当前位置:文档之家› 井式炉课程设计说明书

井式炉课程设计说明书

井式炉课程设计说明书
井式炉课程设计说明书

试验设计及计算数据及结果

一、设计任务

设计要求: 1、50800

Φ?碳钢淬火用炉中温淬火炉;

2、最高使用温度900℃,生产率70g h

K;

3、画出总装图、画出炉衬图、炉壳图、电热元件图。

二、炉型的选择

因为工件材料为碳钢,热处理工艺为淬火,对于碳钢最高温度为

900℃,选择中温炉(上限900℃)即可,同时工件为圆棒长轴类工件,

因而选择井式炉,并且无需大批量生产、工艺多变,则选择周期式作业。

综上所述,选择周期式中温井式电阻炉,最高使用温度900℃。

三、炉膛尺寸的确定

1、炉膛有效尺寸(炉底强度指标法)

1.1确定炉膛有效高度H

由经验公式可以得知,井式炉炉膛有效高度H应为所加热元件(或

者料筐)的长度的基础上加0.1~0.3m。

H效=800+300=1100mm

由于电阻炉采用三相供电,放置电热元件的搁砖应为3n层,

H砌=3n×(65+2)+67,取整后取n=5,得H砌=1072mm

1.2确定炉膛内径D

工件尺寸为Φ120×1700,装炉量每炉9根,生产率245.3㎏/h,对

长轴类工件,工件间隙要大于等于工件直径;工件与料框的间隙取

100~200。

D料=4×120×+120+2×(100~200)

=999~1199,取D料=1000

D

砌比D效大100mm至300mm,取D

=1350mm。

查表[1]得可用砌墙砖为8S L·427·446(A,B,R,r)=(168,190.8,765, 675)型轻质粘土扇形砖。

由该砖围成的炉体的弧长为

S=πD砌=3.14×1350=4239mm H

=1072mm

D

=900mm

砖的块数为:4239÷168=25.2块,取整后N=25,

对D 进行修正得:D 砌=25×168÷3.14=1350mm ,取1350mm 选用代号为SND-427-09的扇形搁砖

每层搁砖数目为N=πD 砌÷50=84.78,取整为84块。

1.3炉口直径的确定

D 效=1350mm ,由于斜行楔形砖。

d=100~200mm,取d=140mm 则:D 炉口=D 砌 ―2d=1070

1号砖型为8SL ?427 ?414(A,B,R,r)=(166,196,640,550) 查表可以直接得到D=1070mm,N=20块 ○

2号砖型为8SL ?427 ?498斜型楔形砖 π D 炉口=(74+2)N ,将D 炉口=1070mm 代入,得N=44.2,取整后

N=44。

1.4炉口高度的确定

按经验,炉口可由斜行楔形砖和三层直行砖堆砌而成。 故H 炉口=(65+2)×3+30=231mm 综上所述:D 砌=1350mm ,H 砌=2077mm ,D 炉口=1070mm ,H 炉口=231mm

四、炉体结构设计

炉体包括炉壁、炉底、炉门、炉壳架几部分。炉体通常用耐火层和

保温层构成,尺寸与炉膛砌筑尺寸有关。设计时应满足下列要求: (1)确定砌体的厚度尺寸要满足强度要求,并应与耐火砖、隔热保温砖的尺寸相吻合;

(2)为了减少热损失和缩短升温时间,在满足强度要求的前提下,

D 炉口=660mm

H 炉口=231mm

D 炉口

d

② ① ①

H 炉口

应尽量选用轻质耐火材料;

(3)耐火、隔热保温材料的使用温度不能超过允许温度,否则会降低使用寿命;

(4)要保证炉壳表面温升小于50℃,否则会增大热损失,使环境温度升高,导致劳动条件恶化。 1、炉壁设计

炉壁厚度可采用计算方法确定,下图为井式炉炉壁三层结构, 第Ⅰ层为耐火层,其厚度一般为90mm ,采用轻质粘土砖RNG-0.6; 第Ⅱ层为耐火纤维层,其厚度设计为40mm ,采用普通硅酸铝纤维; 第Ⅲ层为保温层,采用膨胀蛭石+硅藻土砖,其厚度可用计算求得。

在稳定传热时,对各炉衬热流密度相同。()40q t t =-。查表得,炉壁温度60℃,室温20℃是()2=12.17w m C α∑,所以2q 486.8w m =

RNG-0.6型轻质粘土砖:

密度31600kg m ρ=

热导率()310.1650.1910t w m C λ-=+?均

比热容()31C 0.8360.26310t g KJ

K C -=+?均

t 1=950℃ S 1=0.09m S 2=0.4m

t 4=60℃

t 0=20℃

()

2=12.17w m C α∑2q 486.8w m =

t 2

t 3

t 4

t 0

α∑

S 1 1λ

S 2 2λS 3

Ⅱ Ⅲ

t 1

三层炉衬结构

硅酸铝纤维:

密度31120kg m ρ=

热导率()32

20.0320.2110t w m C λ-=+均﹙

﹚ 比热容()2C 1.1g KJ K C =

膨胀蛭石粉:

密度31250kg m ρ=

热导率()330.0770.2510t w m C λ-=+?均

比热容 ()3C 0.6573g KJ K C =

由222111111111

1

[2(0.5)t b b t t qS b λλλ=

-+++- 233223

0.16520.1910(0.50.19109001

[0.1650.19100.1659004880.09)

t ---+?????=-+?+?-?

=764.4℃

使用迭代法计算t 2,设t 2=660℃。

则:()31900764.4

0.1650.19100.323w m 2

C λ-+=+??

= ()2

23

660764.40.0320.21(

)0.138w m 210C λ+=+=? ()3366060

0.0770.25100.167w m 2

C λ-+=+??

= 2

322

0.04

-764.4486.8623.80.138

s t t q

C λ==-?

= 不满足要求再次代入迭代:

()2

23

623.8764.40.0320.21(

)0.133w m 210C λ+=+=?

t 2=764.4℃

t 3=618.2℃

()33623.860

0.0770.25100.162w m 2

C λ-+=+??

= 2

322

0.04

-764.4486.8618.20.133

s t t q

C λ==-?

= 623.8618.2

100%0.9%623.8-?=<5%满足条件。

()2

23

764.4618.20.0320.21()0.132w m 210C λ+=+=?

()33618.260

0.0770.25100.162w m 2

C λ-+=+??=

30.132(764.4618.2)0.186486.8

S m -==取186mm 。

2、炉底的设计

炉底结构通常是在炉底壳部的钢板上用珍珠岩砖或硅藻土砖砌成方格子,各格子中填充蛭石粉。然后,在平铺两层硅藻土砖,最上面为一层轻质粘土砖。

炉底砖的厚度尺寸可参照炉壁的厚度尺寸,一般为230~690mm 。由于要承受炉内工件的压力,且装出炉有冲击的作用。故炉底板要求又较高强度。

炉底剖面结构如下图:

由底至上,第一层为膨胀蛭石粉和硅藻土砖复合层,第二层为硅藻土砖,第三层为轻质粘土砖。

结构: 厚度∕mm

材料: 砌砖型号:

Ⅰ 115 膨胀蛭石粉+ 硅藻土砖B 级

BS L ·427·280

S 3=186mm

Ⅱ Ⅲ

Ⅱ134 硅藻土砖B级BS L·427·280

Ⅲ67 轻质粘土砖

RNG-1.0

RNG-1.0

3、炉盖的设计

炉顶的结构有平顶、拱顶和悬顶三种。当炉子的宽度为600~3000mm时,可采用拱顶,拱角可用60°和90°,其中使用最多的是60°,这种拱顶称为标准拱顶。拱顶是炉子最容易损坏的部位,拱顶受热时耐火砖发生膨胀,造成砌拱顶时,为了减少拱顶向两侧的压力,应尽量采用轻质的楔形砖与标准直角砖混合砌筑。

