气过剩系数即n=Ln/L0>1。15,着火温度:可燃混合物可自行燃烧的最低温度。 16,RX2-10-10含义:箱式电阻炉,功率10Kw,最高温度1000℃。RX-设计序号-功率-最高温度;RJ:井式炉。 17,低发热量:当燃烧产物中的水为20℃的蒸汽时,每公斤或每立方米燃料完全燃烧所放出的热量。 18,高发热量:规定燃烧产物冷至0℃,而且水凝成液态时每公斤或每立方米燃料完全燃烧所放出的热量。 1.根据热处理条件对耐火材料的要求? 答:①能承受高温,在高温条件下不软化不熔化②一定的高温结构强度,在高温下能承受热处理零件及耐火材料自身荷重,能经受一定的碰撞而不变形,不剥落。③耐急冷急热性好,在高温下遇冷空气或冷工件不破裂,不剥落。④高温化学稳定性好,不被金属、炉气、熔盐或其他介质侵蚀⑤在保证以上要求的基础上,要求导热系数小,热容量小,以减少炉子的热损失. 2.燃料燃烧分为哪几个阶段? 答:①混合阶段:煤气与空气混合越均匀则燃烧越快,火焰越短,反之火焰越长②活化阶段:活化就是将煤气与空气的混合物加热到着火温度③燃烧反应阶段:混合气体剧烈地氧化,并发热发光 3.电阻炉电热材料有哪些要求? 答:①电阻率高②电阻温度系数小,以减少炉温的升降对炉子功率的影响。尤其是电阻温度

基于8086的温度测控系统设计

基于8086的温度测控系统设计 摘 要 本文介绍了一种基于8086微处理器的温度测控系统,采用温度传感器AD590采集温度数据,用CPU 控制温度值稳定在预设温度。当温度低于预设温度值时系统启动电加热器,当这个温度高于预设温度值时断开电加热器。 关键词:微处理器 温度传感器 A/D 转换器 控制系统 1温度控制系统的总体结构概况 温度信息由温度传感器测量并转换成微安级的电流信号,经过运算放大电路将温度传感器输出的小信号进行跟随放大,输入到A/D 转换器(ADC0809)转换成数字信号输入主机。数据经过标度转换后,一方面通过数码管将温度显示出来;另一方面,将该温度值与设定的温度值进行比较,调整电加热炉的开通情况,从而控制温度。在断开电加热器,温度仍然异常,报警器发出声音报警,提示采取相应的调整措施。其温度控制系统的原理框图如图1-1所示。 图 1-1 系统原理框图 电压跟随器 运算放大电温度传感器 A\D 转换器 微 处 理 器 加热控制电报警 译码 显示

2系统器件选择 2.1 系统扩展接口的选择 本次设计采用的是8086微处理器,选择8255A可编程并行接口作为系统的扩展接口,8255A的通用性强,适应灵活,通过它CPU可直接与外设相连接。 2.2温度传感器与A\D转换器的选择 本系统选用温度传感器AD590构成测温系统。AD590是一种电压输入、电流输出型集成温度传感器,测温范围为0℃~200℃,非线性误差在±1℃,其输出电流与温度成正比,温度没升高1K(K为开尔文温度),输出电流就增加1uA。其输出电流I=(273+T)u A。本 =(2730 + 10T)MV.另外,为满足系统设计中串联电阻的阻值选用2KΩ,所以输出电压V + 输入模拟量进行处理的功能,对其再扩展一片ADC0809,以进行模拟—数字量转化。 2.3显示接口芯片 为满足本次设计温度显示的需要,我们选择了8279芯片,INTEL8279芯片是一种通用的可编程的键盘、显示接口器件,单个芯片就能完成键盘键入和LED显示控制两种功能。 备注:系统硬件接线应尽量以插接形式连接,这样便于多用途使用和故障的检查和排除。 2.4 8086微处理器及其体系结构 2.4.1 8086CPU的编程结构 编程结构:是指从程序员和使用者的角度看到的结构,亦可称为功能结构。从功能上来看,8086CPU可分为两部分,即总线接口部件BIU(Bus Interface Unit)和执行部件EU (Execution Unit)。8086CPU的内部功能结构如图2-1所示:

