当前位置:文档之家› 公路桥梁伸缩装置设计指南介绍

公路桥梁伸缩装置设计指南介绍

公路桥梁伸缩装置设计指南介绍
公路桥梁伸缩装置设计指南介绍

目录

前言 (2)

1 伸缩装置的寿命 (3)

2 设计采用的荷载 (4)

2.1 静力荷载 (4)

2.1.1 竖向力静力荷载 (4)

2.1.2 双向力静力荷载 (4)

2.2 疲劳荷载 (4)

2.2.1 竖向力疲劳荷载 (4)

2.2.2 双向力疲劳荷载 (4)

2.3 荷载布置 (4)

3 设计容许应力 (6)

4 设计容许挠度 (7)

5 设计方法 (8)

6 伸缩装置在桥梁中的布置 (9)

7 材料 (10)

8 设计要点 (13)

8.1 伸缩量和转角计算 (13)

8.2 设计安装宽度和实际安装宽度计算 (13)

8.3 密封要求 (14)

8.4 承重机构 (14)

8.5 位移传动机构 (14)

8.6 检查通道和平台 (14)

8.7 易损件的更换 (15)

8.8 中、边梁异型钢接长 (15)

8.9 焊缝 (15)

8.10 螺栓连接 (15)

8.11 表面处理 (15)

8.12 安装槽填料(仅限于混凝土) (16)

9 构造要求 (17)

公 路 桥 梁 伸 缩 装 置 设 计 指 南

由中国交通企业管理协会路桥配套产品工作委员会提出的《桥梁伸缩装置设计指南》和《模数式伸缩装置通用技术条件》,由专家委员会审查通过,经中国交通企业管理协会批准,于2011年1月作为中国交通企业管理协会技术文件(文号中交企字[2011]2号)正式发布,并于2011年1月26日实施。

前 言

为使公路桥梁伸缩装置的设计符合技术先进、安全可靠、耐久适用、经济合理的要求,为弥补公路桥梁伸缩装置无设计规范,中国交通企业管理协会路桥配套产品工作委员会专家委员会组织本行业的技术人员制订了本指南。

本指南适用于公路桥梁一般伸缩装置的设计,不适用于弹塑体伸缩装置、聚合物混凝土伸缩装置、减震伸缩装置的减震设计,也不适用于橡胶伸缩装置的设计。

1伸缩装置的寿命

符合现行公路桥涵设计规范车辆荷载的伸缩装置,其钢构件的寿命为四十年,橡胶及高分子材料件的寿命为十五年。

2设计采用的荷载

2.1静力荷载

2.1.1竖向力静力荷载

竖向力静力荷载为JTG D60-2004 《公路桥涵设计通用规范》4.3.所规定的车辆荷载后轴重力标准值140KN和(1+μ)的乘积值,其中冲击系数μ=0.45。

2.1.2双向力静力荷载

竖向力静力荷载为JTG D60-2004 4.3.所规定的车辆荷载后轴重力标准值140kN,水平力静力荷载为车辆荷载后轴重力产生的制动力42kN,制动力的着力点在伸缩装置顶面上。

2.2疲劳荷载

2.2.1竖向力疲劳荷载

竖向力疲劳荷载为JTG D60-2004 4.3所规定的车辆荷载后轴重力标准值140KN和(1+μ)的乘积值。其中冲击系数μ=0.45。

2.2.2双向力疲劳荷载

双向力疲劳荷载为JTG D60-2004 4.3所规定的车辆荷载后轴重力标准值及冲击力140kN×1.45=203kN,以1/3的斜率作用在伸缩装置上,所产生的竖向力疲劳荷载为140kN×1.45×cos(arctg1/3)=192.58kN,所产生的水平力疲劳荷载为140kN×1.45×sin(arctg1/3)=64.19kN

2.3荷载布置

2.3.1 伸缩装置上纵桥向荷载布置为车辆荷载的单后轴或双后轴,见JTG D60-2004图4.3.1-2;横桥向荷载布置为一辆或二辆车辆荷载后轴的二个轮重,见JTG D60-2004图4.3.1-3;荷载在横桥向及纵桥向均应布设在对所考虑的细部产生最大应力或挠度的位置上。

2.3.2静力荷载施加在伸缩装置伸缩量最大时的状态。对于模数式伸缩装置,车辆荷载后轴的轮重施加在一根中梁上。对于其他伸缩装置,车辆荷载后轴的轮重施加在二根

边梁(或梳齿板、波形板)上。

2.3.3 疲劳荷载施加在伸缩装置伸缩量中值时的状态,按轮重着地长度所作用在异型钢的梁顶宽度进行荷载分配。

3设计容许应力

3.1 钢材容许应力按JTJ 025-86《公路桥涵钢结构及木结构设计规范》表1.2.5采用。但要根据构件的厚度选择相应钢材厚度的屈服强度进行调整,并取5的倍整数。

3.2 普通钢筋的抗拉容许应力:一级钢筋[σ]=140 Mpa,二级钢筋[σ]=200 Mpa。

3.3 承受拉力焊缝的容许应力与基本钢材的容许应力相同。承受剪力焊缝的容许应力与基本钢材的容许剪应力相同。二种不同强度钢材的焊接,取强度低的为基本钢材。

3.4 承受斜弯曲的构件,其容许应力增大系数C=1+0.3(σw1/σw2)≤1.15。

式中σw1,σw2 --为验算截面上由于作用在两相互垂直平面的弯矩所产生的较小和较大的应力。

3.5各种钢构件或连接的疲劳容许应力按JTJ 025-86表1.2.17-2和表1.2.17-4规定计算。

3.6承压支承的容许压应力[σ]≤15.0Mpa;在承压应力计算中,只考虑支承中加劲钢板的有效支承面积。

3.7压缩控制弹簧静力荷载的容许压应力[σ]≤3.0Mpa,容许应变[ε]=60%。

3.8剪切控制弹簧静力荷载的容许剪应力[τ]≤1.5Mpa,容许应变[ε]=80%。

3.9 压紧支承静力荷载的容许压应力[σ]≤3.0Mpa,容许应变[ε]=15%;疲劳荷载的容许压应力[σ]≤1.0Mpa,容许应变[ε]=5%。

4设计容许挠度

4.1 中梁、边梁、波形板跨中最大挠度不得大于(1/600)×L(L-计算跨径)。

4.2 横梁跨中最大挠度不得大于(1/600)×L(L-计算跨径)。

4.3 梳齿板端的最大挠度不得大于(1/300)×L1(L1-悬臂长度)。

注:挠度计算中钢材的弹性模量E=2.1×105Mpa。

5设计方法

5.1 按JTJ 025-86的规定采用容许应力设计,并验算伸缩装置及其构件的疲劳强度。

5.2 模数式伸缩装置中关键零部件如:位移控制弹簧、压紧弹簧等的设计除通过结构计算外,尚须进行静动载试验验证。

5.3 伸缩装置承重结构疲劳试验的加载频率不应大于5Hz,疲劳次数不应小于2×106次。

6伸缩装置在桥梁中的布置

6.1 伸缩装置的布置应根据桥梁的总体布置和几何构造:纵坡、横坡、平面曲率、支座布置、三向位移的方向和量值确定。

6.2 桥梁伸缩缝处的纵向水平位移小于5mm,垂直位移小于0.5mm时,无需安装伸缩装置,可在接缝中设置弹性的和防水的密封材料。

6.3 弯桥伸缩装置应设置在曲率半径上,其沿桥梁轴线两侧不同点处的伸缩量应考虑平面曲率半径所引起的增大或减小量。对于模数式伸缩装置,在行车道外缘处的两中梁或中、边梁之间的最大宽度不得大于80mm。

6.4 桥梁凹形竖曲线的低点处,不应设置伸缩装置。

7材料

7.1 位于TJG D60-2004附录B中的温热和寒冷地区伸缩装置,累年日最低气温平均值在Ts≥-18℃,承重结构的钢材和异型钢材应符合GB/T 700《碳素结构钢》和GB/T 1591《低合金高强度结构钢》中Q235 B 和Q345 B级质量要求。位于严寒地区的伸缩装置,其承重结构的钢材和异型钢材按照所在地区累年日最低气温平均值Ts,为-19℃≤Ts≤-34℃或-35℃≤Ts≤-51℃时,选用GB/T 700和GB/T 1591中Q235和Q345的相应C或D质量等级钢材。