设计条件:炉膛温度950℃,壳体温度60℃,室温20℃。

上层采用普通硅酸铝纤维,下层用轻质粘土砖。

结构厚度

∕mm

材料型号

第一层85 普通硅酸铝纤维

第二层115 轻质粘土砖

RNG-0.6

BS L·427·443

4、炉壳的设计

炉壳的尺寸取决于炉子砌体的尺寸,炉子的砌体包在炉壳之内。炉体框架要承受砌体和工件的重量以及工作时所产生的其它附加外力。因此,框架要有足够用的强度,框架和炉壳一般通过焊接成型,构成整个整体,以保证强度和密封性的要求。

炉壳一般用3~5mm的Q235钢板,炉底用6~8mm的厚板,井式炉炉壳采用5mm厚的Q235钢板,炉底选用8mm厚的钢板

炉盖结构图第一层

第二层

炉壳圈一般用6.3或7号角钢制作。

综上所述,炉壳采用5mm 厚的Q235钢板,炉底选用8mm 厚的钢板,炉壳圈选用三根7号角钢均匀分布,两根7号角钢横向分布,炉底五根槽钢通过焊接而成。 五、电阻炉功率的确定

电阻炉的功率大小与炉膛容积、炉子结构、炉子所要求的生产率和升温时间等因素有关。确定炉子的功率需要综合考虑各方面的要求,本次设计采用理论计算的方法计算电阻炉的功率。

理论计算发是通过炉子的热平衡计算来确定炉子的功率。其基本原理是炉子的总功率即热量的吸收,应能满足炉子热量支出的总和。热量的支出包括:工件吸热量Q 件、工件夹具吸热量Q 夹、炉衬散热量Q 散、炉衬蓄热量Q 蓄、炉门和缝隙溢气热量Q 溢、炉门和缝隙辐射散热量Q 辐、其他热损失Q 它等。

1、加热工件的有效热量Q 件 τ=5.25h

2211Q ()g c t c t =-件件

470(9500.6789200.4939) 4.2310h KJ =??-?=?

2、工件夹具吸热量Q 夹 因本次所设计正火炉不需使用夹具,故Q 夹=0

3、通过炉衬的散热损失Q 散 因为炉顶、炉底散热一个较多,一个较少,因而在计算中将炉顶、炉底简化成与炉壁散热情况一样。

44.2310Q KJ =?件

Q 夹=0

10

3121m12m23m33

t t 3.61

Q S S S F F F F λλλα∑-=

?+++

()31900764.4

0.1650.19100.323w m 2

C λ-+=+??

= ()2

23

764.4618.20.0320.21()0.132w m 210C λ+=+=?

()33618.260

0.0770.25100.162w m 2

C λ-+=+??=

()2

112

11+2+(2)+2+21==5.61m 2222m D D H D S H S F D S ππππ????

+?? ?

???

???+??

?? ???????

砌砌砌砌砌砌

(10.323w m C λ=(20.132w m C λ=(30.162w m C λ=

41.4710Q KJ h

=?散

D 砌

H 砌

S 1

S 2

S 3

F m1

F m2

F m3

炉衬蓄热情况简化计算图

()()2

1112221212122(2)+2+2+21==6.99m 222(22)22+22m D S D S H S F D S S D S S H S S ππππ??+??+?? ???????++????

++++ ??????

?砌砌砌砌砌砌()()2

1212122

3123123212322(22)22+2+21=(222)222+=9.99m 2

22222m D S S D S S H S S F D S S S H S S S D S S S ππππ??++??++++?? ???????++++++????+++???? ???????

砌砌砌砌砌砌()31231232

2

123=(222)222+

222 2=12.53m 2F D S S S H S S S D S S S ππ+++++++++?? ???砌砌砌 95020 3.60.090.040.18610.314 5.610.149 6.990.179.9912.1712.53

Q -=?+++

????散

41.4710KJ h =?

4、炉衬材料蓄热量Q 蓄 炉衬材料的蓄热量是指炉子从室温升到工作温度整个砌体所吸收的热量。计算式为: 2211Q ()V c t c t ρ=-蓄

第Ⅰ层:3600Kg m ρ=;

32900764.40.8360.26310=1.055KJ (g )2C K C -+??=+? ???

320.8360.2631020=0.841KJ (g )C K C -=+??;

22

1112V (2)22D S D H S D ππ+????=+?-? ? ?????

3

1.2690.7670.502m =-=

5

1764.4+900Q 0.502600 1.068200.841 2.62610h 2KJ ??=??-?=? ???

蓄 第Ⅱ层:3120Kg m ρ=;12 1.1KJ (g )C C K C ==;

22

1211121222V (22)(2)22D S S D S H S S H S ππ+++????=++?-+? ? ????? 31.586 1.2690.317m =-=

42764.4+618.2Q 0.317120 1.120 1.1 2.8110h 2KJ ??

=??-?=? ???

蓄 第Ⅲ层:3250Kg m ρ= ,120.66KJ (g )C C K C ==

212311232

1212222V (222)222(22)2D S S S H S S S D S S H S S ππ+++??

=+++?- ???

++??

++? ?

??

33.494 1.586 1.908m =-=

5

360+618.2Q 1.9082500.66200.66110h 2KJ ??=??-?=? ???

蓄 5123Q Q Q Q 3.910h KJ =++=?蓄蓄蓄蓄 5、开启炉门的辐射热损失Q 辐

4412Q 5.675 3.6100100t T T F δ??

????=?-?Φ?? ? ????????

?辐

其中:F —炉门开启的面积:2

2

0.660.342F m π??=?= ?

??

Φ—炉口辐射遮蔽系数:

5Q 3.910h

KJ =?蓄

Q =4977h KJ 辐

4Q 1.3910KJ =?溢

Q 9000KJ h =它

4Q =8.4910h

KJ ?总

2310.35660

L D ==,查表可知:0.76Φ= t δ—炉门开启率:0.05t δ=;

代入上式计算得:Q =4977h KJ 辐 6、炉子开启时溢气的热损失Q 溢

12Q 0.5()t VC t t δ=+溢 其中:2

2200V R

R π=,2

20.660.66=2200=432m h 22V π??

?? ?

???

??

4Q 0.5432 1.4(90020)0.05 1.3910h KJ =??+?=?溢 7、其它散热Q 它

一般如下估算:Q (0.5~1.0)Q =它散 则:4Q 1.47100.69000KJ h =??=它 8、电阻炉热损失总和Q 总

4Q =Q Q Q Q Q 8.4910h KJ ++++=?件散溢它总辐

9、计算功率及安装功率

4

8.4910P 23.57 Kw 3600

?==计

安装功率应大于稳态时计算功率

P kP =安 周期作业炉k 取1.3到1.5之间。 得:()P 23.571.3~1.4=?安取:P 35w K =安 六、技术经济指标计算

1、电阻炉热效率

Q =

100%=49.8%Q η?件

P 35w K =安

=62.4%η

P 18.8%P =空

=3.09h τ升

一般电阻炉的热效率为40%~80%,满足要求。

2、电阻炉的空载功率

电阻炉的空载功率是指空炉在最高工作温度并稳定状态下所消耗的功率,又称为空炉损失。用下式计算:

+==6.58w 3600Q Q P K 散它空 P 18.8%P =空

P 空值越小越好,一般为炉子总功率的15%~25% ,满足要求。 3、空炉升温时间 空炉升温时间是指在额定电压下,经过充分干燥、没有装料炉的电阻炉从冷态加热最高工作温度所需的时间。 空炉升温时间:==3.09h 3600Q P τ蓄

升安

七、功率分配与接线方法 (一、)功率分配 为了使炉膛温度均匀或工艺要求分区分布炉温,需要将温度分布在炉内的各个部分。 井式炉功率大于75Kw 是要考虑分区,H ∕D 大于1也要分区。