多路温度检测.显示与报警系统设计

课程设计报告 课题多路温度检测、显示与报警系统设计小组成员 指导老师

目录 一、前言2222222222222222222222222222222222222222222222221 二、方案论证222222222222222222222222222222222222222222221 2.1测温元件的选择2222222222222222222222222222222222221 2.1.1热电偶和热电阻的选择222222222222222222222222221 2.1.2热电偶的分类22222222222222222222222222222222222 2.2采集模块的选择2222222222222222222222222222222222223 2.2.1多功能采集卡22222222222222222222222222222222223 2.2.2 USB采集卡2222222222222222222222222222222222224 2.2.3采集模块ADAM-4000系列2222222222222222222222224 2.2.4采集模块ADAM-5000系列2222222222222222222222225 三、硬件电路设计22222222222222222222222222222222222222222226 3.1系统结构方框图2222222222222222222222222222222222227 3.2采集模块与主机电路222222222222222222222222222222227 3.3采集模块与设备电路222222222222222222222222222222228 四、软件设计222222222222222222222222222222222222222222222229 4.1组态界面的设计2222222222222222222222222222222222229 4.2报警系统的设计2222222222222222222222222222222222229 4.3实时温度数据曲线的设计22222222222222222222222222211

基于单片机的多路温湿度检测系统设计

基于单片机的多路温湿度检测系统设计 潘磊 (天津冶金职业技术学院电气工程系,天津300400) 摘要:介绍了以C8051F120单片机和PC 机为核心的温湿度检测系统,论述了系统的组成,各模块硬件电路设计以及系统上位机、下位机的软件设计。系统下位机实时收集多路SHT71传感器采集的数据并显示上传,上位机利用VB 中MSComm 控件完成数据接收和处理,实现了对环境温湿度的现场显示和远距离控制。 关键词:温湿度检测;C8051F120;SHT71;VB 中图分类号:TP274文献标识码:A 文章编号:1673-1131(2013)01-0065-02 随着社会生产的不断发展进步,许多工农业生产过程以 及民用场合都需要对环境的温度和湿度进行检测并控制,比 如:粮仓、温室蔬菜大棚、通信基站、电力变电房、药厂、图书馆、 博物馆等。为此本文设计了一个系统实现对环境温度湿度的 检测控制。 1系统结构 本系统主要由电源模块、单片机系统、键盘及LCD 显示 模块、温度湿度传感器采集模块、时钟芯片模块、语音报警模 块、通信模块以及上位机系统组成。系统能够实时采集四处 检测环境的温度和湿度,并把采集数据显示在LCD 屏上,通 过键盘预先设置温湿度上下限数值,当所检测的温度或湿度 超过所设定的数值语音报警模块报警。同时,下位机上传温 度湿度数据,上位机对数据进行存储、显示以及数据分析。系 统框图如图1 所示。 图1系统框图 2系统硬件设计 2.1单片机系统 本系统选用Cygnal 公司的C8051F120单片机作为核心 处理器,此款单片机有64位I/O 口,满足本系统外设较多的需 求,减少系统I/O 扩展,也为增加检测通路和系统扩展预留接 口。单片机峰值处理速度达到100Mips ,大大提高了系统的实 时性,内部带有128KB FLASHROM 能够满足多路实时数据 的大容量存储,集成2个UART ,1个I 2C ,1个SPI 接口便于与 外围设备及上位机传输数据。 2.2温度湿度传感器采集模块 传统模拟式温湿传感器的测量精度和分辨率很低,只有 1%左右,同时要获得高精度还需要更高精度的基准电压。另 外,所测得的模拟量还要进过A/D 转换才能送入微处理器 进行处理。为避免上述问题本系统采用全校准数字输出相 对湿度和温度传感器SHT71,与单片机接口电路图如图2所 示。图2 温度湿度传感器采集模块图3LCD 显示模块为了实现多点同时测量减少采集等待时间,同时尽量少的占用I/O 口资源,本系统将SHT71的时钟线SCK 都连接到P1.0口,数据线DATA 分别连接到P1口其他4个I/O 口上,并在数据线DATA 端加入上拉电阻。通过软件程序写入命令 即可完成温湿度数据采集,但传感器输出的测量量并不是实 际值,还需进行数据转换。2013年第1期 (总第123期)2013(Sum.No123) 信息通信INFORMATION &COMMUNICATIONS