7.2 受海水和侵蚀性物质影响(JTG D62 表1.0.7所列的Ⅲ类和Ⅳ类环境类别)环境中,伸缩装置的钢材应采用强度级别相同的低碳耐腐蚀钢,并符合GB/T 4172《耐侯结构钢》的规定。

7.3 承压支承的橡胶的物理机械性能应符合下表7-1中的要求。

表 7-1承压支承的橡胶的物理机械性能

项目单位天然橡胶

硬度 IRHD60±3

拉伸强度 Mpa≥18

≥450

扯断伸长率 %

粘结剥离强度 Mpa≥10

脆性温度℃≤-50

残余压缩变形

% ≤15

(70℃/22h/30%压缩率)

7.4压紧支承的橡胶的物理机械性能应符合下表7-2中的要求。

表 7-2压紧支承橡胶的物理机械性能

项目单位天然橡胶

47~62

冲击弹性 %

硬度 IRHD70±3

拉伸强度 Mpa≥14

≥250

扯断伸长率 %

粘结剥离强度 Mpa≥10

脆性温度℃≤-50

残余压缩变形

% ≤30

(70℃/22h/30%压缩率)

7.5密封橡胶带的橡胶的物理机械性能应符合下表7-3中的要求。

表 7-3密封橡胶带物理机械性能

项目单位三元乙丙橡胶氯丁橡胶

硬度 IRHD

60±5 60±5

拉伸强度 Mpa

≥12 ≥13.5

扯断伸长率 %

≥400 ≥350

撕裂强度 Mpa

≥10 ≥25

冲击弹性 %

>30

>30 脆性温度℃≤-60 ≤-40

恒定压缩永久变形

% ≤20 ≤20 (70℃*24h,25%压缩率)

耐臭氧老化

0.5*10% 0.1*10%

(20%伸长,40℃*96h) 无龟裂无龟裂

热空气老化℃×h 70*168 70*168

试验条件 %

≤15 ≤15

拉伸强度降低率 % ≤25 ≤25

扯断伸长率降低率 IRHD 0~10 0~10

硬度变化

耐水性增重率室温*144h<2.5 <4 耐油污性(一号机油)室温*70h168h 168h 体积变化 %

≤30 ≤10

重量变化 %

≤20 ≤5 耐油污性(三号机油)室温 168h 168h 体积变化 %

≤100 ≤25

重量变化 %

≤85 ≤15

7.6 压缩控制弹簧采用发泡聚氨脂,物理机械性能见下表7-4。

表 7-4压缩控制弹簧物理机械性能

项目单位规定值

冲击弹性 %

>65

密度 Kg/m550±50

拉伸强度 Mpa≥4.0

项目单位规定值

≥350 扯断伸长率 % 热空气老化试验 MPa≥2.5

≥300 拉伸强度 %

扯断伸长率

残余压缩变形

% ≤7 (70℃/24h/25%压缩率)

脆性温度℃≤-50

8设计要点

8.1伸缩量和转角计算

8.1.1 桥梁伸缩装置位移量由桥梁接缝处梁体的位移量确定,计算梁体位移量时应考虑温度变化、混凝土收缩和徐变、车辆荷载、预应力、基础变位、风力等引起的纵向、横向伸缩及转角、竖向变位。

8.1.1.1 桥梁接缝处由温度变化引起的伸缩量△lt和△lt,按照JTG D62-2004《公路钢筋混凝土技预应力混凝土桥涵设计规范》 8.6.2-1和8.6.2-2公式计算。

8.1.1.2 桥梁接缝处由混凝土收缩引起的梁体缩短量△ls,按照JTG D62-2004 8.6.2-3公式计算。

8.1.1.3 桥梁接缝处由混凝土徐变引起的梁体缩短量△lc,按照JTG D62-2004 8.6.2-4公式计算。

8.1.1.4 由制动力引起的板式橡胶支座剪切变形导致的桥梁接缝处的伸缩量,按照JTG D62-2004 8.6.2条4进行计算。

8.1.1.5 桥梁接缝处应计算由预应力引起的梁体缩短量和梁端的转角。

8.1.1.6 悬索桥、斜拉桥的接缝处应计算横向风力引起的横向伸缩量和横向转角,竖向变位。很宽桥梁的接缝处应计算温度等引起的横向伸缩量。

8.1.1.7 桥梁接缝处应计算车辆荷载和基础变位等引起的转角及竖向变位。

8.1.2 伸缩装置沿桥轴线的伸缩量等于桥梁接缝处伸缩量乘以增大系数β,可取β=1.2~1.4。伸缩装置沿桥轴线的转角等于桥梁接缝处转角加0.01rad。

8.1.3 格梁式模数伸缩装置的最大工作宽度(伸长量)不宜超过320mm;梳齿板式伸缩装置的最大工作宽度(伸长量)不宜超过300mm;波形伸缩装置的最大工作宽度(伸长量)不宜超过100mm;单缝伸缩装置的最大工作宽度(伸长量)不得超过80mm。

8.2设计安装宽度和实际安装宽度计算

8.2.1 伸缩装置的设计安装宽度,设计者应按选择的安装温度计算确定。若伸缩装置实际安装温度与设计安装温度不同,设计者应按实际安装温度计算实际的安装宽度。

8.2.2 若安装温度在伸缩装置出厂时不能确定,生产厂可按伸缩量的中间值组装出厂。

8.3密封要求

8.3.1 伸缩装置(包括路缘、人行道和中央隔离带的伸缩装置)应保证对拉圾、尘土和水的密封性,必要时可包括防撞护拦的伸缩装置。最低的要求是在24小时内,伸缩装置不得有水和尘土的渗漏。

8.3.2 伸缩装置密封件不得承受轮载,并要求通长和连续安装。

8.3.3 伸缩装置与桥面铺装之间以及与桥面防水系统之间的界面应是防水的,不得有水的渗漏。

8.4承重机构

伸缩装置的承重机构宜采用热轧钢材,寿命与伸缩装置相同。

8.4.1 大中梁钢和边梁钢

大中梁钢和边梁钢应为整体轧制成形,安装密封橡胶带的型腔宜为机加工成形。大中梁钢和边梁钢的截面在竖向和水平向的抵抗能力应与车辆荷载的竖向和水平向的作用力相匹配。推荐大中梁钢的高度为130mm、宽度为90mm;边梁钢的高度为80mm。

8.4.2工形横梁

工形横梁应为整体轧制成形,推荐的工形横梁高度为120mm、宽度为90mm。在伸缩装置最大工作宽度时,工形横梁应视需要在支承处设置成对的竖向加劲肋,肋板厚不应小于12mm。竖向加劲肋与梁的翼缘板焊接时,应将加劲肋切出不大于5倍腹板厚度的斜角。

8.4.3 伸缩装置的承重机构应通过2 设计荷载的静载计算、疲劳验算和刚度计算,满足3容许应力和4容许挠度的规定。

8.5位移传动机构

伸缩装置的位移传动机构宜采用以弹性元件为主的位移传动机构。弹性元件应通过2 设计荷载的计算,满足3 设计容许应力的规定。

8.6检查通道和平台

位移量大於320mm的伸缩装置,应在桥梁中设计专门的检查通道和位于伸缩装置下方的检查维修平台。

8.7易损件的更换

伸缩装置的设计应能方便的更换如密封带、弹性元件、紧固件等零部件。

8.8中、边梁异型钢接长

8.8.1 新建桥梁的伸缩装置长度小于12m的,其模数式多缝中、边梁异型钢、单缝异型钢不得进行工厂及工地的接长; 整体梳齿板式伸缩装置也不得进行工厂及工地的接长。

8.8.2 新建桥梁的长度大于12m或旧桥换缝的伸缩装置,异型钢可以接长,但接头应错开,间距应大於300mm;并且所有接头不应设在行车道内。

8.9焊缝

8.9.1 栓钉与异型钢的T形焊接,焊缝应能承受栓钉抗拉强度标准值的拉力作用。

8.9.2 锚筋与异型钢(锚板)的搭接焊接,焊缝应能承受锚筋抗拉强度标准值相应的剪力作用。

8.9.3 锚板与异型钢的T形焊接,焊缝应能承受锚板抗拉强度标准值的拉力作用。

8.9.4 中梁异型钢与横梁的焊接,宜采用棱形块与中梁和横梁的焊接连接,焊缝长度应通过计算确定,并布置为全熔透的围焊。

8.9.5 角焊缝的焊脚边比例为1:1,表面应做成凹形或直线形。

8.10螺栓连接

应采用高强度螺栓摩擦连接。高强度螺栓应符合GB/T 1228-1991《钢结构用高强度大六角头螺栓》。

8.11表面处理

8.11.1伸缩装置表面处理应遵照JT/T 722《公路桥梁钢结构防腐涂装技术条件》的规定,依伸缩装置所在地的腐蚀环境类别(附录A)、保护年限(建议为普通型)选用涂层体系。