综上所述,本次设计电阻炉不分区。 (二、)供电电压与接线方法 电阻炉的供电电压,除少数因电热元件的电阻温度系数太大或要求采用低电压供电的大截面电阻板外,一般均采用车间电网电压,即220V 或380V 。 电热元件的接线,应根据炉子的功率大小,功率分配等因素来决定。 因炉子功率为35Kw ,即可采用三相380V 星形,也可采用三角形接法。 综上所述,本次设计采用0Cr25Al5电热体材料,三相380V 星形接法。 八、电热元件的设计 选用0Cr25Al5线状电热元件,电压380V 。 1、供电电压和接线 选用三相380V 、星形接法 P 35P 11.7KW 3n 3

===安()

选用0Cr25Al5线状电热元件,电压380V 。

不分区,采用星形接法

P=11.7Kw

U=220V

3

W 1.56W /cm =允

d=5mm L=55.6mm

L 总=166.8m

M 总=23.18kg

380

U 220V 3

==() 2、确定电热元件的单位表面功率 因炉膛最高温度不超过900℃,结合选材0Cr25Al5查表得3W 1.56W /cm =允

3、确定元件尺寸 32t

23.34d 允W U P ρ?= 52t 01t 1.4141010501.46mm /m ρρδ-=+=?+??=Ω()() 代入上式得d=4.74mm ,取d=5mm 2222

-33t U d 2205

L 0.785100.7851055.6m P 11.7 1.46

ρ-?=?=??=? L 总=nL=3×55.6=166.8(m ) M 总=0.139×166.8=23.18 kg 23310P 10011.7

=1.34 1.56dL 3.14555.6

W w cm w cm π?==

4、电热元件的绕制和布置 电热元件绕制成螺旋状,布置安装在炉膛炉壁上,每 5排串接成一相。每排电热元件的展开长度: L 55.6511.12m =÷=折

每排电热元件的搁砖长度: L (D 60)252612mm π=--=砌

电热元件螺旋直径:螺旋直径()D 4~6d =取:

D 4d 4520mm ==?= 螺旋体圈数N 和螺距h 分别为: 111201773.1420

L N D π===?折圈

D=20mm

h=15mm

选用

SND ·724·018号套管

L

h 14.76mm N =

=取h=15mm 152345

<=<,满足()h 2~4d =的要求。

电热元件螺旋节距h 在安装时适当调整,炉口部分减少节距,增大功率。 (四)、电热元件引出棒及其套管的设计与选择

1、引出棒的设计

引出帮必须用耐热钢或者不锈钢制造,以防止氧化烧损,固选用1Cr18Ni9Ti ,

φ=16mm ,丝状电热元件与引出棒之间的连接,采用接头铣槽后焊接。 引出棒长度:

L 引=90+40+186+30+90=436mm

2、保护套管的选择

根据设计说明中炉膛以及电热元件的设计,所以确定

L 炉墙 =90+40+186=316(mm ),引出棒的直径d=φ16mm ,因此 选用SND ·724·018号套管,高铝矾土,重量0.6kg , d 套=φ20mm ,D 套=φ36mm ,长度400mm 。

(五、)热电偶及其保护套管的设计与选择 1、热电偶的选择

由于炉内最高的温度为900℃.长期使用的温度在1000℃以下,所以选用镍铬-镍硅热电偶。所以选用型号WRN-121的镍铬-镍硅热电偶,保护套管规格选择,外径16mm ,插入长度为450mm 。保护材料为双层瓷管。

2、热电偶保护套管的选择

L 炉壁=316mm 。热电偶外径16mm ,插入长度为450mm 。根据这些条件,应该选用SND ·724·018,高矾土,重量0.6kg 。d 套=φ20mm 、D 套=φ36mm ,长度为400mm 。测温热电偶与控温热电偶均选用此保护套管即可。

选用型号WRN-121的镍铬-镍硅热电偶 选用SND ·724·018保护套

参考书目

1、《热处理炉》----------------------------华小珍老师编

2、《热处理炉课程设计指导书》--------------华小珍,崔霞老师编

3、《炉温仪表》----------------------------华小珍,袁永瑞老师编

4、《热处理设备》--------------------------王淑花编

材料加热炉基础课程设计

课程设计任务书 设计题目低温井式电阻炉的设计 学生*** 学生学号****** 专业班级**************** 指导教师

目录 1、设计任务 (2) 2、炉膛尺寸的确定··························································· 2 3、炉子砌砖体的设计 3.1炉衬材料的选择 (4) 3.2炉墙设计 (4) 3.3炉底设计 (5) 3.4炉顶设计····························

(5) 3.5炉门设计 (6) 4、炉子功率计算和分配 4.1有效热Q件计算 (8) 4.2辅助构件热损失Q辅计算 (8) 4.3炉衬热损失Q .............................散 (8) 4.4Q辐计 ·····························算 (9) 4.5炉门溢气热损失Q ·····························溢

4.6其它热损失Q .............................它 (10) 4.7炉子安装功率计算 (10) 4.8炉子热效率计算 (10) 4.9炉子空载功率··························································1 1 4.10炉子升温时间计算 (12) 4.11功率分配·······························································1 2 4.12接线方

热风炉操作说明书

山东寿光巨能特钢12503 M高炉热风炉操作说明书 莱芜钢铁集团电子有限公司 2011.04

1、系统概述 热风炉控制室设有PLC一套,PLC采用西门子S7-400系列CPU 和ET200M远程站及图尔克现场总线远程站,上位机与PLC间通过以太网进行通讯,CPU与远程站通过PROFIBUS DP进行通讯,完成对三座热风炉的所有参数检测、控制及事故诊断。 2、工艺介绍 本控制系统主要完成本系统上各种开关、模拟量的检测与控制;利用热风炉烟气,设置热风炉助燃空气和高炉煤气双预热系统,以节省能源。并设助燃风机两台,以及各种切断阀和调节阀,以实现热风炉焖炉及燃烧、送风的控制要求。本控制系统设有微机两台及各阀现场操作箱,正常状况下三座热风炉的操作都通过微机实现,微机操作有单机和联锁两种操作模式,现场操作箱主要用于现场调试。微机操作和操作箱操作受联锁关系限制。 热风炉的工作状态有燃烧、焖炉、送风三种状态,状态的转换靠控制各阀门的动作,热风炉各阀门按照:燃烧→焖炉→送风→焖炉循环的工作过程,自动或手动进行换炉切换工作。其受控阀门及三种状态对应的阀门状态如下图所示:受控阀门内容及状态表(K=开,G=关)

3、监控功能 根据生产实际情况和操作需要,在监控站制作多幅监控画面,全部采用中文界面,具有极强的可操作性。具体的监控画面包括:热风炉主工艺画面、助燃风机监控画面、煤气空气调节画面、历史趋势画面。 在画面上可显示热风炉各部分的温度、压力、流量分布状况,采集的数据,历史趋势、报警闪烁画面,完成各阀门、设备的开启及操作,完成煤气、助燃空气的调节阀的操作及调节,各系统的自动调节与软手动调节、硬手动调节的无扰自动切换,各调节阀的操作及调节和保持各数据的动态显示。 主要画面及其功能如下: 热风炉主工艺画面:可显示热风炉的整个工艺生产流程及相关的主要参数值,报警闪烁,切入其他画面的功能按钮,热风炉的单机/联锁切换,单机模式下实现对每个阀的单独开关控制,联锁模式下实现焖炉、燃烧、送风三个状态的自动转换。 分画面:各调节系统的画面,包括参数设定的功能键、控制流程图、报警纪录,相关信息;历史趋势,相关的PID参数设定等等。切