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

井式炉课程设计说明书

试验设计及计算数据及结果 一、设计任务 设计要求: 1、50800 Φ?碳钢淬火用炉中温淬火炉; 2、最高使用温度900℃,生产率70g h K; 3、画出总装图、画出炉衬图、炉壳图、电热元件图。 二、炉型的选择 因为工件材料为碳钢,热处理工艺为淬火,对于碳钢最高温度为 900℃,选择中温炉(上限900℃)即可,同时工件为圆棒长轴类工件, 因而选择井式炉,并且无需大批量生产、工艺多变,则选择周期式作业。 综上所述,选择周期式中温井式电阻炉,最高使用温度900℃。 三、炉膛尺寸的确定 1、炉膛有效尺寸(炉底强度指标法) 1.1确定炉膛有效高度H 由经验公式可以得知,井式炉炉膛有效高度H应为所加热元件(或 者料筐)的长度的基础上加0.1~0.3m。 H效=800+300=1100mm 由于电阻炉采用三相供电,放置电热元件的搁砖应为3n层, H砌=3n×(65+2)+67,取整后取n=5,得H砌=1072mm 1.2确定炉膛内径D 工件尺寸为Φ120×1700,装炉量每炉9根,生产率245.3㎏/h,对 长轴类工件,工件间隙要大于等于工件直径;工件与料框的间隙取 100~200。 D料=4×120×+120+2×(100~200) =999~1199,取D料=1000 D 砌比D效大100mm至300mm,取D 砌 =1350mm。 查表[1]得可用砌墙砖为8S L·427·446(A,B,R,r)=(168,190.8,765, 675)型轻质粘土扇形砖。 由该砖围成的炉体的弧长为 S=πD砌=3.14×1350=4239mm H 砌 =1072mm D 砌 =900mm

温度控制系统

目录 第一章设计背景及设计意义 (2) 第二章系统方案设计 (3) 第三章硬件 (5) 3.1 温度检测和变送器 (5) 3.2 温度控制电路 (6) 3.3 A/D转换电路 (7) 3.4 报警电路 (8) 3.5 看门狗电路 (8) 3.6 显示电路 (10) 3.7 电源电路 (12) 第四章软件设计 (14) 4.1软件实现方法 (14) 4.2总体程序流程图 (15) 4.3程序清单 (19) 第五章设计感想 (29) 第六章参考文献 (30) 第七章附录 (31) 7.1硬件清单 (31) 7.2硬件布线图 (31)

第一章设计背景及研究意义 机械制造行业中,用于金属热处理的加热炉,需要消耗大量的电能,而且温度控制是纯滞后的一阶惯性环节。现有企业多采用常规仪表加接触器的断续控制,随着科技进步和生产的发展,这类设备对温度的控制要求越来越高,除控温精度外,对温度上升速度及下降速度也提出了可控要求,显而易见常规控制难于满足这些工艺要求。随着微电子技术及电力电子技术的发展,采用功能强、体积小、价格低的智能化温度控制装置控制加热炉已成为现实。 自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。对工件的处理温度要求严格控制,计算机温度控制系统使温度控制指标得到了大幅度提高。采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。 ,