8.11.2涂装前应作好钢材表面的清洗和除诱,经过喷丸(砂)后表面必须达到GB/T 8923-1988《涂装前钢材表面锈蚀等级和除锈等级》中的Sa2.5级标准,方可进行喷涂。

8.11.3 伸缩装置与混凝土相接触的表面严禁喷铝、镀铝、浸铝处理。亦不得喷刷面

漆和中间漆。

8.11.4 伸缩装置与空气相接触的表面宜进行喷(镀、浸)锌(铝)处理后再喷面漆的双重保护。

8.12安装槽填料(仅限于混凝土)

8.12.1 安装槽填料全部为混凝土时其强度等级应大于桥面铺装混凝土,并且不应低于C40(纤维混凝土)。

8.12.2 安装槽深度大于250mm时填料可分为一种--全混凝土,也可为二种--安装槽下部为混凝土,强度等级按8.12.1规定或不低于梁体混凝土强度等级。安装槽上部为与桥面铺装相同的沥青混凝土,厚度不宜小于70mm。

8.12.3 安装槽混凝土采用干硬性混凝土或掺加膨胀剂(如铝粉)的微膨胀混凝土。

9构造要求

9.1 特大桥和大桥的模数式伸缩装置其异型钢高度不应小于70mm。

9.2 刚性锚固(锚板和大环形锚筋组成)间距不大于250毫米。柔性锚固(如栓钉)间距不大于125毫米。

9.3 锚板锚筋顶面混凝土保护层厚度不应小于30mm。

9.4 伸缩装置锚板厚度不应小于16mm。光园锚筋直径不应小于18mm,带肋锚筋直径不应小于16mm,安装槽水平带肋锚筋直径不应小于12mm。

9.5 伸缩装置端部一般应设计翘头,其垂直高度不应小于150mm,与水平面倾斜角度宜为55°。

9.6 伸缩装置对有车辆驶过且宽于320mm长度的金属表面应进行防滑处理。

9.7 位移量80mm的单缝伸缩装置,安装槽填料为混凝土时,槽深最小值应大于140mm。

9.8 伸缩装置安装槽混凝土顶面应设有防裂钢筋网和进行防滑处理。防裂钢筋网钢筋直径不应小于8mm,间距不应大于100mm。

9.9 梳齿板伸缩装置的齿间搭接长度在最大张开时不应小于38mm,齿间隙宽度不应超过25mm。梳齿板伸缩装置当设置在自行车经常驶过的城镇桥梁时,齿间隙宽度应小于20mm。

9.10 在行人、自行车较密集的城镇桥梁中,自行车道、人行道伸缩装置的顶面不宜有纵桥向开口,若不可避免时,伸缩装置表面宜复盖钢板,其表面应进行防滑处理。

中国交通企业管理协会路桥配套产品工作委员会专家委员会

2011.1.编制

主要起草人:中国交通企业管理协会路桥工委专家委员会首席专家

中国公路建设行业协会专家委员会专家

交通运输部专家委员会专家彭宝华

中交公路规划设计院珠海有限公司教授级高工杜春三

传动轴设计及校核作业指导书

传动轴设计及校核作业指导书 编制:日期: 审核:日期: 批准:日期: 发布日期:年 月 日 实施日期:年 月 日

前言 为使本中心传动轴设计及校核规范化,参考国内外汽车设计的技术规范,结合公司标准和已开发车型的经验,编制本作业指导书。意在对本公司设计人员在设计过程中起到指导操作的作用,提高设计的效率和成效。本作业指导书将在本中心所有车型开发设计中贯彻,并在实践中进一步提高完善。 本标准于2011年XX月XX日起实施。 本标准由上海同捷科技股份有限公司第五研发中心底盘总布置分院提出。 本标准由上海同捷科技股份有限公司第五研发中心底盘总布置分院负责归口管理。 本标准主要起草人:张士华

一、传动系概述 (3) 1.1传动系功能 (3) 1.2传动系布置形式 (3) 1.3传动系的构成 (7) 1.4传动轴的主要结构形式 (8) 1.5驱动半轴的紧固方式 (12) 二、传动轴的设计流程 (15) 2.1传动轴的主要设计流程 (15) 2.2传动轴的设计过程及要求 (17) 三.传动轴的校核过程 (22) 3.1设计校核输入 (22) 3.2传动轴校核 (24) 3.3结论及分析 (25) 3.4传动轴跳动校核 (26) 3.5技术文件的编制 (26) 3.6传动轴图纸确认 (26) 四.试制装车及生产中经常出现的问题 (28) 五.参考文献 (28)

一、传动系概述 1.1 传动系功能 A、保证汽车在各种行驶条件下所必需的牵引力与车速,使它们之间能协调变化 并有足够的变化范围。 B、使汽车具有良好的动力性和燃油经济性。 C、保证汽车能倒车及左右车轮能适应差速要求。 D、使动力传递能根据需要而顺利接合与分离 1.2 传动系的布置形式 ? 前置后驱动 ? 前置前驱动 ? 后置后驱动 ? 四轮驱动 ? 中置发动机后轮驱动 部分高级轿车也采用前置后驱布置 前置后驱整体桥

万向传动轴设计说明书

目录 (一)万向传动轴设计 1.1 概述 (02) 1.1 结构方案选择 (03) 1.2 计算传动轴载荷 (04) 1.3 十字轴万向节设计 (05) 1.4 传动轴强度校核 (07) 1.5 传动轴转速校核及安全系数 (07) 1.6 参考文献 (09)

概述 万向传动轴一般是由万向节、传动轴和中间支承组成。主要用于在工作过程中相对位置不断改变的两根轴间传递转矩和旋转运动。 万向传动轴设计应满足如下基本要求: 1.保证所连接的两根轴相对位置在预计范围内变动时,能可靠地 传递动力。 2.保证所连接两轴尽可能等速运转。 3.由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围 内。 4.传动效率高,使用寿命长,结构简单,制造方便,维修容易等。 变速器或分动器输出轴与驱动桥输入轴之间普遍采用十字轴万向传动轴。在转向驱动桥中,多采用等速万向传动轴。当后驱动桥为独立的弹性,采用万向传动轴。

1.传动轴与十字轴万向节设计要求 1.1 结构方案选择 十字轴万向节结构简单,强度高,耐久性好,传动效率高,生产成本低,但所连接的两轴夹角不宜太大。当夹角增加时,万向节中的滚针轴承寿命将下降。 普通的十字轴式万向节主要由主动叉,从动叉,十字轴,滚针轴承及轴向定位件和橡胶封件等组成。 1. 组成:由主动叉、从动叉、十字轴、滚针轴承、轴向定位件和橡胶密封件组成 2. 特点:结构简单、强度高、耐久性好、传动效率高、成本低,但夹角不宜过大。 3.轴向定位方式: 盖板式卡环式瓦盖固定式塑料环定位式 4. 润滑与密封:双刃口复合油封多刃口油封

1.2 计算传动轴载荷 由于发动机前置后驱,根据表4-1,位置采用:用于转向驱动桥中 ①按发动机最大转矩和一档传动比来确定 T se1=k d T emax ki1i f i0η/n T ss1= G1 m’1υr r/ 2i mηm 发动机最大转矩T emax=186Nm 驱动桥数n=1, 发动机到万向传动轴之间的传动效率η=0.89, 液力变矩器变矩系数k={(k0 -1)/2}+1=1, 满载状态下一个转向驱动桥上的静载荷G1=50%m a g=0.5*1747*9.8=8530.9N,满载状态下一个驱动桥上的静载荷G2=65%m a g=0.65*1747*9.8=11128.39N, 发动机最大加速度的前轴转移系数m’1=0.8 发动机最大加速度的后轴转移系数m’2=1.3, 轮胎与路面间的附着系数υ=0.85, 车轮滚动半径r r=0.35, i=3.6 变速器一挡传动比 1 i=1 分动器传动比 f 主减速器从动齿轮到车轮之间传动比i m=0.55, 主减速器主动齿轮到车轮之间传动效率ηm=η发动机η离合器=0.98x0.96=0.94 因为0.195 m a g/T emax>16,f j=0,所以猛接离合器所产生的动载系数k d=1,主减速