热处理设备课程设计---实验大纲

《热处理设备》课程设计教学大纲 课程编码:050251005 课程英文名称:Heat-treatment Equipment Course Design 课程总学时:3周讲课:10 实验:0 上机:40 适用专业:金属材料工程 大纲编写(修订)时间:2017.7 一、大纲使用说明 本大纲根据金属材料工程专业2017版教学计划制订。 (一)适用专业 金属材料工程。 (二)课程设计性质 本课程设计是学生在修完热处理原理与工艺学等专业基础课程,并完成工艺课程设计后进行的一次综合性和实践性很强的教学实践活动,是教学中的一个重要环节。 (三)主要先修课程和后续课程 1.先修课程:工程制图、机械设计基础、热处理原理与工艺学、热处理设备等。 2.后续课程:学生进入毕业设计教学环节。 二、课程设计目的及基本要求 课程设计教学实施目的是: 1.通过课程设计实践,树立正确的设计思想,培养综合运用热处理设备课程和其他先修课 程的理论与生产实际知识来分析和解决炉子设计问题的能力。 2.学习热处理炉设计的一般方法,掌握炉子设计的一般规律。 3.进行常规热处理炉设计基本技能的训练:例如计算、绘图、查阅资料及手册、运用标准及规范。 4.熟悉计算机Auto CAD 软件的使用操作,进行计算机辅助设计和绘图的训练。 课程设计教学的基本要求: 1.能从热处理炉功能要求出发,制订或分析设计方案,合理地选择炉型结构、确定炉体基本尺寸、合理选定耐火材料、确定炉体钢结构和钢材的规格型号。 2.能应用热平衡计算法确定热处理炉的输入总功率。能够进行电阻炉电热元件的计算或根据燃料种类进行燃料燃烧计算,进而选择燃烧装置。 3.能够从使用与维护、经济性和耐用性等问题出发,对热处理工件夹具、支架等进行结构设计。 4.绘图表达设计结果,图样符合国家制图标准,尺寸及公差标注完整、正确,技术要求合理、全面。 5.初步掌握Auto CAD 软件的使用操作,使用计算机绘制炉体总图、零件图。 三、课程设计内容及安排 1. 主要内容: 课程设计题目以箱式电阻炉、台车炉、盐浴炉、井式炉的设计为主,也可选做其它设计题目,其工作量要在3周内完成。

课程设计退火炉温度控制系统资料讲解

课程设计退火炉温度 控制系统

课程设计设计题目:退火炉温度控制系统 学院: 专业: 班级: 姓名: 学号: 指导老师: 日期:

摘要 退火炉是金属热处理中的重要设备,它把压力容器加热到一定温度并维持一段时间,然后让其自然冷却。其目的在于消除压力容器的整体压力。提高压力容器的使用寿命。温度是退火炉的主要被控变量,是保证其产品质量的一个重要因素。退火炉温度控制的稳定性和控制精度直接影响产品的质量。 本文以AT89C51单片机为控制核心,采用模块化的设计方案,包括硬件设计与软件设计两部分。硬件设计包括温度检测模块,按键模块,执行模块,LED显示模块,单片机最小系统。本设计要求采用电热丝加热,通过A/D转换将采集到的温度数据输入单片机中,与系统给定值比较,从而对退火炉的温度进行控制,通过按键输入控制信号,三位LED显示炉温。最后设计出最少拍无纹波控制器,通过MATLAB仿真检验是否有纹波。

目录 第1章绪论 (3) 1.1设计背景与算法 (3) 第2章课程设计的方案 (5) 2.1概述 (5) 2.2系统组成总体结构 (5) 第3章程序设计与程序清单 (7) 3.1单片机最小系统设计 (7) 3.1.1单片机选择 (7) 3.1.2时钟电路设计 (8) 3.1.3复位电路设计 (9) 3.2程序清单与电路图 (11) 3.3温度控制电路 (17) 第4章控制算法 (18) 4.1程序框图 (18) 4.2算法设计 (19) 第5章课程设计总结................................................ - 22 -

(完整word版)箱式电阻炉的设计

长春理工大学 热工课程设计说明书题目箱式电阻炉的设计 学院材料科学与工程学院 专业无机非金属材料(建筑材料)班级0706121 姓名向仕君学号18

2009 年7 月5 日 设计任务书 一、题目:箱式电阻炉的设计 二、原始数据: 电路形势:箱式电阻炉 炉膛尺寸:120 ?mm 170 260? 使用温度:1000℃ 表面温度:60℃ 电源电压:220V 三、设计要求: 1、设计认真,积极思考,独立完成,有所创新。 2、设计说明书:一份 思路清晰,论述充分;设计参数选择合理,设计计算步骤完整,结果准确;著名参考文献。 3、设计图纸:2#图纸1—3张 图画布置合理,比例适当,图画清洁;绘图线

条类型正确,位置准确;尺寸标注正确、齐全。 摘要 本说明书重点阐述箱式电阻炉的具体设计过程。设计过程包括高温炉的简介,炉膛尺寸的确定,材料选择,电阻炉尺寸和结构设计,功率计算,供电电路的选择,电热提的尺寸确定及安装,以及热电偶使用,涉及到热量计算,功率计算,电热元件规格计算。 本设计说明书可供实验电阻和工业电阻炉的维修和设计提供理论参考导和指导。

引言 陶瓷工业在社会主义建设,国防科学和人民生活都占重要的地位,它不仅与人类的日常生活存在密切的关系,而且随着科学技术的发展,已经超越了日用,建筑及一般的工业用途的范围,而应用与电子,原子能等尖端材料中。 生产陶瓷中一个重要的过程就是烧结,烧成时在热工设备中进行的,这里的热工设备指的是窑炉及其附属设备。 窑炉从生产方式上分为间歇式和连续式,按电能转化为热能形式分为:电阻炉,感应炉,电弧炉,等离子炉等,在使用热源上又分为火焰式和电热式。目前,电子陶瓷,高温陶瓷及其他特种陶瓷的生产和科研处于火热期。 在实验中,使用较多的是间歇式的电阻炉。

某加热炉温度控制 过程控制

学号 天津城建大学 过程控制课程设计 设计说明书 某加热炉温度控制 起止日期:2014 年6 月23 日至2014 年6 月27 日 学生姓名 班级 成绩 指导教师(签字) 控制与机械工程学院 2014年6月27 日

天津城建大学 课程设计任务书 2013 -2014学年第2学期 控制与机械工程学院电气工程及其自动化专业班级13电气11班 姓名学号 课程设计名称:过程控制 设计题目:某加热炉温度控制 完成期限:自2014 年6 月23 日至2014 年 6 月27 日共1 周设计依据、要求及主要内容: 一、设计任务 某温度过程在阶跃扰动1/ ?=作用下,其温度变化的数据如下: q t h 试根据实验数据设计一个超调量25% δ≤的无差控制系统。具体要求如下: p (1)根据实验数据选择一定的辨识方法建立对象的数学模型; (2)根据辨识结果设计符合要求的控制系统(控制系统原理图、控制规律选择等);(3)根据设计方案选择相应的控制仪表; (4)对设计的控制系统进行仿真,整定运行参数。 二、设计要求 采用MATLAB仿真;需要做出以下结果: (1)超调量 (2)峰值时间 (3)过渡过程时间 (4)余差 (5)第一个波峰值 (6)第二个波峰值 (7)衰减比 (8)衰减率 (9)振荡频率 (10)全部P、I、D的参数 (11)PID的模型 (12)设计思路

三、设计报告 课程设计报告要做到层次清晰,论述清楚,图表正确,书写工整;详见“课程设计报告写作要求”。 四、参考资料 [1] 何衍庆.工业生产过程控制(1版).北京:化学工业出版社,2004 [2] 邵裕森.过程控制工程.北京:机械工业出版社2000 [3] 过程控制教材 指导教师(签字): 教研室主任(签字): 批准日期:年月日