基于单片机的多路温度采集控制系统设计方案

基于51单片机的多路温度采集控制系统设计 前言 随着现代信息技术的飞速发展,温度测量控制系统在工业、农业及人们的日常生活中扮演着一个越来越重要的角色,它对人们的生活具有很大的影响,所以温度采集控制系统的设计与研究有十分重要的意义。 本次设计的目的在于学习基于51单片机的多路温度采集控制系统设计的基本流程。本设计采用单片机作为数据处理与控制单元,为了进行数据处理,单片机控制数字温度传感器,把温度信号通过单总线从数字温度传感器传递到单片机上。单片机数据处理之后,发出控制信息改变报警和控制执行模块的状态,同事将当前温度信息发送到LED进行显示。本系统可以实现多路温度信号采集与显示,可以使用按键来设置温度限定值,通过进行温度数据的运算处理,发出控制信号达到控制蜂鸣器和继电器的目的。 我所采用的控制芯片为AT89C51,此芯片功能较为强大,能偶满足设计要求。通过对电路的设计,对芯片外围扩展,来达到对某一车间温度的控制和调节功能。 关键词:温度多路温度采集驱动电路 正文: 1、温度控制器电路设计 本电路由89C51单片机温度传感器、模数转换器ADC0809、串入并出移位寄存器74LS164、数码管和LED显示电路等组成。由热敏电阻温度传感器测量环境温度,将其电压值送入ADC0809的IN0通道进行模数转换,转换所得的数字量由数据端D0- D7输出到89C51的P0口,经软件处理后将测量的温度值经单片机的RXD端串行输出到74LS164,经74LS164串并转换后,输出到数码管的7个显示段,用数字形式显示出当前的温度值。89C51的P2.0、P2.1、P2.2分别接入ADC0 809通道地址选择端A、B、C,因此ADC0809的IN0通道的地址为F0FFH。输出驱动控制信号由P1.0输出,4个LED为状态指示,其中,LED1为输出驱动

中温井式炉课程设计

目录 1.摘要 (1) 1.设计任务 (1) 2.炉型的选择 (1) 3.确定炉体结构和尺寸 (1) 4.砌体平均表面积计算 (2) 5.计算炉子功率 (3) 6.炉子热效率计算 (8) 7.炉子空载功率计算 (8) 8.空炉升温时间计算 (8) 9.功率的分配与接线 (11) 10.电热元件材料选择及计算 (11) 11.炉子构架、炉门启闭机构和仪表图 (13) 12.炉子总图,主要零部件图及外部接线图,砌体图 (13) 13.炉子技术指标 (13) 14.编制使用说明书 (13)

一 设计任务 设计一台年生产220吨的井式热处理电阻炉 炉子用途:碳钢、低合金钢等的淬火、退火及正火。 热处理工件:中小型零件,小批量多品种,零件最大长度小于0.5m 。 热处理炉最高工作温度:950℃ 炉外壁最高温度:60℃ 二 炉型的选择 根据设计任务给出的生产特点,拟选用中温井式电阻炉 三 确定炉体结构和尺寸 1 炉底面积的确定 因无定型产品,故不能用实际排料法确定炉底面积,只能用加热能力指标法 由已知年生产400吨,作业制度为二班制生产则生产率: h kg h kg P 67.91300 8102203 =??= 按表5-1选择井式炉用于淬火时的单位面积生产率2 0100m kg p = 故可求得炉底有效面积 2 192.0100 67.91m P P F === 由于有效面积与炉底总面积存在关系式 85 .0~75.01=F F 取系数上限 得炉底实际面积

2 108.185 .092.085 .0m F F == = 2.炉底直径的确定 由公式m F D D r F 17.114 .308.1444 2 2 =?= = ?= =π ππ 3.炉膛高度的确定 由于加热式工件的最大长度小于500mm ,工件距炉顶和炉底各约150mm~250mm 则炉深m mm H 0.11000250250500==++= 则炉膛高度: mm mm H 0.110423715)265(≈=+?+= 4.炉衬材料及厚度的确定 炉衬由耐火层和保温层组成,对于950℃的井式炉,用一层轻质粘土砖作为耐火层,硅藻土砖及蛭石粉作保温层,在炉膛底部应干铺一层粘土砖作为炉底。 对于深度较大的炉子,在耐火层与炉口砖之间应当留15~25mm 膨胀缝,炉膛底部应留有清除氧化皮的扒渣口,炉衬外有炉壳保护。 综上所述,炉墙采用113 mmQN-1.0轻质粘土砖+80mm 密度为250mm 3 m kg 普通硅酸铝纤维毡+113mmB 级硅藻土砖。 炉顶采用113mmQN-1.0轻质粘土砖+80mm 密度为2503 m kg 的普通硅酸铝纤维毡+230mm 蛭石粉。 炉底采用QN-1.0轻质粘土砖(267?)mm+50mm 密度为2503 m kg 的普通硅酸铝纤维毡+182mmB 级硅藻土砖和蛭石粉复合炉 衬。