传动轴跳动校核规范03.108.ok

上海同*同*科技有限公司企业标准 TJI/YJY·03·108-2005 传动轴跳动校核规范 2005-08-10 发布2005-08-16 实施 上海同*同*科技有限公司发布

TJI/YJY·03·108-2005 前言 为使总布置在进行传动轴跳动校核时,做到校核内容全面、正确,格式规范、统一,便于管理和检查评审,特制定本标准。 本标准中的各项要求,既是工程技术人员在进行传动轴跳动校核时,应该达到技术要求;又是检查评审传动轴跳动校核报告的依据。 本标准于2005年8月16日实施。 本标准的附录A为规范性附录。 本标准由上海同*同*科技有限公司提出。 本标准由上海同*同*科技有限公司质量与项目管理中心负责归口管理。 本标准主要起草人:李**

TJI/YJY·03·108-2005 传动轴跳动校核规范 1范围 本标准规定了传动轴跳动校核报告的格式及内容。 本标准适用于传动轴新产品开发设计及改型设计。 2规范性引用文件 QC/T 3-92 汽车产品图样及设计完整性 3术语和定义 无 4要求 4.1 传动轴跳动校核报告格式见规范性附录A 4. 2传动轴跳动校核报告应包括封面、目录、正文、参考文献四个部分 4. 3传动轴跳动校核报告应包含的校核内容 4.3.1上下跳动极限 4.3.2上下跳动极限位置夹角

附录 A (规范性附录)

目录 一、校核目的 (3) 二、概述 (3) 三、校核 (3) 1、等速传动校核 (3) 2、传动轴上下跳动的极限位置及工作夹角校核 (4) 四、总结 (7) 参考文献 (8)

一校核目的 1.传动轴上下跳动的极限位置及最大摆角; 2.设计工况下,万向节传动的夹角是否满足等速传动; 3.传动轴花键连接处的伸缩量,检查传动轴花键是否可能脱开或顶死;二概述 XS6450车用传动轴属于十字轴万向节式传动轴,具体结构为后驱、两段式、3万向节的十字轴式传动轴(如图1所示)。结构设计时需保证万向节叉在同一平面内,万向节两两互成90o,同时满足转角关系式: cosα1* cosα2=cosα3 (1)其中 tanαi=√(tanαz)2+ (tanαf)2 (2) 其中:αi:某万向节计算夹角; αz:αi对应主视图万向节夹角; αf:αi对应俯视图万向节夹角; 图1 三校核 1等速传动校核 根据数模和公式(2)由表1得出设计工况下各实际万向节夹角αi。 表1:XS6450万向节夹角

公路桥梁抗风设计规范

公路桥梁抗风设计规范 一、背景情况 《公路桥涵设计通用规范》(JTG D60-2015,以下简称《通规》)明确了桥梁抗船撞的设计原则,规定了IV~Ⅶ内河航道和通航海轮航道的船撞力设计值,是当前公路桥梁抗船撞设计的基本原则和统一标准。近年来,通航船舶呈现出吨位大、航速快的发展趋势,随着我国在建和拟建跨越航道桥梁的不断增多,保障桥梁结构在船舶撞击下的安全十分重要。为进一步保障在船舶撞击下的桥梁安全,完善细化桥梁抗船撞设计,在设计中综合考虑和体现船舶通航密度、船桥撞击概率、风险综合防控、桥墩抗撞性能等系统性和精细化设计要求,交通运输部组织完成了《规范》的制订工作。 二、《规范》的定位 《规范》为桥梁抗船撞设计提供可行或具体技术方法,提出了降低船撞风险的总体要求、降低船撞效应的结构性防船撞设施要求和基于性能的抗撞设计方法(结构设计准则由一系列可实现的性能目标来表示,保证在船舶撞击力作用下实现结构预定功能的抗撞设计方法),是对《通规》的重要补充,作为推荐性标准、与《通规》一起规定了公路桥梁抗船撞设计要求。《规范》贯彻了“综合防控、分级设防”的思想,提升了抗船撞设计的科学性,形成了一套系统的解决方案,引导公路抗船撞设计的标准化与精细化。《规范》充分考虑了与其他标准的衔接,以国内外工程实践和先进研究成果为依托,以安全可靠、先进有效、经济合理、

成熟实用为基本原则,广泛征求意见,具有清晰明确的定位,对进一步提升综合交通和基础设施的安全保障工作具有较强的指导作用。 三、《规范》的特点 《规范》注重落实高质量发展理念和交通强国建设纲要要求,对标国内国际先进水平,吸纳了交通运输行业桥梁抗船撞领域的最新研究成果及工程建设经验,开展了大量的理论研究与试验验证。《规范》的主要内容包括: (一)贯彻“综合防控、降低风险”的理念。一方面加强总体设计,提出了合理确定桥位、桥型、跨径和构造等总体要求,以降低船桥碰撞概率;对非通航孔桥,逐桥考虑船舶到达的可能性进行设计。另一方面,重视防撞设施的布设,规定了必要的结构性防船撞设施,以降低主体结构船撞效应。 (二)采用“性能设计、分级设防”的方法。基于性能的抗撞设计方法,主要包含抗船撞设防目标、设防船撞力与船撞效应计算、抗撞性能验算等内容。根据桥梁重要性等级和失效概率,抗船撞设防目标采用分级设防,桥墩、基础和支座的抗撞性能采用分级评估的分析方法。 (三)落实“风险概率、精细分析”的要求。在抗撞的设防船撞力计算上,提出了操作性很强的分位值法;考虑通航密度、船桥撞击概率等因素,建立了精细化程度高的概率-风险分析法。在抗撞的船撞效应计算上,明确了强迫振动法和质点碰撞法的技术要求,反映了船-桥-防船撞设施撞击效应分析的主流方法。四、实施注意事项

传动系统设计指导书 01

1.范围 适用于本研发中心所开发车型的发动机传动系统设计。 2.引用标准 GB 7086-87液力变矩器性能试验方法 GB/T465-1999汽车机械式变速器分类的术语及定义 GB/T5333-1985汽车驱动桥术语及定义 GB/T5727-1985汽车液力变速器术语及定义 GB/T5728-1985汽车离合器术语及定义 QC/T27-1992汽车干摩擦片式离合器台架试验方法 QC/T291-1999汽车机械式分动器性能要求 QC/T293-1999汽车半轴台架试验方法 QC/T294-1999汽车半轴技术条件 QC/T463-1999汽车用液力变矩器技术条件 QC/T470-1999汽车制动变速器操纵装置的要求 QC/T523-1999汽车传动轴台架试验方法 QC/T524-1999汽车发动机性能试验方法试验方法 QC/T533-1999汽车驱动桥台架试验方法 QC/T534-1999汽车驱动桥台架试验评价指标 QC/T29033-1991汽车用液力变速器台架性能试验方法 QC/T29063-1992汽车机械式变速器总成技术条件 QC/T29082-1992汽车传动轴总成技术条件 QC/T29101-1992汽车用操纵拉锁总成 3.传动系统设计概述 传动系统根据传力介质不同可分为:机械传动系、液力机械式传动系、液

压传动系和电传动系。因机械传动系效率高、结构简单、工作可靠、成本低,所以被绝大多数汽车采用。而液力机械传动系主要用于高级轿车。并在军用战斗车辆中被广泛应用,故此处将略去不述。液压传动系是利用液体静压力传递动力,因传动效率低,寿命较短未能推广。电传动主要应用于装载质量大于80 t的重型矿用汽车。 目前广泛应用于普通双轴汽车上,并与活塞式内燃机配用的是机械传动系。故以下如无特别说明本指导书所指传动系统均为机械传动系。 传动系统是位于汽车发动机与驱动轮之间的动力传递装置,其功用: 1)保证汽车在各种行驶条件下所必须得牵引力和车速,使它们之间能协调变化并有足够的变化范围; 2)是汽车具有良好的动力性和燃油经济性; 3)保证汽车能倒车及左右驱动车轮能适应差速要求; 4)是动力传递能根据需要而顺利结合与分离。 普通汽车的传动系统如图1所示主要由:离合器、变速器、万向传动装置、主减速器、差速器等组成。 图1 普通汽车传动系示意图 1-离合器、2-变速器、3-万向传动装置、4-主减速器、5-差速器、6-半轴、7-驱动桥发动机传动系统设计结构框图如图2 所示:

重型载货汽车万向传动轴设计方案说明书

汽车设计课程设计说明书 题目:重型载货汽车万向传动轴设计 姓名:xx 学号:200924xxxx 同组者:xxxxxx 专业班级:09车辆工程2班 指导教师:xxxxxxxx

商用汽车万向传动轴设计 摘要 万向传动轴在汽车上应用比较广泛。发动机前置后轮或全轮驱动汽车行驶时,由于悬架不断变形,变速器或分动器的输出轴与驱动桥输入轴轴线之间的相对位置经常变化,因而普遍采用可伸缩的十字轴万向传动轴。本设计注重实际应用,考虑整车的总体布置,改进了设计方法,力求整车结构及性能更为合理。传动轴是由轴管、万向节、伸缩花键等组成。伸缩套能自动调节变速器与驱动桥之间距离的变化;万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角发生变化时实现两轴的动力传输;万向节由十字轴、十字轴承和凸缘叉等组成。传动轴的布置直接影响十字轴万向节、主减速器的使用寿命,对汽车的振动噪声也有很大影响。在传动轴的设计中,主要考虑传动轴的临界转速,计算传动轴的花键轴和轴管的尺寸,并校核其扭转强度和临界转速,确定出合适的安全系数,合理优化轴与轴之间的角度。 目录 一、概述 (04)

二、货车原始数据及设计要求 (05) 三、万向节结构方案的分析与选择 (06) 四、万向传动的运动和受力分析 (08) 五、万向节的设计计算 (11) 六、传动轴结构分析与设计计算 (17) 七、参考文献 (20) 一、概述 汽车上的万向传动轴一般是由万向节、轴管及其伸缩花键等组成。主要是用于在工作过程中相对位置不断变化的两根轴间传递转矩和旋转运动。 在动机前置后轮驱动的汽车上,由于工作时悬架变形,驱动桥主减速器输入轴与变速器输出轴间经常有相对运动,普遍采用万向节传动<图1—1a、b)。当驱动桥与变速器之间相距较远,使得传动轴的长度超过1.5m时,为提高传动轴的临界速度以及总布置上的考虑,常将传动轴断开成两段或三段,万向节用三个或四个。此时,必须在中间传动轴上加设中间支承。

车架设计手册汇总

车架设计手册汇总 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

车架设计手册1,范围 本手册适用于客车底盘非承载式及半承载式车架的设计。 2 引用标准 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB1958-80 形状和位置公差检测规定 GB1184-80 形状和位置公差 GB3323-87 钢熔化焊对接接头射线照相焊缝质量分级 3 符号、代号、术语及其定义 车架:汽车承载的基体,支撑着发动机、离合器、变速器、转向器、非承载式(或半承载式)车身等所有簧上质量的有关机件,承受着传给它的各种力和力矩。 纵梁:车架总成中主要承载元件,也是车架中最大的加工件,其形状应力求简单。纵梁沿全长方向多取平直且断面不变或少变,以简化工艺。有时也采取中间断面高、两边较低来保 证纵梁各断面应力接近 横梁:横梁将左右纵梁连在一起,构成完整的车架总成,保证车架有足够的扭转刚度,限制其变形和降低某些部位的应力。有的横梁还需作为发动机、散热器以及悬架系统的紧固 点。 4 设计准则 应满足的安全、环保和其它法规要求及国际惯例 车架总成在正常使用条件下,纵梁等主要零件在使用期内不应有严重变形和开裂。 应满足的功能要求及应达到的性能要求 车架应有足够的弯曲刚度,以使装在其上的有关机构之间的相对位置在汽车行驶过程中保持不变并使车身的变形量最小;车架也应有足够的强度,以保证其有足够的可靠性和寿命, 设计输入、输出要求 设计输入为设计任务书及底盘总布置图; 设计输出为车架总成图及相关分总成及零件图。 设计过程的节点控制要求 车架总成要负责控制校核如下内容: 1)协调发动机及其附件在车架纵梁上的安装孔及牛腿安装孔; 2)横梁位置与底盘分总成(油箱、电瓶)及车身结构(前、中、后门、侧围立柱)的匹配; 3)协调制动管路、暖风管路、电线束、油路等管线在车架中的分布及穿线管; 4)校核底盘各总成间的运动干涉,相关总成的装缷空间(如缓速器、传动轴)。 5 布置要求

花键传动轴设计说明书(小批量)

航空制造工程学院 机械制造工艺课程设计 课程名称:机械制造工艺及装备 设计课题:传动轴花键轴机械加工工艺 规程及夹具设计 专业:机械设计制造及其自动化班级: 姓名:学号: 评分:指导老师:(签字) 2012年12月

目录 一零件分析 (1) 二工艺规程设计 (1) 三夹具设计 (8) 四设计心得 (10) 五参考文献 (11)

一、零件的分析 (一)零件的作用 题目所给的零件是花键传动轴,为花键传动中的传动轴,起传动的 作用。 二、工艺规程设计 (一)确定毛坯的制造形式 选择锻件毛坯。 (二)基面的选择 基准的选择: 该零件既是花键轴又是阶梯轴,其加工精度要求较高,因此选中心孔B3/7.5做为设计和工艺基准。 (三)制定工艺路线 制定工艺路线的出发点,应当是使零件的几何形状、尺寸精度及位置精度等技术要求能得到合理的保证,在生产纲领已确定的情况下,可以考虑采用万能性机床配以通用工、卡具,并尽量使工序集中来提高生产率。除此之外,还应当考虑经济效果,以便使生产成本尽量下降。 工艺路线方案: 10 下料(棒料) 20 夹一端,车端面,见平即可,钻中心孔B3/7.5 30 倒头装夹工件,车端面,保证总长170mm 40 以两中心孔定位装夹工件,粗、精车?35及?38外圆,倒角。 50 以两中心孔定位装夹工件,粗、精车?51及?45外圆,倒角。 60一夹一顶装夹工件,粗、精铣花键 70 热处理:调质处理255—302HB 80 按图样要求检查各部尺寸及精度。 (四)机械加工余量、工序尺寸及毛皮尺寸的确定 “花键传动轴”,零件材料为40MnB,硬度为255—302HB,毛坯质量为6kg。生产类型为小批量生产,选择锻件毛坯。 据以上原始资料及加工路线,分别确定各加工表面的机械加工余量、

万向传动轴设计说明书

汽车设计课程设计说明书 设计题目:上海大众-桑塔纳志俊万向传动 轴设计 2014年11月28日

目录 1前言 2设计说明书 2.1原始数据 2.2设计要求 3万向传动轴设计 3.1万向节结构方案的分析与选择3.1.1十字轴式万向节 3.1.2准等速万向节 3.2万向节传动的运动和受力分析3.2.1单十字轴万向节传动 3.2.2双十字轴万向节传动 3.2.3多十字轴万向节传动 4 万向节的设计与计算 4.1 万向传动轴的计算载荷 4.2传动轴载荷计算

4.3计算过程 5 万向传动轴的结构分析与设计计算 5.1 传动轴设计 6 法兰盘设计

前言 万向传动轴在汽车上应用比较广泛。发动机前置后轮或全轮驱动汽车行驶时,由于悬架不断变形,变速器或分动器的输出轴与驱动桥输入轴轴线之间的相对位置经常变化,因而普遍采用可伸缩的十字轴万向传动轴。本设计注重实际应用,考虑整车的总体布置,改进了设计方法,力求整车结构及性能更为合理。传动轴是由轴管、万向节、伸缩花键等组成。伸缩套能自动调节变速器与驱动桥之间距离的变化;万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角发生变化时实现两轴的动力传输;万向节由十字轴、十字轴承和凸缘叉等组成。传动轴的布置直接影响十字轴万向节、主减速器的使用寿命,对汽车的振动噪声也有很大影响。在传动轴的设计中,主要考虑传动轴的临界转速,计算传动轴的花键轴和轴管的尺寸,并校核其扭转强度和临界转速,确定出合适的安全系数,合理优化轴与轴之间的角度。