热风炉设计说明书

目录 第一章热风炉热工计算 (1) 1.1热风炉燃烧计算 (1) 1.2热风炉热平衡计算 (6) 1.3热风炉设计参数确定 (9) 第二章热风炉结构设计 (10) 2.1设计原则 (10) 2.2 工程设计内容及技术特点 (11) 2.2.1设计内容 (11) 2.2.2 技术特点 (11) 2.3结构性能参数确定 (12) 2.4蓄热室格子砖选择 (13) 2.5热风炉管道系统及烟囱 (15) 2.5.1顶燃式热风炉煤气主管包括: (15) 2.5.2顶燃式热风炉空气主管包括: (16) 2.5.3顶燃式热风炉烟气主管包括: (16) 2.5.4顶燃式热风炉冷风主管道包括: (17) 2.5.5顶燃式热风炉热风主管道包括: (17) 2.6 热风炉附属设备和设施 (18) 2.7热风炉基础设计 (21) 2.7.1 热风炉炉壳 (21) 2.7.2 热风炉区框架及平台(包括吊车梁) (21) 第三章热风炉用耐火材料的选择 (22) 3.1耐火材料的定义与性能 (22) 3.2热风炉耐火材料的选择 (22) 参考文献 (25)

第一章热风炉热工计算 1.1热风炉燃烧计算 燃烧计算采用发生炉煤气做热风炉燃料,并为完全燃烧。已知煤气化验成分见表1.1。 表1.1 煤气成分表

热风炉前煤气预热后温度为300℃,空气预热温度为300℃,干法除尘。发生炉利用系数为 2.3t/m3d,风量为3800m3/min,t热风=1100℃,t冷风=120℃,η热=90%。 热风炉工作制度为两烧一送制,一个工作周期T=2.25h,送风期T f=0.75h,燃烧期Tr=1.4h,换炉时间ΔT=0.1h,出炉烟气温度tg2=350℃,环境温度te=25℃。 煤气低发热量计算 查表煤气中可燃成分的热效应已知。0.01m3气体燃料中可燃成分热效应如下: CO:126.36KJ , H2:107.85KJ, CH4:358.81KJ, C2H4:594.4KJ。则煤气低发热量: Q DW=126.36×30.3+107.85×12.7+258.81×1.7+594.4×0.4=6046.14 KJ 空气需要量和燃烧生成物量计算 (1)空气利用系数b空=La/Lo计算中取烧发生炉煤气b空=1.1。燃烧计算见表2.13。 (2)燃烧1m3发生炉煤气的理论Lo为Lo=25.9/21=1.23 m3。 (3)实际空气需要量La=1.1×1.23=1.353 m3。

井式炉课程设计说明书

试验设计及计算数据及结果 一、设计任务 设计要求: 1、50800 Φ?碳钢淬火用炉中温淬火炉; 2、最高使用温度900℃,生产率70g h K; 3、画出总装图、画出炉衬图、炉壳图、电热元件图。 二、炉型的选择 因为工件材料为碳钢,热处理工艺为淬火,对于碳钢最高温度为 900℃,选择中温炉(上限900℃)即可,同时工件为圆棒长轴类工件, 因而选择井式炉,并且无需大批量生产、工艺多变,则选择周期式作业。 综上所述,选择周期式中温井式电阻炉,最高使用温度900℃。 三、炉膛尺寸的确定 1、炉膛有效尺寸(炉底强度指标法) 1.1确定炉膛有效高度H 由经验公式可以得知,井式炉炉膛有效高度H应为所加热元件(或 者料筐)的长度的基础上加0.1~0.3m。 H效=800+300=1100mm 由于电阻炉采用三相供电,放置电热元件的搁砖应为3n层, H砌=3n×(65+2)+67,取整后取n=5,得H砌=1072mm 1.2确定炉膛内径D 工件尺寸为Φ120×1700,装炉量每炉9根,生产率245.3㎏/h,对 长轴类工件,工件间隙要大于等于工件直径;工件与料框的间隙取 100~200。 D料=4×120×+120+2×(100~200) =999~1199,取D料=1000 D 砌比D效大100mm至300mm,取D 砌 =1350mm。 查表[1]得可用砌墙砖为8S L·427·446(A,B,R,r)=(168,190.8,765, 675)型轻质粘土扇形砖。 由该砖围成的炉体的弧长为 S=πD砌=3.14×1350=4239mm H 砌 =1072mm D 砌 =900mm

箱式电阻炉课程设计

一、设计任务书 题目:设计一台中温箱式热处理电阻炉; 生产能力:160 kg/h ; 生产要求:无定型产品,小批量多品种,周期式成批装料,长时间连续生产; 要求:完整的设计计算书一份和炉子总图一张。 二、炉型的选择 根据生产特点,拟选用中温箱式热处理电阻炉,最高使用温度650℃,不通保护气氛。 三、确定炉体结构及尺寸 1.炉底面积的确定 因无定型产品,故不能用实际排料法确定炉底面积,只能用加热能力指标法。已知生产率p 为160 kg/h ,按照教材表5-1选择箱式炉用于退火和回火时的单位面积生产率p 0为 100 kg/(m 2﹒h ),故可求得炉底有效面积: F 1=P P 0=160100 =1.6m 2 由于有效面积与炉底总面积存在关系式F 1F ?=0.60~0.85,取系数上限,得炉底实际面积: F = F 10.85=1.6 0.85 =1.88m 2 2.炉底长度和宽度的确定 由于热处理箱式电阻炉设计时应考虑出料方便,取L B ?=2,因此,可求得: L =√F 0.5?=√1.880.5?=1.94m B =L 2?=1.942?=0.97 m 根据标准砖尺寸,为便于砌砖,取L =1.970 m ,B =0.978 m ,如总图所示。 3.炉膛高度的确定 按照统计资料,炉膛高度H 与宽度B 之比H B ?通常在0.5~0.9之间,根据炉子工作条件,取H B ?=0.654m 。 因此,确定炉膛尺寸如下: 长 L =(230+2)×8+(230×1 2+2)=1970 m 宽 B =(120+2)×4+(65+2)×2+(40+2)×3+(113+2)×2=978mm 高 H =(65+2)×9+37=640 mm 为避免工件与炉内壁或电热元件搁砖相碰撞,应使工件与炉膛内壁之间有一定的空间,确定工作室有效尺寸为: L 效=1700 mm B 效=700 mm H 效=500 mm 4.炉衬材料及厚度的确定 由于侧墙、前墙及后墙的工作条件相似,采用相同炉衬结构,即113mm QN ?0.8轻质粘土砖,+80 mm 密度为250 kg m 3?的普通硅酸铝纤维毡,+113mm B 级硅藻土砖。 炉顶采用113 mmQN ?1.0轻质粘土砖,+80 mm 密度为250 kg m 3?的普通硅酸铝纤维毡,+115 mm 膨胀珍珠岩 。 炉底采用三层QN ?1.0轻质粘土砖(67×3)mm ,+50 mm 密度为250 kg m 3?的普通硅酸铝

北航优秀机械设计说明书_加热炉装料机

机械设计课程设计计算说明书 设计题目:加热炉装料机设计院系:能源与动力工程学院设计者: 指导教师: 2014年6月3日

前言 加热炉装料机可用于向加热炉内送料。由电动机驱动,于室内工作。通过传动装置使装料机推杆往复运动,将物料送入加热炉内。 设计一台由减速器与传动机构组成装料机,配以适当的电动机等零部件,实现自动送料过程。尽量实现占地面积小,工作平稳及急回特性明显等工作特征。

目录 目录 一、设计任务书...................................... 错误!未定义书签。 1、设计题目..................................... 错误!未定义书签。 2、设计要求..................................... 错误!未定义书签。 3、技术数据..................................... 错误!未定义书签。 4、设计任务..................................... 错误!未定义书签。 二、总体方案设计.................................... 错误!未定义书签。 1、传动方案的拟定............................... 错误!未定义书签。 (1)原动机................................. 错误!未定义书签。 (2)传动机构............................... 错误!未定义书签。 (3)执行机构............................... 错误!未定义书签。 2、执行机构设计................................. 错误!未定义书签。 (1)设计计算过程........................... 错误!未定义书签。 (3)推板设计............................... 错误!未定义书签。 3、电动机的选择................................. 错误!未定义书签。 (1)电动机类型选择......................... 错误!未定义书签。 (2)选择电动机功率......................... 错误!未定义书签。 4、传动系统运动和动力参数....................... 错误!未定义书签。 三、传动零件设计.................................... 错误!未定义书签。 1、蜗轮蜗杆的设计............................... 错误!未定义书签。 最终结果:................................... 错误!未定义书签。 2、直齿圆柱齿轮的设计........................... 错误!未定义书签。 最终结果:.................................. 错误!未定义书签。 3、轴的设计和校核计算........................... 错误!未定义书签。 (1)蜗杆轴................................. 错误!未定义书签。 (2)蜗轮轴................................. 错误!未定义书签。