温湿度智能测控系统

温湿度智能测控系统 发表时间:2019-05-05T16:38:45.070Z 来源:《电力设备》2018年第31期作者:王波 [导读] 摘要:本智能温湿度控制仪核心器件是STC90C516RD+单片机,利用机械按键来设定需要控制温湿度的范围,采用DHT11来采集外界实际的温湿度,并送给微处理器,微处理器经过数据处理并与理论值进行对比,若超出范围,让继电器来控制加湿器、加热器、抽湿器或制冷器的工作,从而改变当前环境温湿度值达到预期值,并将采集的结果通过LCD1602液晶显示器显示出来。 (上海宝冶集团有限公司安装工程公司上海 201900) 摘要:本智能温湿度控制仪核心器件是STC90C516RD+单片机,利用机械按键来设定需要控制温湿度的范围,采用DHT11来采集外界实际的温湿度,并送给微处理器,微处理器经过数据处理并与理论值进行对比,若超出范围,让继电器来控制加湿器、加热器、抽湿器或制冷器的工作,从而改变当前环境温湿度值达到预期值,并将采集的结果通过LCD1602液晶显示器显示出来。 关键词:STC90C516RD+单片机;DHT11;加湿器;抽湿器 前言 在工农业生产过程中,温度和湿度是一组关系着产品的质量、产量与提高能源利用率等指标的重要参数。因此,根据需求的特点合理设计温湿度控制系统是研究的一项重点。单片机以其成本低廉、技术成熟和扩展性强等诸多优点,被工业控制界广泛应用。但目前市场上常见温湿度控制方面的农业机械化产品大多只是简单的定值开关控制,存在着温湿度控制精度差,响应速度慢,温湿度不均匀等缺点。再者,控制精度高的温湿度试验设备往往价格昂贵,扩展性差以至推广困难。 1 系统方案设计 本设计以STC90C516RD+为主控芯片,利用DHT11数字温湿度传感器模块数据采集,将采集回来的数据,送给微控制器处理,并且发出相应命令对系统外围设备加以控制来调节环境的温湿程度,并在液晶显示器LCD1602直观的显示采集模块采集回来的温度和湿度数据,当前环境温度和湿度超出理论设定的标准时,通过蜂鸣器的报警和红色指示灯亮对用户进行提醒,方便于用户及时的通过手动控制或其他方式来干预环境,减少因为环境因素对生产或者贵重器具带来的伤害。 2 系统设计 2.1测量模块的设计 为了保证测量的准确性,采用数字温湿度传感器DHT11模块采集温度,是硬件电路设计更加简单,DHT11采集外界环境的温湿度值,并送给STC90C516RD+微控制器处理。 2.2控制模块的设计与实现 控制模块的整体结构主要由MCU、拨码开关、继电器、温湿控制模块、报警等五大部分。LS1为蜂鸣器报警电路,R和G分别是红灯和绿灯,D0控制加湿继电器、D1控制温湿继电器、D2控制加热继电器、D3控制制冷继电器。温湿度控制模块通过继电器的断开和闭合来对加热器、制冷器、加湿器、抽湿器和报警器进行控制通过按键设置好当前环境中最佳温湿度值,利用数字温湿度传感器模块DHT11来采集环境的实际温度和湿度的。每个继电器动作时,都有一个对应的LED灯点亮或熄灭,这样可以方便操作人员对执行设备的开关状态进行把握。报警电路则是当MCU接收到的测量温度或湿度超出了设定的温度和湿度范围的时候,将P0.4引脚置为高电平,触发报警蜂鸣器发出报警的信号。 2.3系统软件设计 通过按键设置好当前环境中最佳温湿度值,利用数字温湿度传感器模块DHT11来采集环境的实际温度和湿度的值,再把采集回来的实际温度和湿度的值送入微处理器,微处理器经过数据处理并与理论值进行对比。若实际的温度或湿度值超出了理论值的范围,智能温湿度控制仪将报警并且做会做出相应的调整,使当前环境的温湿度值回归并且保持在理论环境的温湿度值范围内,假如实际温湿度值在设定的范围之内,温湿度控制仪将继续监测实际环境温湿度值,不做出任何动作,直到发生异常。 3 机械式温湿度表检定过程中的相关问题 温湿度表工作原理机械式温湿度表包括干湿球式温湿度计和指针式温湿度表。其中干湿球式温湿度计由两支相同的普通温度计组成,一支用于测量温度,称干球温度计;另一支用纱布包住球部,纱布下端浸入蒸馏水中,称湿球温度计,空气中温度与干湿球温差存在某种函数关系,所以通过测量干球温度和湿球温度即可算出空气中的湿度。指针式温湿度表由温度部分和湿度部分组成,温度部分是根据两种不同金属在温度改变时膨胀程度不同的原理工作的,主要的元件是一个用两种或多种金属片叠压在一起组成的多层金属片,为提高测温灵敏度,通常将金属片制成螺旋卷形状。当多层金属片的温度改变时,各层金属膨胀或收缩量不等,使得螺旋卷卷起或松开。由于螺旋卷的一端固定而另一端同可以自由转动的指针相连,因此,当双金属片感受到温度变化时,指针即可在一圆形分度标尺上指示出温度。湿度部分是利用毛发、尼龙和聚酰亚胺等有机高分子材料的几何尺寸都会随着相对湿度的变化而变化这一特性,将上述材料制成线状、带状感湿原件或涂覆在弹性材料上卷成游丝状感湿原件,然后通过机械放大装置将由湿度变化引起的几何量变化用指针指示出来,从而直接指示相对湿度。 3.1HWS型(调温调湿法)温湿度检定箱的操作、使用中的问题 (1)首先,温湿度检定箱的操作者应是经过严格培训的检定人员,否则错误的操作会对检定箱造成损害。 (2)在日常使用过程中,应保证检定箱加湿器液位槽符合使用要求,液位槽液位过低会导致加湿器无法工作,甚至会导致循环泵的损坏。 (3)在使用标准通风干湿表作为标准器时,需定期更换标准器中的白色纱布条。纱布条使用时间长了,会被介质污染,影响测量准确度。有时在工作的时候湿度不准,当湿度降不下去时,①这时就要检查工作区下部夹层是否有积水,积水多了,湿气就会增大,②检查干气阀是否打开;当湿度升不上去时,①这时首先检查加湿器是否缺水,导致液位槽液位过低,②检查加湿管路内是否有积水,如有积水应打开排水开关排水,③检查湿气阀是否打开。 3.2干湿温度计上水纱布套问题 干湿温度计湿球的上水纱布套作为该类计量器具的重要配件,它的质量优劣、捆扎方式、使用时间长短等因素会直接影响湿球温度计的示值准确性。建议尽量使用标准纱布套。如要自行用纱布捆扎,那在捆扎制作纱布套时也要注意对感温泡的上下包裹位置以及保留适当