2 设计说明书 2.1 原始数据 最大总质量:1210kg 发动机的最大输出扭矩:Tmax=140N·m(n=3800r/min); 轴距:2656mm; 前轮胎选取:195/60 R14 、后轮胎规格:195/60 R14 长*宽*高(mm):4687*1700*1450 前轮距(mm);1414 后轮距(mm):1422 最大马力(pa):95 2.2 设计要求 1.查阅资料、调查研究、制定设计原则 2.根据给定的设计参数(发动机最大力矩和使用工况)及总布置图,选择万向传动轴的结构型式及主要特性参数,设计出一套完整的万向传动轴,设计过程中要进行必要的计算与校核。 3.万向传动轴设计和主要技术参数的确定 (1)万向节设计计算 (2)传动轴设计计算 (3)完成空载和满载情况下,传动轴长度与传动夹角变化的校核 4.绘制万向传动轴装配图及主要零部件的零件图 3 万向传动轴设计 3.1 万向节结构方案的分析与选择 3.1.1 十字轴式万向节 普通的十字轴式万向节主要由主动叉、从动叉、十字轴、滚针轴承及其轴向定位件和橡胶密封件等组成。

花键传动轴设计说明书

航空制造工程学院 《机械制造工艺及装备》 课程设计说明书专业:机械设计制造及其自动化班级: 090314 姓名:张建学号: 09031432 评分:指导老师:(签字)

2012年11月

机械制造工艺学课程设计任务书 课题: 传动轴花键轴机械加工工艺规程及夹具设计内容: 1 零件图1张 2. 机械加工工艺过程综合卡片1张 3. 夹具设计装配图1张 4. 夹具设计零件图1张 5. 课程设计说明书12张 班级:09031432 姓名:张建 2012年11月

目录 一零件分析 (1) 二工艺规程设计 (1) 三夹具设计 (9) 四设计心得 (10) 五参考文献 (11)

一、零件的分析 (一)零件的作用 题目所给的零件是花键传动轴,为花键传动中的传动轴,起传动的 作用。 二、工艺规程设计 (一)确定毛坯的制造形式 选择锻件毛坯。 (二)基面的选择 (1)基准的选择: 该零件既是花键轴又是阶梯轴,其加工精度又要求较高,因此选中心孔B3/7.5做为设计和工艺基准。 (三)制定工艺路线 制定工艺路线的出发点,应当是使零件的几何形状、尺寸精度及位置精度等技术要求能得到合理的保证,在生产纲领已确定的情况下,可以考虑采用万能性机床配以专用工卡具,并尽量使工序集中来提高生产率。除此之外,还应当考虑经济效果,以便使生产成本尽量下降。 工艺路线方案: 工序一下料 工序二夹一端,车端面,见平即可,钻中心孔B3/7.5 工序三倒头装夹工件,车端面,保证总长175 工序四以中心孔定位装夹工件粗车外圆各部。 工序五去毛刺 工序六以两中心孔定位装夹工件。精车,半精车各部尺寸,倒角 工序七一夹一顶装夹工件,粗,精铣花键 工序八热处理:调质处理255—302HB 工序九按图样要求检查各部尺寸及精度。 (四)机械加工余量、工序尺寸及毛皮尺寸的确定 “花键传动轴”,零件材料为40MnB,硬度为255—302HB,毛坯质量 为6.37kg。生产类型为小批量生产,锻造毛坯。 据以上原始资料及加工路线,分别确定各加工表面的机械加工余量、

公路桥梁抗风设计规范.ashx

ISBN7—5608—2212—6/Ⅲ?377第十四届全国桥梁学术会议论文集 2000.11.5~7南京 《公路桥梁抗风设计规范》概要 及大跨桥梁的抗风对策 项海帆陈艾荣 (同济大学) 【摘要】随着我国桥集工程的不断发展.迫切需要精帝|适合我国国情的(公路桥梁抗风设计规范)。本文介绍了{莪规范螭翩中的几个主要问题,其中包括基本风速图和风压圈、风衙藏的表达方式、桥檗动力稳定性检验和风洞试验要求等.此外。还讨论了太跨桥集成桥和施工阶段的各种抗风对策。 关键词惭粱抗风设计规范 :碴鹂. 一、撅述… 1999年10月,江阴长江大桥正式建成通车标志着中国有了第一座超千米的悬索桥,同时也成为世界上能够建造千米级大桥的第六个国家。自从80年代初中国改革开放以来,中国已建成了一百余座各种类型的斜拉桥,成为世界上建造斜拉桥最多的国家。如果把即将于2001年建成的南京长江二桥和福州闽江大桥统计在内,在跨度超过500m的世界斜拉桥中中国的斜拉桥已占有十分重要的地位。 1996年我国人民交通出版社出版了我国第一部由同济大学和中交公路规划设计院编写的《公路桥梁抗风设计指南》,几年来已被广泛用于多座大跨桥梁的抗风设计中。在此基础上,受交通部的委托,同济大学、中交公路规划设计院、中央气象研究院以及西安公路交通大学针对其中的几个关键问题进行了专题研究,为形成最终的《公路桥梁抗风设计规范》奠定了基础。这几个专题的内容以及通过多次修改形成的报批稿的目录如表l所示。 表1<公路桥梁抗风设计规范>专曩的内窖以最报批稿的目曩 专题内容规葩目录1全国基本风建圈和基本风压圈的绘制;第一章总用 2.斛拉桥和慧索桥的基顿的近似公式;第二章基本术语与基本符号 3.桥架的辱敢静阵风荷羲研究;第三章风建计算 4.斜拉桥和怎索侨的阻尼比研究;第四章风荷载计算 5.风参数的合理取值研究;第五章桥檠的动力特性 6.鼻塑桥梁断面的气曲参敷铡定第六章抗风稳定性验算 第七章风致限幅振动 第八章风洞试验要求 第九章风致振动控制 附录 40

机械制造技术基础 A 实验指导书(2)

机械制造技术基础A 实验指导书 河南科技大学 2007年3月

目录 实验一车刀几何角度测量 实验二车床三箱结构认识 实验三滚齿机的调整与加工 实验四机床工艺系统刚度测定 实验五加工误差统计分析

实验一车刀几何角度测量( 2 学时) 一、实验目的 1、加深对刀具几何角度及各参考坐标平面概念的理解; 2、了解万能量角台的工作原理,掌握刀具几何角度的测量方法; 3、学会刀具工作图的表示方法。 二、实验设备 1、万能量角台一台。 2、测量用车刀若干把。 三、实验原理 刀具几何角度的测量是使用刀具角度测量仪完成的,刀具角度测量仪即万能量角台的测量原理如图1-1所示,立柱式万能量角台主要由台座、立柱、垂直升降转动套、水平回转臂、移动刻度盘和指度片等零件组成。松开侧锁紧螺钉,可使垂直升降转动套带动水平回转臂上下移动,松开前锁紧螺钉,可使水 1.台座 2.立柱 3.前锁紧杆 4.滑套 5. 侧锁紧螺杆 6.挡片 7.水平转臂 8.挡片 9.移动刻度盘 10.指度片 11.紧固螺钉 12.定位销钉 图1-1 万能量角台示意图

平回转臂和移动刻度盘绕水平轴转动。移动刻度盘可沿着水平回转臂上的水平槽水平移动,并根据测量需要紧固在某一确定位置。指度片可绕螺钉销轴转动,其底部靠近被测量的表面,指针指示测量角度。用上述这些零件位置的变动,即可实现各参考平面内刀具角度的测量。测量时,刀具放在台座上,以刀杆的一侧靠在两定位销内侧定位。 四、实验内容 1)测量主偏角 k r 滑套上的“0”刻度对准立柱上的标定线,测量时只可上下移动,不得转动。转动水平回转臂,使其上的“0”刻度线对准滑套上的标定线。调整测量指度片,使指度片的底面与主切削刃重合,制度片的指针所指的角度为主偏角 k。 r 2)测量负偏角' k r 方法同上,只是让指度片的底面与副切削刃重合,指针所指读数为负偏角' k。 r 3)测量前角 γ 滑套上的“0”刻度对准立柱上的标定线后,再把滑套相对于标定线顺时针转动一个主偏角的余角,转动水平回转臂,使水平回转臂上的“90”刻度线对准滑套上的“90”刻度线,调整指度片,使指度片的底面与前刀面重合,制度片的指针所指的角度为 γ。 4)测量后角 α 方法同上,只是让指度片的后侧面与主后面重合,指度片指针所指的角度为后角 α。 5)测量刃倾角 λ s 滑套上的“0”刻度对准立柱上的标定线后,再把滑套相对于标定线逆时针旋转一个主片角使主刀刃与指度片的前侧面靠紧,再沿立柱移动滑套,使指度片的底侧面与主刀刃贴紧,指度片指针所指的角度为 λ。 s 五、实验注意事项 1、调整角度要准确,该靠紧的面要全部靠紧。 2、该松的零件要放松,该紧固的零件要拧紧。 3、注意安全,不要让刀刃碰住身体。