燃气热风炉安装使用说明书-直燃式资料

燃气热风炉 使用说明书河南省四通锅炉有限公司

目录 一、概述 二、主要技术参数 三、工作原理 四、安装调试 五、使用操作 六、常见故障及处理方法 七、安全操作规程 八、维护保养及部件润滑方式

一、概述 燃气热风炉技术性能与特点如下: 1.燃料适用范围广:天然气、液化石油气、焦炉煤气、发生炉煤气、高炉煤气以及混合煤气等多种煤气。 2.燃烧器的选配灵活,以热风温度为目标,程序点火,也可选配简易烧嘴,人工进行辅助操作控制,经济适用,热效率高。本产品结构简单、布置灵活,内衬耐火层,施工周期短,设备基础简易,可移动使用,结构紧凑,体积小,占地面积小,金属消耗量低。以快装型式出厂,便于安装;可以节省大量的基建投资。 3.供热稳定,供热能力可调节性大,本体上装有调风门,供热风温可调。冷风经炉壳内外夹层通道进入本体内,对炉体起到一定的冷却作用,可提高炉胆寿命,减少散热损失,并能让低热值煤气的燃烧更加稳定。 4.热风以负压流供热,可调调风门补风,炉膛内存留可燃气体极少,确保点火安全,运行可靠。 6.热工及动力控制有远程控制、现场干预和现场控制、中央控制显示两种方式供用户选择,能很好满足多种工况需要,广泛用于水泥、化工、冶金等行业烘干、焙烧、冶炼等。 7.烟气排放符合GB13271-2014《锅炉大气污染物排放标准》。

二、主要技术参数 三、工作原理: 燃气热风炉结构简单、布置灵活、体积小巧,自动化程度高,操作简单,性能可靠。 燃气热风炉由炉体、引风机、调风门、出烟管、燃烧器、燃烧控制系统等部件组成。 炉体部分主要由外壳、内炉胆、支撑板等制作成两个腔室,内腔为燃烧炉

质量管理课程设计22620

质量管理课程设计 质量控制 目录第一部分课程设计的背景 一、课程设计的性质、目的和任务 二、课程设计的要求 第二部分课程设计的内容 一、设计题目 二、设计要求 三、设计结果 四、因果分析 五、制定对策计划表 六、效果预测 第三部分课程设计心得体会 附参考文献 评分表

一、课程设计的性质、目的和任务 《质量管理》课程是工业工程专业的主干课程之一,通过本课程的学习,学生不仅要求掌握基本的质量理论、质量管理的基本内容和基本方法,还必须具有较强的质量管理理论水平和较高的质量意识,能够参与企业开展质量宣传、贯彻GB/T9000-ISO9000:2000标准以及参与企业质量认证的工作能力。因此,《质量管理》课设的目的就在于使学生在学习了《质量管理》课程的基础理论之后,能把该课程的一些基本知识应用到实践中去,使理论和实践紧密的结合起来,培养和锻炼学生深入企业调查研究的实际工作能力、分析问题的能力、解决问题的能力,为培养应用性人才作出努力。 二、课程设计的要求 1、重点联系排列图、因果图、对策表、直方图、控制图、工序能力分析等在质量控制中的应用方法,培养学生能够合理运用质量控制方法解决设计工程问题的能力。 2、在质量控制方面:根据给出的课题能够采用排列图、直方图控制图和工序能力分析等质量控制手段来显示质量数据的统计规律预报工序质量漏洞,反映工序满足技术规格要求的水平能力。 3、课程设计前要作好充分的准备工作,最好先找好实习单位,因为课程设计时间较短,课程开始之后,可以有目的地切入正题。 4、认真阅读《工业工程专业课程设计指导书》按照指导书上的例题,根据给定的课题做好相应的图表,并仔细分析产生质量问题的原因找出改进的措施。

中温井式炉课程设计

目录 1.摘要 (1) 1.设计任务 (1) 2.炉型的选择 (1) 3.确定炉体结构和尺寸 (1) 4.砌体平均表面积计算 (2) 5.计算炉子功率 (3) 6.炉子热效率计算 (8) 7.炉子空载功率计算 (8) 8.空炉升温时间计算 (8) 9.功率的分配与接线 (11) 10.电热元件材料选择及计算 (11) 11.炉子构架、炉门启闭机构和仪表图 (13) 12.炉子总图,主要零部件图及外部接线图,砌体图 (13) 13.炉子技术指标 (13) 14.编制使用说明书 (13)

一 设计任务 设计一台年生产220吨的井式热处理电阻炉 炉子用途:碳钢、低合金钢等的淬火、退火及正火。 热处理工件:中小型零件,小批量多品种,零件最大长度小于0.5m 。 热处理炉最高工作温度:950℃ 炉外壁最高温度:60℃ 二 炉型的选择 根据设计任务给出的生产特点,拟选用中温井式电阻炉 三 确定炉体结构和尺寸 1 炉底面积的确定 因无定型产品,故不能用实际排料法确定炉底面积,只能用加热能力指标法 由已知年生产400吨,作业制度为二班制生产则生产率: h kg h kg P 67.91300 8102203 =??= 按表5-1选择井式炉用于淬火时的单位面积生产率2 0100m kg p = 故可求得炉底有效面积 2 192.0100 67.91m P P F === 由于有效面积与炉底总面积存在关系式 85 .0~75.01=F F 取系数上限 得炉底实际面积

2 108.185 .092.085 .0m F F == = 2.炉底直径的确定 由公式m F D D r F 17.114 .308.1444 2 2 =?= = ?= =π ππ 3.炉膛高度的确定 由于加热式工件的最大长度小于500mm ,工件距炉顶和炉底各约150mm~250mm 则炉深m mm H 0.11000250250500==++= 则炉膛高度: mm mm H 0.110423715)265(≈=+?+= 4.炉衬材料及厚度的确定 炉衬由耐火层和保温层组成,对于950℃的井式炉,用一层轻质粘土砖作为耐火层,硅藻土砖及蛭石粉作保温层,在炉膛底部应干铺一层粘土砖作为炉底。 对于深度较大的炉子,在耐火层与炉口砖之间应当留15~25mm 膨胀缝,炉膛底部应留有清除氧化皮的扒渣口,炉衬外有炉壳保护。 综上所述,炉墙采用113 mmQN-1.0轻质粘土砖+80mm 密度为250mm 3 m kg 普通硅酸铝纤维毡+113mmB 级硅藻土砖。 炉顶采用113mmQN-1.0轻质粘土砖+80mm 密度为2503 m kg 的普通硅酸铝纤维毡+230mm 蛭石粉。 炉底采用QN-1.0轻质粘土砖(267?)mm+50mm 密度为2503 m kg 的普通硅酸铝纤维毡+182mmB 级硅藻土砖和蛭石粉复合炉 衬。