《多路温度检测系统》.

《多路温度检测系统》 设计报告 一统整体设计 多路温度检测系统以8051单片机系统为核心,能对多点的温度进行实时控制巡检。各检测单元(从机能独立完成各自功能,根据主控机的指令对温度进行实时或定时采集,测量结果不仅能在本地储存、显示,而且可以利用单片机串行口,通过RS-485总线及通信协议将将采集的数据传送到主控机,进行进一步的分析、存档、处理和研究。主控机负责控制指令发送,控制各个从机进行温度采集,收集测量数据,并对测量结果(包括历史数据进行整理、显示和打印。主控机与各从机之间能够相互联系、相互协调,从而达到了系统整体统一、和谐的控制效果。系统框图如下: 温度测点1温度测点2温度测点3温度测点4丛机1 丛机2 丛机3 丛机4 4 8 5 通 讯 电 缆主

控 机 键盘 显示器 打印机图1 系统框图 声光报警 本系统的特点是: ?具有实时检测功能,能够同时检测4路温度,检测温度范围0℃~400℃; ?使用12位AD转换,采用过采样和工频周期求均值技术,分辨率达到16位,检测温度变化最小值达到0.007℃; ?使用RS-485串行总线进行传输,MAX485驱动芯片进行电平转换,传送距离大于1200m,抗干扰能力强; ?可由主控机统一设置系统时间和温度修正值; ?可由主控机分别设置各从机的温度报警上下限,主机、从机均具有声光报警功能; ?具有定时、整点收集各从机数据功能,使用I2C串行E2PROM,可保存各从机以往24小时的数据,具有数据更新 与掉电保护功能; ?具有数据分析功能,能显示各从机以往24小时的温度变化曲线与平均值; ?从机可显示当前温度、时间、报警阈值等信息;