汽车万向传动轴设计技术毕业设计说明书

目录 1.1 汽车万向传动轴的发展与现状 (2) 1.2 万向传动轴设计技术综述 (2) 2 万向传动轴结构方案确定 (4) 2.1 设计已知参数 (4) 2.2 万向传动轴设计思路 (6) 2.3 结构方案的确定 (6) 3 万向传动轴运动分析 (9) 4 万向传动轴设计 (10) 4.1 传动载荷计算 (10) 4.2 十字轴万向节设计 (12) 4.3滚针轴承设计 (13) 4.4传动轴初步设计 (14) 4.5 花键轴设计 (15) 4.6 万向节凸缘叉连接螺栓设计 (16) 4.7 万向节凸缘叉叉处断面校核 (17) 5基于UG的万向传动轴三维模型构建 (18) 5.1万向节凸缘叉作图方法及三维图 (18) 5.2万向节十字轴总成作图方法及三维图 (21) 5.3 内花键轴管与万向节叉总成作图方法及三维图 (25) 5.4 花键、轴管与万向节叉总成作图方法及三维图 (2624) 5.5万向传动轴总装装配方法及三维图 (27) 6 万向传动装置总成的技术要求、材料及使用保养 (29) 6.1普通万向传动轴总成的主要技术要求 (29) 6.2万向传动轴的使用材料 (29) 6.3 传动轴的使用与保养 (30) 7 结论 (31) 总结体会 (32) 谢辞 (33) 附录1外文文献翻译 (34) 附录2模拟申请万向传动轴专利书 (48) 【参考文献】 (52)

1引言 1.1 汽车万向传动轴的发展与现状 万向传动装置的出现要追溯到1352年,用于教堂时钟中的万向节传动轴。1663年英国物理学家虎克制造了一个铰接传动装置,后来被人们叫做虎克万向节,也就是十字轴式万向节,但这种万向节在单个传递动力时有不等速性。1683年双联式虎克万向节诞生,消除了单个虎克万向节传递的不等速性,并于1901年用于汽车转向轮。上世纪初,虎克万向节和传动轴已在机械工程和汽车工业中起到了极其重要的作用。1908年第一个球式万向节诞生,1926年凸块式等速万向节出现,开始用于独立悬架的前轮驱动轿车和四轮驱动的军用车的前轮转向节。1949年由双联式虎克万向节演变而来的三销式万向节开始被使用在低速的商用车辆上。 直到现在,根据在扭转方向是是否有明显的弹性,万向节可分为刚性万向节和挠性万向节。刚性万向节是靠零件的铰链式传递动力,又分成不等速万向节(常用的为十字轴式)、准等速万向节(双联式、二销轴式等)和等速万向节(球叉式、球笼式等);挠性万向节是靠弹性零件传递动力的,具有缓冲减振作用。万向传动装置已经可以满足飞速发展的汽车科技[]1。 1.2 万向传动轴设计技术综述 汽车万向传动装置一般由万向节和传动轴以及中间支撑等组成,它主要用于工作过程中相对位置不断改变的两根轴间传递转矩和旋转运动。以内燃机在作为动力的机械传动汽车中,万向传动装置是其传动系中必不可少的部分。万向传动装置设计的合理与否直接影响传动系的传动性能。选用与布置不当会给传动系增添不必要的和设计未能估算在内的附加动负荷,可能导致传动系不能正常运转和早期损坏。只有合理的设计,才能保证汽车在各种工况和路面条件下可靠地传递动力。 在汽车高速行驶的时候,万向传动装置也在伴随着高速旋转,并且源源不断的将动力从变速器的输出端输送到主减速器上。因此,万向传动装置的设计就显得十分重要,设计必须保证所连接的两轴的夹角及相对位置在一定范围内变化时,能可靠而稳定地传

客车底盘总布置设计规范

长春北车电动汽车有限公司设计规范 CBD-YF-DP-GF.1 客车底盘总布置设计规范

目录 1 范围 (2) 2 规范性文件引用 (2) 3 术语和定义 (3) 4 设计准则 (3)

1 范围 本标准主要介绍了客车底盘总布置的简要设计流程,规范了设计步骤,明确了底盘总布置的设计结构等。 本标准适用于我公司6--12米的大中型营运客车的底盘总布置设计。 2 规范性文件引用 GB/T 13053-2008 客车车内尺寸 GB 12676-1999 汽车制动系统结构、性能和试验方法 GB 17675-1999 汽车转向系基本要求 GB/T 5922-2008 汽车和挂车气压制动装置压力测试连接器技术要求 GB/T 6326-2005 轮胎术语及其定义 GB/T 13061-1991 汽车悬架用空气弹簧橡胶气囊 QC/T 29082-1992 汽车传动轴总成技术条件 QC/T 29096-1992 汽车转向器总成台架试验方法 QC/T 29097-1992 汽车转向器总成技术条件 QC/T 293-1999 汽车半轴台架试验方法 QC/T 294-1999 汽车半轴技术条件 QC/T 299-2000 汽车动力转向油泵技术条件 QC/T 301-1999 汽车动力转向动力缸技术条件 QC/T 302-1999 汽车动力转向动力缸台架试验方法

QC/T 303-1999 汽车动力转向油罐技术条件 QC/T 304-1999 汽车转向拉杆接头总成台架试验方法 QC/T 305-2013 汽车液压动力转向控制阀总成性能要求与试验方法 QC/T 465-1999 汽车机械式变速器分类的术语及定义 QC/T 470-1999 汽车自动变速器操纵装置的要求 QC/T 479-1999 货车、客车制动器台架试验方法 QC/T 483-1999 汽车前轴疲劳寿命限值 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 QC/T 494-1999 汽车前轴刚度试验方法 QC/T 513-1999 汽车前轴台架疲劳寿命试验方法 QC/T 523-1999 汽车传动轴总成台架试验方法 QCT 529-2013 汽车液压动力转向器技术条件与试验方法 QCT 533-1999 汽车驱动桥台架试验方法 QCT 545-1999 汽车筒式减振器台架试验方法 3 术语和定义 上述标准中确立的符号、代号、术语均适用于本标准。 4 设计准则 4.1应满足的安全、环保和其它法规要求及国际惯例 客车底盘总成中各部分的主要性能、尺寸等应符合相应的标准规定。详参相应的标准。