HY-F 系列热风炉说明书

操作前请仔细阅读使用说明书

前言 HY-F 热风炉是保定市恒宇机械电器制造有限公司开发研制,主要用于棉花等物料烘干的专用供热设备。该炉以煤为燃料,采用机械化给煤燃烧方式,使燃煤得以充分燃烧,是一种新型的高效、节能、低污染的供热设备。可替代现行的燃油、燃气及电加热设备。产品投放市场以来深受广大用户的欢迎,在国内成为广大棉花加工厂的首选产品,部分产品出口到非洲一些国家和地区。 一、结构说明 HY-F系列热风炉分四部分构成,分别为换热器、高效燃烧系统、除尘系统和电气系统。其中高效燃烧系统由炉排总成、燃烧室、上煤机三部分组成。 换热器为列管式换热器,合理的分布辐射和对流换热面;炉体两侧设有清理换热通道灰尘的清灰门及清灰通道。在换热器上部有检修门。 除尘系统采用的是水膜除尘,锅炉燃烧产生的烟气,先经过一次水膜除尘,去掉火星和烟尘,最后将不会产生火灾隐患的烟气排入大气中。 燃烧室内腔由耐火材料预制而成,分引燃区、燃烧区和燃尽区。炉排采用链条式炉排。炉排总成设有分风室、调风门和调风杆,用来调节各风室的供风量;炉体侧面设有点火门、看火门,炉排采用的是除渣机自动除渣。煤仓内有闸板,通过调节煤闸板的高度来控制煤层厚度,用来控制热温度。 上煤机由煤斗车、导轨架、支撑平台、提升电机和减速箱等构成(见图1),位于主机前方。燃煤由此机构提升送至煤仓,为燃烧用煤储备燃料。 二、工作原理 通过上煤机由煤斗车将煤送至煤仓,煤随炉排的缓慢运动经煤闸板刮成一定厚度的煤层进入燃烧室引燃区,迅速起火燃烧。燃烧所需的空气由炉排离心通风机提供,通过炉排分风室分配到燃烧室各区。燃烧后所形成的灰渣通过炉排的循环运动落至尾部的除渣机中。 利用锅炉离心引风机,将烟气均匀的引入换热器外表面,使鼓入换热器内

热处理箱式电阻炉课程设计

热处理箱式电阻炉课程设计 一、设计任务 1、炉型:箱式炉 2、设计要求:(1)生产率或一次装炉量:100kg/h (2)零件尺寸:长、宽、高尺寸最大不超过150mm (3)零件材料:中、低碳钢、低合金钢及工具钢 (4)零件热处理工艺:淬火加热 3、任务分析: (1)生产率或一次装炉量为100kg/h ,属小型炉; (2)生产长、宽、高尺寸最大不超过150mm 的零件,选择箱式炉合理; (3)淬火加热工艺表明所设计的箱式炉属于中温范畴。 二、电阻炉的炉体结构设计 1、炉型选择:由于所生产的零件尺寸较小,都不大于150mm ,且品种较多,热处理 工艺为淬火加热,具体品种的淬透性不同,工艺有所差别,故采用周期作业中温箱式热处理炉进行设计。(额定温度为950℃) 2、炉膛设计 (1)典型零件的选定 参照设计任务的要求,选用40Cr 钢齿轮模拟设计 ①齿轮参数:分度圆mm d 128= 齿顶圆mm d a 136= 齿数32=z 模数 4=m 齿宽mm b 70= 全齿高mm h 9= 齿根圆mm d f 118= 齿轮孔径mm d 40=孔 ②设定工艺曲线: 加热时间 t=a ×k ×D (a :加热系数,k :工件装炉条件修正系数,D :工件 《热处理手册》第四版第二卷,机械工业出版p55 工艺周期为5h 《热处理设备》p117表5-4

有效厚度) 查表得:a 为1.2-1.5min/mm 取1.3 min/mm k 取1.8 故时间 t=1.3×1.8×70=163.8min 取加热时间3h ,保温时间2h 工艺周期为5h (2)确定炉膛尺寸 一次装炉量=生产率×周期=100kg/h ×5h=500kg 单位重量 kg kg d d 337.6108.7b ])2 ( )2[(m 322 =???-=孔π 零件个数 809.78337 .6500 ≈== n 个 查表可知,炉底单位面积生产率 h m kg P ?=20100 有效面积 22 01100 100m m P P F === 有效 由于工件之间距离为工件高度的0.3-0.5,故取工件之间距离为30mm 设计每次装炉80个零件,分两层分布,每层40个,纵向8个,横向5个 实际炉底面积 224.125.18 .01 m m K F F ≈== = 有效实 (K 为炉底利用系数,通常为0.8-0.85) 取 长 L=1.4m , 宽 B=1.0m 炉子高度一般为(0.52-0.90)B ,取0.6B ,故H=0.6m 3、炉体各部分结构 (1)炉衬:分为内层耐火层和外层保温层 内层:用QN —1.0的轻质耐火粘土砖 外层:B 级硅藻土砖,热导率为t 1023.0131.03 -?+,最高使用温度为900℃ (2)炉墙: 耐火层:QN —1.0轻质耐火粘土砖,规格为230×113×65mm ,热导率为 t 3110256.029.0-?+=λ,厚度 mm 1131=δ 保温层:B 级硅藻土砖,规格为230×113×65mm ,热导率为 t 1023.0131.03 -2?+=λ,厚度 mm 2302=δ 炉膛尺寸: L=1.4m B=1.0m H=0.6m 《热处理设备课程设计指导书》附表2

中温井式电阻炉设计

目录 一、设计任务 1、专业课程设计题目 (1) 2、专业课程设计任务及设计技术要求 (1) 二、炉型的选择 (1) 三、炉膛尺寸的确定 (1) 1、炉膛有效尺寸(排料法) (1) 1.1确定炉膛内径D (1) 1.2确定炉膛有效高度H (2) 1.3炉口直径的确定 (2) 1.4炉口高度的确定 (3) 四、炉体结构设计 (3) 1、炉壁设计 (3) 2、炉底的设计 (5) 3、炉盖的设计 (6) 4、炉壳的设计 (7) 五、电阻炉功率的确定 (7) 1、炉衬材料蓄热量Q 7 (8) 蓄 (9) 2、加热工件的有效热量Q 件 3、工件夹具吸热量Q (10) 夹 (10) 4、通过炉衬的散热损失Q 散 5、开启炉门的辐射热损失Q (12) 辐 (12) 6、炉子开启时溢气的热损失Q 溢 7、其它散热Q (13) 它 8、电阻炉热损失总和Q (13) 总 9、计算功率及安装功率 (13) 六、技术经济指标计算 (13) 1、电阻炉热效率 (13)

2、电阻炉的空载功率 (14) 3、空炉升温时间 (14) 七、功率分配与接线方法 (14) 1、功率分配 (14) 2、供电电压与接线方法 (14) 八、电热元件的设计 (15) 1、I区 (15) 2、II区 (16) 3.电热元件引出棒及其套管的设计与选择 (18) 4.热电偶及其保护套管的设计与选择 (18) 参考书目 (19)

一、设计任务 1、专业课程设计题目: 《中温井式电阻炉设计》 2、专业课程设计任务及设计技术要求: 1、φ90×1000中碳钢调质用炉. 2、每炉装16根 3、画出总装图 4、画出炉衬图 5、画出炉壳图(手工) 6、画出电热元件图 7、写出设计说明书 二、炉型的选择 因为工件材料为φ90×1000中碳钢调质用炉对于中碳钢调质最高温度为[870+(30~50)]℃,所以选择中温炉(上限950℃)即可,同时工件为圆棒长轴类工件,因而选择井式炉,并且无需大批量生产、工艺多变,则选择周期式作业。综上所述,选择周期式中温井式电阻炉,最高使用温度950℃。 三、炉膛尺寸的确定 1、炉膛有效尺寸(排料法) 1.1确定炉膛内径D 工件尺寸为φ90×1000,装炉量为16根,对长轴类工件,工件间隙要大于或等于工件直径;工件与料筐的间隙取100~200mm。炉膛的有效高度150~250mm排料法如图所示 则:根据几何关系,每根工件最小距离取90mm,则可以计算出 D=2×90×d=890mm

热风炉说明书

目录 一、公司简介 二、用途 三、设备主要技术参数 四、设备结构简介 五、安装 六、使用和安全 七、维护及保养 八、常见故障排除 九、安全注意事项 十、成套供应范围