基于单片机的温度控制系统设计

基于单片机的温度控制系统设计 摘要:这次综合设计,主要是设计一个温度控制系统,用STC89C52单片机控制,用智能温度传感器DS18B20对温度进行采集,用LCD1602液晶显示屏将采集到的温度显示出来。系统可以有效的将温度控制在设定的范围内。如果实际温度超出了控制范围,则系统会有自动的提示信号,并且相应的继电器会动作。我们的实际生活离不开对温度的控制,在很多情况下我们都要对我们所处的环境进行温度检测,然后通过一定的措施进行调节,从而达到我们自己想要的温度,使我们的生活环境更加适宜。 关键字:单片机;液晶显示屏;温度传感器;继电器;提示信号 Abstract:This integrated design is the design of a temperature control system. A smart temperature sensor DS18B20 is used to collect temperature and a LCD1602 Liquid Screen is used to display the collected temperature. The system controlled by STC89C52 can effectively control the temperature within the setting limits. If the actual temperature exceeds the setting range, the system will automatically give signal, and the corresponding Relay will take related actions. It is necessary for us to control the temperature because in many situations the temperature around us is not proper for us. So we need to detect it and take some actions to adjust it to the temperature we want to make the environment around us better. Key Words:DS18B20;LCD1602;STC89C52;Relay;Signal 引言

KYN28A-12温度场部分(ANSOFT仿真)要点

某市级电业局开关柜项目汇报——温度场部分(ANSOFT 仿真) 5 温度场分布 柜体的发热损耗来源于涡流损耗,这些热量通过柜体表面的自然对流换热和热辐射两种方式发散到周围环境。假设各种材料的热物性为常数,不随材料温度而改变。则温度场的控制方程为: Q z T z y T y x T x t T c +?? ? ??????+???? ??????+??? ??????=??λλλρ 式中ρ为材料的密度;λ、c 为材料的导热系数和比热;Q 为内热源强度。 在母排的外表面上应该满足对流和辐射边界条件 ()() 44 c a a q n k T T T T εσ?=-+- 上式中 a T 是环境温度;σ表示史蒂芬-玻尔兹曼常数;ε表示母排表面的热发生率;c k 表示母 排表面的对流换热系数;q 表示热流密度矢量。 5.1 开关柜的热稳定时间 将涡流场计算得到的焦耳损耗作为热源导入,并设定相应的辐射边界条件,和对流散热边界条件,分别计算了开关柜在环境温度为30度和40度时的温度场。通过对工作电流为4000时,1000mm 开关柜的瞬态温度场计算,得出当时间为1200s 时,开关柜的温度场分布以及基本稳定。 T=200S 时开关柜温度场分布 T=1000S 时开关柜温度场分布

T=1200S 时开关柜温度场分布 T=3059S 时开关柜温度场分布 由以上图可以看出,当T=1200S 时,开关柜的温度场已经基本稳定。 5.2 母排的温度场分布 母排的焦耳损耗来源于源电流的电阻发热损耗和感应发热,母排的电阻包括载流导体电阻及接触电阻。此时应注意: (1)集肤效应,对交流电流流过的导体,由于电流产生磁通的作用,在导体截面各部分的地阿妈流密度是不平均的。 (2)邻近效应。对两个交流载流导体的并联导体,由于一个导体产生的磁通对另一个导体的作用,使其电流密度分布不均匀,从而影响交流电阻及焦耳损耗。 计算母排的发热既要考虑涡流损耗又要考虑电流损耗,即 11 22 rr Q J J H H ωμσ**= ?+? 以上各式中H 是复磁场强度;J 是复电流密度(上标“*”表示复变化);σ是电导率;ω是角 频率;YY μ是复磁导率的虚部,r rr j μμμ=-;H 是复磁场强度,E 是电场强度。 当工作电流为1250A 、1600A 、2000A 、3150A 、4000A 时,母排和电流互感器温度场分布分别如图6~图10所示。母排与断路器开关接触部分由于接触电阻造成的损耗较大,温度较高。当工作电流小于2000A 时,母排温升较小,平均温升小于15度。当工作电流达到3150A 以上时,母排温升急剧增大,当工作电流为4000A 时,母排平均温度超过70度,触点位置温度接近100度。