公路桥梁设计规范答疑汇编--问题举例

公路桥梁设计规范答疑汇编--问题举例 1、在条文说明中的第3.3.1中的第3款:“应首先考虑与桥涵相连的公路路段的路基宽度,保持桥面净宽与路肩同宽。”主要疑惑是:路肩指的是硬路肩还是土路肩? 2、规范第3.3.2条中规定:“在不通航和无流筏的水库中区域内,梁底面或拱顶底面离开水面的不应小于计算浪高的0.75倍加上0.25m。” 问题如下: (1)以上条款中的0.25m指的是在浪高的0.75倍上加的一个安全值,还是指高于支承垫石顶面高度0.25m?(2)在水库区域内的通航桥的不通航孔,以上条款是否适用? (3)此处的水面是指计算水位还是最高洪水位? (4)最终梁底净空是否需要满足第 3.3.2条中的所有条款?即是否需满足该条最后一段所要求的并同时满足表3.3.2的要求? 3、(1)规范第3.3.6条规定天然气管道不是顺桥过。是所有的天然气管道不得过,还是对直径和压力有限制?在城市桥梁及城市郊区公路桥梁的设计中,此条经常不能满足。 (2)煤气管道是否等同于天然气条文取用?管道与桥梁的交叉如何考虑?高压线的定义是多少电压? 4、(1)规范第3.5.8条中纵坡大于1%的桥梁非常普通,对于空心板等大规模工厂化制作的上部结构,梁底水平如何操作(每根梁的纵坡可能都不同)? (2)规范第3.5.8条中“某一规定坡度”具体数值是多少? 对于纵、横坡较大的空心板桥,如果不能使用球冠支座,梁底只能做垫块,空心板预制比较困难,景观较差,如何处理? 5、规范第3.6.4条规定水泥混凝土桥面铺装面层(不含整平层和垫层)的厚度不宜小于80mm,混凝土强度等级不应低于C40。 条文中,关于“不含整平层和垫层”的含义,如采用沥青混凝土桥面,有两种不同的理解,一是沥青混凝土下的混凝土铺装,只算是“整平层和垫层”,可不按第3.6.4条的厚度及强度要求;二是沥青混凝土下的混凝土铺装,不是整平层和垫层,是桥面铺装(根据条文解释,似这样理解也是符合精神的),应符合第3.6.4条的厚度及强度要求。 6、《公路桥涵设计通用规范》(JTG D60-2004)第3.7.2条“跨越河流或海湾的特大、大、中桥宜设置水尺或标志,较高墩台宜设围栏、扶梯等”。 请问:(1)本条中“较高墩台”中的“较高”二字有没有一个明确的幅度或范围,即“多高”才算“较高”?(2)本条中“较高墩台宜设围栏、扶梯等”中,设置围栏、扶梯的目的是什么?是为了方便桥墩台的养护还是其他目的?

传动轴设计指南

奇瑞汽车有限公司底盘部设计指南 编制: 校对: 审核: 批准: 汽车工程研究院

目录1简要说明 1.1万向节和传动轴综述 1.2万向的类型及适用范围 1.3结构图 1.4工作原理 2设计构想 2.1设计原则和开发流程 2.2基本的设计参数 2.2.1传动轴的布置要点 2.2.2关键性能尺寸的确定 2.2.3粗糙度和形位公差的确定 2.2.4零件号要求 2.2.5传动轴的主要结构参数与计算 2.3环境条件、材料、热处理及加工要求 3台架试验 3.1十字轴式万向节传动轴台架试验 3.2等速万向节传动轴台架实验 4图纸模式 4.1尺寸公差 4.2文字说明

1、简要说明 1.1万向节和传动轴综述 汽车上的万向节传动常由万向节和传动轴组成,主要用来在工作过程中相对位置不断改变的两根轴间传替动力。万向节传动应保证所连接两轴的相对位置在预计范围内变动,能可靠的传替动力;保证所连接两轴尽可能同步(等速)运转;允许相邻两轴存在一定角度;允许存在一定轴向移动。 1.2万向的类型及适用范围 万向节按其在扭转方向上是否由明显的弹性可分为刚性万向节和挠性万向节。刚性万向节又可分为不等速万向节(常用的十字轴式),准等速万向节(双联式、三销轴式等)和等速万向节(球叉式、球笼式等)。等速万向节,英文名称Constant Velocity Universal Joint,简称等速节(CVJ)。 CVJ的种类如下: 在发动机前置后轮驱动(或全轮驱动)的汽车上,由于工作时悬架变形,驱动桥主减速器输入轴与变速器(或分动器)输出轴间经常有相对运动,普遍采用万向节传动。在转向驱动桥中,由于驱动轮又是转向轮,左右半轴间的夹角随行驶需要而变,这时多采用球叉式和球笼式等速万向节传动。当后驱动桥为独立悬架结构时,也必须采用万向节传动。万向传动装置除用于汽车的传动系外,还可用于动力输出装置和转向操纵机构。 1.3结构图 1.3.1十字轴式刚性万向节,如图所示:

大门大桥抗风分析报告

大门大桥抗风分析报告

目录 概述 1.采用的规范及参考依据 2.设计基本风速、设计基准风速、主梁颤振检验风速的确定2.1 设计基本风速 2.2 主梁颤振检验风速 3.结构动力特性分析 3.1 计算图式 3.2 边界条件 3.3 动力特性分析 4.主梁抗风稳定性分析 4.1 桥梁颤振稳定性指数 4.2 主梁颤振临界风速的估算 4.3 结论

概述: 大门大桥推荐方案采用双塔双索面混凝土斜拉桥,跨度布置为135+316+ 135=586m,主跨主梁为 形断面,主塔为倒Y形索塔。在进行初步设计的过程中需要对主桥推荐方案的抗风、抗震性能进行分析。本报告对推荐方案的抗风稳定性进行分析。 分析的必要性 大桥在施工和运营期间,需满足12级以上台风、风速分别为33.3m/s和35.9m/s下的稳定性要求。由于缺乏桥区处风速观测资料,报告中设计风速采用的是《公路桥梁抗风设计规范》附表A中温州市的10m高设计基准风速。 由于桥址处无论是10m平均最大风速,还是瞬时最大风速均较大,而主桥推荐方案有“塔高、跨大”的特点,因此,主桥方案斜拉桥结构的抗风稳定性检算是必需的。 结论 利用ANSYS软件对推荐方案的相关环节进行相应分析,得出如下结论: 结构的抗风稳定性等级为Ⅰ级,成桥状态和施工状态的主梁的颤振临界风速大于主梁的颤振检验风速,满足抗风稳定性要求。 1.采用规范及参考依据 1.1 中华人民共和国交通部部标准《公路桥涵设计通用规范》(JTG D60-2004)1.2 中华人民共和国推荐性行业标准《公路桥梁抗风设计规范》(JTG/T D60-01-2004) 1.3 中华人民共和国交通部部标准《公路斜拉桥设计规范》(试行)(JTJ027-96)2.设计基本风速、设计基准风速和主梁颤振检验风速的确定根据《公路桥梁抗风设计规范》(JTG/T D60-01-2004),查得温州地区距地 =33.8m/s。据《温州市大门大桥面以上10米,频率为1/100平均最大风速V 10 工程可行性研究报告》中4.3.7条桥梁抗风、抗震规定标准,大桥在施工和运营期间,需满足12级以上台风、风速分别为33.3m/s和35.9m/s下的稳定性要求。本报告中场地平均最大风速按后者取值。

盘式制动器设计指南更新

3行车制动系统 3.1分系统—制动器总成 3.3.1制动器类型:盘 3.3.4制动钳的结构 制动钳的分类和结构可以参照其它资料,我公司的制动钳均属于浮动钳,目前前制动钳按照缸数分有单缸和双缸(例如P11、B13)两种,后制动钳皆为单缸,B11后制动钳为综合驻车式制动钳,除了可以实现行车制动外还能够实现驻车的功能。 浮动式制动钳的结构型式主要有:

滑轨式 导向销式:我公司目前采用的均为此种型式。有的导向销在钳体上(B14后钳),有的在支架上(B11前钳);有的没有制动钳支架而是固定在转向节或者制动底板(T11后钳)等其它零件上。

综合起来就是: 下面我们来看一下制动完以后的回位原理:

密封圈与钳体和活塞的细节关系如下: 未工作时 工作时

制动钳 支架和钳体一般为铸造件,材料大部分为球墨铸铁,现在有的制动钳开始使用新的材料,如B11后制动钳钳体采用铝合金材料。 在浮动式制动钳中,钳体只承受轴向力;主要是作用在制动钳钩爪上外制动块给卡钳的反作用力,还有作用在卡钳缸孔底部的液压力,如下图所示。 图所示。

这种变形所导致的后果是非常严重的,将产生制动块、制动盘径向偏磨,在制动过程中制动块与制动盘接触不均匀而导致局部过热,进而导致制动盘的磨损不均匀。 鉴于以上的问题,抵抗这种变形是设计卡钳时首先要考虑的,即卡钳必须具有一定的轴向刚度。在卡钳材料一定的情况下,在这里起关键作用的是卡钳的缸背的厚度,缸径51mm以上的卡钳该厚度一般控制在11mm-14mm之间,如下图所示 除此之外,钩爪内过度圆弧,以及观察孔的位置都对卡钳的刚度有影响。遵循的规则是:在允许的情况下尽量采用大的过渡圆角,并且将观察孔尽可能的缩小其轴向长度,但不允许越过制动盘为工作面。 在卡钳的设计阶段CAE分析必不可少,由于卡钳属对称件,为了方便划分网格并缩短计算时间,通常将卡钳从对称面分割开,如下图所示。

相关主题
文本预览
相关文档 最新文档