一:公司简介 新乡市鼎升炉机科技有限公司(中国国防科工委定点企业)1972年成立于新乡胙城工业区,是一个开发设计制造综合公司。 我公司位于河南北部,与S307,S308,;新济高速,京深高速,京广铁路紧连,交通便利,运输方便。 我公司综合实力强,技术力量雄厚,专业工种齐全,工作经验丰富,技术装备先进,公司组建以来共完成580项大中型整体工程设计和总承包工程,项目遍及20多个省,市,自治区,自1995年以来 连年被新乡市授予“重合同守信用单位”称号,多次被新乡市工商局评为“消费者信得过单位”,并取得了中国工商行AAA企业信誉等级证书,2001年通过ISO9001:2000质量管理体系认证。树立了良好的形象。 我公司近十年来经营状况非常良好,在同行业中也处于领先地位,公司拥有厂房4180平方米,职工268人,工程技术人员26人,高级工程师7人,具有丰富的理论知识和实践经验,依靠雄厚的技术实力,运行新颖实用的设计理念,公司研发了一系列“高效、先进、可靠、环保、节能”的热处理自动生产线。并取得多项国家专利。在大型工业炉项目投标中,我公司取得了骄人的成绩。主要涉及的行业有军工,航空,机械,冶金,航海,铁路行业等。 近年来,企业本着“科技兴厂”的指导方针,公司积极与国内知名院校及专业科研机构广泛合作,使公司的创新能力有了一个质的飞跃。公司相继设计开发出各种高、中、低温箱式、台车式、井式、网带式、连续推杆式、盐浴式、滚筒式电阻炉等炉型,满足了气、固体渗碳、渗氮、

加热炉控制系课程设计

第1章加热炉控制系统 加热炉控制系统工程背景及说明 加热炉自动控制(automatic control of reheating furnace),是对加热炉的出口温度、燃烧过程、联锁保护等进行的自动控制。早期加热炉的自动控制仅限控制出口温度,方法是调节燃料进口的流量。现代化大型加热炉自动控制的目标是进一步提高加热炉燃烧效率,减少热量损失。为了保证安全生产,在生产线中增加了安全联锁保护系统。 影响加热炉出口温度的干扰因素很多,炉子的动态响应一般都比较迟缓,因此加热炉温度控制系统多选择串级和前馈控制方案。根据干扰施加点位置的不同,可组成多参数的串级控制。使用气体燃料时,可以采用浮动阀代替串级控制中的副调节器,还可以预先克服燃料气的压力波动对出口温度的影响。这种方案比较简单,在炼油厂中应用广泛。 这种控制的主要目的是在工艺允许的条件下尽量降低过剩空气量,保证加热炉高效率燃烧。简单的控制方案是通过测量烟道气中的含氧量,组成含氧量控制系统,或设计燃料量和空气量比值调节系统,再利用含氧量信号修正比值系数。含氧量控制系统能否正常运行的关键在于检测仪表和执行机构两部分。现代工业中都趋向于用氧化锆测氧技术检测烟道气中的含氧量。应用时需要注意测量点的选择、参比气体流量和锆管温度控制等问题。加热炉燃烧控制系统中的执行机构特性往往都较差,影响系统的稳定性。一般通过引入阻尼滞后或增加非线性环节来改善控制品质。 在加热炉燃烧过程中,若工艺介质流量过低或中断烧嘴火焰熄灭和燃料管道压力过低,都会导致回火事故,而当燃料管道压力过高时又会造成脱火事故。为了防止事故,设计了联锁保护系统防止回火和温度压力选择性控制系统防止脱火。联锁保护系统由压力调节器、温度调节器、流量变送器、火焰检测器、低选器等部分组成。当燃料管道压力高于规定的极限时,压力调节系统通过低选器取代正常工作的温度调节系统,此时出料温度无控制,自行浮动。压力调节系统投入运行保证燃料管道压力不超过规定上限。当管道压力恢复正常时,温度调节系统通过低选器投入正常运行,出料温度重新受到控制。当进料流量和燃料流量低于允许下限或火焰熄灭时,便会发出双位信号,控制电磁阀切断燃料气供给量以防回火。 随着节能技术不断发展,加热炉节能控制系统正日趋完善。以燃烧过程数学模型为依据建立的最佳燃烧过程计算机控制方案已进入实用阶段。例如,按燃烧过程稳态数学模型组成的微机控制系统已开始在炼油厂成功使用。有时利用计算机实现约束控制,使加热炉经常维持在约束条件边界附近工作,以保证最佳燃烧。

课程设计论文热处理工艺设计

目录 第一章 热处理工设计目的 (1) 第二章 课程设计任务 (1) 第三章 热处理工艺设计方法 (1) 3.1 设计任务 (1) 3.2 设计方案 (2) 3.2.1 12CrNi3叶片泵轴的设计的分析 (2) 3.2.2 钢种材料 (2) 3.3设计说明 (3) 3.3.1 加工工艺流程 (3)

3.3.2 具体热处理工艺 (4) 3.4分析讨论 (11) 第四章 结束语 (13) 参考文献 (14)

12CrNi3叶片泵轴的热处理工艺设计 一. 热处理工艺课程设计的目的 热处理工艺课程设计是高等工业学校金属材料工程专业一次专业课设计练习,是热处理原理与工艺课程的最后一个教学环节。其目的是: (1)培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其所学知识得到巩固和发展。 (2)学习热处理工艺设计的一般方法、热处理设备选用和装夹具设计等。 (3)进行热处理设计的基本技能训练,如计算、工艺图绘制和学习使用设计资料、手册、标准和规范。 二. 课程设计的任务 进行零件的加工路线中有关热处理工序和热处理辅助工序的设计。根据零件的技术要求,选定能实现技术要求的热处理方法,制定工艺参数,画出热处理工艺曲线图,选择热处理设备,设计或选定装夹具,作出热处理工艺卡。最后,写出设计说明书,说明书中要求对各热处理工序的工艺参数的选择依据和各热处理后的显微组织作出说明。 三. 热处理工艺设计的方法 1. 设计任务 12CrNi3叶片泵轴零件图如图3.1

图3.1 12CrNi3叶片泵轴 2、设计方案 2.1.工作条件 叶片泵是由转子、定子、叶片和配油盘相互形成封闭容积的体积变化来实现泵的吸油和压油。叶片泵的结构紧凑,零件加工精度要求高。叶片泵转子旋转时,叶片在离心力和压力油的作用下,尖部紧贴在定子内表面上。这样两个叶片与转子和定子内表面所构成的工作容积,先由小到大吸油再由大到小排油,叶片旋转一周时,完成两次吸油与排油。泵轴在工作时承受扭转和弯曲疲劳,在花键和颈轴处收磨损。因此,要求轴有高的强度,良好的韧性及耐磨性。 2.1.1失效形式 叶片泵轴的主要失效形式是疲劳断裂,在花键和轴颈处可能发生工作面的磨损、咬伤,甚至是咬裂。 2.1.2性能要求 根据泵轴的受力情况和失效分析可知 ,叶片泵轴主要是要求轴具有高的强度,良好的韧性及耐磨性,以保证轴在良好的服役条件下长时间的工作。 2.2钢种材料 12CrNi3A钢属于合金渗碳钢,比12CrNi2A钢有更高的淬透性,因此,可以用于制造比12CrNi2A钢截面稍大的零件。该钢淬火低温回火或高温回火后都具有良好的综合力学性能,钢的低温韧性好,缺口敏感性小,切削加工性能良好,当硬度为HB260~320时,相对切削加工性为60%~70%。另外,钢退火后硬度低、塑性好,因此,既可以采用切削加工方法制造模具,也可以采用冷挤压成型方法制造模具。为提高模具型腔的耐磨性,模具成型后需要进行渗碳处理,然后再进行淬火和低温回火,从而保证模具表面具有高硬度、高耐磨性而心部具有很好的韧性,该钢适宜制造大、中型塑料模具。12CrNi3高级渗碳钢的淬透性较高 ,退火困难。由于不渗碳表面未经镀铜防渗 ,因此渗碳后进行低温回火 , 降低硬度 , 便于切去不渗碳表

相关主题
文本预览
相关文档 最新文档