直燃式热烟气炉内部流场温度场数值模拟

硕士学位论文开题报告及论文工作计划书 课题名称:直燃式热烟气炉内部流场温度场数值模拟学号1000611 姓名张 专业机械设计及理论 学院机械工程与自动化 导师张 副导师 选题时间2011年10月10日 东北大学研究生院 年月日

填表说明 1、本表一、二、三、四、五项在导师指导下如实填写。 2、学生在通过开题后一周内将该材料交到所在学院、研究所。 3、学生入学后第三学期应完成论文开题报告,按有关规定,没有完成开题报告的学生不能申请论文答辩。

一、立论依据 课题来源、选题依据和背景情况、课题研究目的、理论意义和实际应用价值 (一)课题来源和背景情况: 热风炉主要是干燥机配套使用的一种高效节能供热设备,能够为干燥机提供不同温度、不同洁净程度的热空气或热烟气,于20世纪70年代末在我国开始广泛应用[1]。热风炉品种多、系列全,根据燃料类型可分为固体燃料热风炉、液体燃料热风炉和气体燃料热风炉;根据燃料或热源的不同可分为燃生物质材料热风炉、燃气热风炉、燃煤热风炉、燃油热风炉、电加热器和太阳能集热器等;按加热形式分主要有直接烟道气式热风炉和间接换热式热风炉。 直燃式烟气热风炉就是采用燃料直接燃烧,经过降尘净化处理形成热烟气,热烟气和物料直接接触对物料进行加热干燥或烘烤。这种方法燃料的消耗量约比用蒸汽式或其他间接加热器减少一半左右[34]。因此,在不影响烘干产品质量的情况下,完全可以使用直接烟道气式热风炉。直燃式热烟气炉用于高含水、处理量大、不怕污染物料的干燥,如污泥、糟渣类、褐煤、各种矿粉的热风源。直燃式烟气热风炉的燃料使用范围很广,可分为:固体燃料,如煤、焦炭;液体燃料,如柴油、重油;气体燃料,如煤气、天然气、液体气。燃料经燃烧反应后得到的高温燃烧气体进一步与外界空气接触,混合到某一温度后直接进入干燥室或烘烤房,与被干燥物料相接触,加热、蒸发水分,从而获得干燥产品。直燃式燃煤烟气热风炉是直燃式烟气热风炉最常用的一种形式,其特点有:煤燃烧连续稳定,操作简单可靠;自动化运行,机械上煤操作,运行简单;总热效率高;出风温度1000℃下连续可调;设备使用安全,无爆炸危险;耐用性强,运行费用低,维护简单[34]。 块煤直接加热热风炉,主要由炉膛、沉降室和混合室组成。沉降室和炉膛之间为燃尽室,这里保持着较高的温度,使可燃性挥发气体燃烧完全。燃料从炉门加入,在炉排上形成燃烧层。燃料燃烧时所需要的空气,由出灰门进入,通过炉排和燃烧层,使燃料燃烧。灰渣则通过炉缝隙落入灰坑,在出灰门排出。炉膛中的燃烧产生的烟气经燃尽室充分燃烧和沉降室分离炉灰、火花后,进入混合室,同来自冷风口的冷空气混合达到要求的温度后,通过通风机吸出并被压入干燥设备的热风室中。二次空气先由炉排下面侧壁上的小孔进入空气隔层预热,然后由炉膛上方侧壁的小孔进入炉膛,从而使炉膛中未燃尽的挥发物或由气流带上来的细小碳粒进一步燃尽。 直燃式煤粉热风炉,将初碎、干燥后的煤加入破碎输送机,破碎至粒度小于10mm,经过

相关主题
文本预览
相关文档 最新文档