当前位置:文档之家› 动态疲劳试验台设计计算4

动态疲劳试验台设计计算4

动态疲劳试验台设计计算4
动态疲劳试验台设计计算4

动态疲劳试验台(主要零、部件)计算说明书

二○一二年

第1 页共9页

第 2 页 共 9页

1 试验台总体参数

——制动器最大制动力:6T ,(60KN)

——轨道轮:轮直径840mm

——制动器制动摩擦系数:0.25

——轨道轮质量: 52(kg )

——制动试验轮周功率:

9550

NT P η= 2 试验台运动系统模型建立

试验台运动系统原理图

1、安装支座

2、导轨

3、导轨油缸

4、车轮油缸

5、模拟车轮

6、制动器

7、顶升油缸

由上图可知试验台运动系统由模拟车轮的摆动,导轨的横向移动,顶升油缸的垂向运动三个运动单元组成

3 各运动机构受力分析计算

在实际模拟过程中三个运动单元是联合运动的,即当模拟车轮开始摆动后,制动器开始制动,制动开始后,导轨的横向移动和顶升油缸的垂向运动同时进行;制动器完成一个制动

第 3 页 共 9页

缓解工作,导轨的横向移动和顶升油缸的垂向运动也已完成一个来回,根据运动的合成与分解,以下将进行三个运动单元进行独立分析。

3.1 模拟车轮的摆动计算

我们选取模拟车轮为研究对象,并把制动器作为一个单元体,其它各部分为模拟车轮的一个单元体,它的受力如上图所示;其中有以下定义

Fa :制动器提供的制动力, G :模拟车轮的重力,

b :重心点到转动中心的距离 a :车轮油缸作用点到转动中心的距离

F :车轮油缸作用力 R :模拟车轮半径

根据《机械设计手册》(机械工业出版社)第一卷P4-250表4.12-7力平衡公式计算,有以下公式:

a F

b G R Fa ?=?+? (力矩平衡)

a

b G R Fa F ?+?=(KN ) 9550NT P η

= = 2.8KW (输出功率) 其中:η ——功率因数(根据《机械设计手册》(机械工业出版社)第一卷机构安全系数,此处为1.8)、

第 4 页 共 9页

N ——模拟车轮的转速(r/min )、

T ——作用在模拟车轮的最大转距(N/m 2)

3.2 导轨的横向移动计算

我们选取导轨为研究对象,并把导轨上部分作为一个单元体,导轨下部分为另一个单元

体,它的受力如上图所示;其中有以下定义

Fa :制动器提供的制动力, G :导轨上部分的重力,

F :导轨油缸作用力 Fb :导轨间摩擦力

根据《机械设计手册》(机械工业出版社)第一卷P4-250表4.12-7力平衡公式计算,有以下公式:

Fb F = (力平衡)

)(G Fa f Fb +=(KN )

f ;导轨摩擦系数

1000β

COS V F P ??=

其中:βCOS ——力与位移的夹角(此处为0)、 V ——顶升油缸上下运行速度(rad/s )

3.2 顶升油缸的垂向运动计算

第 5 页 共 9页

我们选取制动装置为研究对象,并把制动装置及安装座作为一个单元体,油缸及固定支座作为另一个单元体,它的受力如上图所示;其中有以下定义

Fa :制动器提供的制动力, G :制动装置及安装座的重力,

F 1,F2 :顶升油缸作用力

根据《机械设计手册》(机械工业出版社)第一卷P4-250表4.12-7力平衡公式计算,有以下公式:

Fa G F F +=+21 (力平衡)

1000

βCOS V F P ??=

(输出功率) =1.2KW 其中:βCOS ——力与位移的夹角(此处为0)、

V ——顶升油缸上下运行速度(rad/s )、

计算表明,Fa 与制动装置及安装座的重力G 的作用点必须在两油缸的作用力F1、F2中间,只有这样才能形成平衡。假如是一个顶升油缸,那么这个油缸无法找到两个力(Fa 与制动装置及安装座的重力G )的中心点,这是因为制动装置及安装座的重力在实际中会有所偏离。考虑的装置的对称性,油缸的布置应为对中,且需要采用四油缸布置方式。

通过上面计算,总系统的驱动力为:

第 6 页 共 9页

F 总=f ( F 车轮+ F 导轨+ F 顶升)

其中:f ——安全系数(根据《机械设计手册》(机械工业出版社)第一卷机构安全系数,此处为1.8)、

a

b G R Fa F ?+?=车轮= )(G Fa f F +=导轨=

2

F G F a +=η顶升= F 总=

4 固定支座受力分析计算

固定支座主要承担各运动机构的反作用力,在疲劳试验台是有一个次数试验,故需进行强度分析和寿命校核。

4.1 固定支座强度计算

整个固定支座需采用材质为Q235-A 的型材焊接而成,其型材为: 序号

名称 采用的标准 尺寸规格 1

冷弯方形空心型钢 (GB/T6728—1986) 100X6 2

冷弯等边角钢 (GB/T6723—1986) 100 3

热轧钢板 (GB/T709-1988) 10,15,20, 4 热轧普通槽钢 (GB/T707—1988) 10#

固定支座其所受的外力为制动器部分的自重,制动器制动反力,模拟车轮部分的重力,模拟车轮制动反力

根据能量相等的原则:

222

121mv J f =ω 其中:J ——飞轮等效转动惯量(kg.m 2)、 f ω ——飞轮角速度(rad/s )、

m ——模拟质量(kg )、v ——模拟速度(m/S )

2222222

r m i r m v m J f g f ===ωωω (1)

4.2 模拟车轮轴载荷分析及轴设计

由结构设计及受载工况知,模拟车轮轴受弯、扭组合载荷。中间轴处设有一平键联接,用于传递扭矩;当导轨作横向移动时此时力作用不在中心线上,模拟车轮轴受到弯矩的作用。故按组合载荷进行设计。以下分别对模拟车轮轴和轴承进行校核、计算。见下图(图中未表示转矩)。

第7 页共9页

第 8 页 共 9页

[]

35τT d ≥ 式中:T=m N .4818;取[]52=τ2/mm N (模拟车轮轴材料为45)。 []3

5τT d ≥4.7752

1000481853=??=)(m m 4.3 模拟车轮轴承计算

由最大制动力1.25吨知,轴承径向载荷7000≈Q N ;由结构设计知轴径mm d 200=,模拟运行转速范围为4~2=n min /r 。预定寿命10000小时(一般轴承的预定寿命为5000~20000小时,通常大部分轴承达到预定寿命后,仍未失效)。

4.3.1 寿命计算

轴承型号 单列圆锥滚子轴承 22310E (SKF 公司)

基本额定动负荷 220000=C N

基本额定静负荷 224000=O C N

疲劳负荷极限 24000

=u P N 额定转速(滑脂) 4800=脂n r/min

额定转速(机油) 6300=油n r/min

最大转速 n f n n ?=m a x (n f =2)

43.0=e

4.1=Y

当量动负荷 N X YF F P a r 1260070004.170004.04.0=?+=+=

由ISO 基本额定寿命公式,即

ε

??

? ??=P C L 10 610转 式中 ε---寿命指数,滚子轴承310=ε,则

第 9 页 共 9页 21.1745.11260022000031031010==??

? ??=L 610转 轴承寿命以小时表示,其式为 ε??

? ??=P C n L h 60106 h 式中 n ---轴承转速 r/min ,以4=n min /r 代入,则

1485625200220000460103106=??? ???=h L h

由以上计算结果知,所选轴承的寿命满足要求。

4.3.2 关于模拟车轮轴承的润滑

飞轮轴承采用脂润滑,滑脂牌号为合成锂基润滑脂ZL-1H ,或合成复合铝基润滑 ZFU-1H ,基础油粘度50~30=νs mm /2。

轴承腔内要填满滑脂;轴承盖和轴承座腔内的填脂量为腔体容积的30~50%。

正常运行状况,轴承添加滑脂的间隔时间为5天,加脂量约46克,并注意轴承盖和 轴承座腔内的滑脂不得超过腔体容积的30~50%。

换脂周期为100天,此时需将轴承内及轴承座腔内的残留的旧脂全部清除,经过清洗 全部更新换入原牌号的新润滑脂。

5 液压部件选择

反力架用于被试车辆(或转向架)的纵向定位,可提供540kN 的水平牵引反力。机架安装在轨道轮组中轴线两端地面T 型导轨上,反力架与车钩之间通过长度可调的拉杆连接。反力架拉杆轴线中心高在630~1130mm 之间可调,横向调节范围为350mm(即左右各175mm)。

焓差室原理方案设计

焓差室的系统原理和方案设计 2 焓差室的系统原理和方案设计 2.1焓差室概述 目前,国内测试单元式空气调节机的试验方法主要是按照GB/T 17758-1999《单元式空气调节机》中附录A中的试验方法,附录中规定有五种试验方法:1、室内侧空气焓差法;2、室外侧空气焓差法;3、压缩机标定法;4、制冷剂流量计法;5、室外水侧量热计法。测试房间空气调节器的试验方法主要是按照GB/T 7725-2004《房间空气调节器》中附录A中的试验方法,附录中提供了两种方法:1、房间型量热计法;2、空气焓值法。 在实际使用过程中,生产厂家为了兼顾测试空气调节机组的类型、出风型式、测试过程的要求等,通常选择空气焓差法系统作为试验方法。主要是空气焓差法具有下列优势:1、空气焓差法不仅能进行静态实验来测试空调制冷产品的制冷能力和制热能力;2、空气焓差法同时能进行非稳态(动态)性能的实验(包括风机性能测试),如:空调器季节节能能效比(S EER)的实验需要测定间歇启/停状态下空调器的制冷量和输入功率,空调器热泵制热的融霜过程中非稳态的制热量、输入功率等,这些非稳态的过程必须采用空气焓差法进行测试。 3、应用了空气焓差法试验装置后,可以对空气干、湿球温度风量以及房间空调器的输入功率等参数进行连续频繁的采样测量,因而可以确定空调器供冷量或供热量以及输入功率等随时间变化曲线,满足动态工况的测试要求 4、空气焓差法可以对换热器部件进行性能测试。5空气焓差法进行测试时只要工况稳定,试验风洞达到热平衡后,即可进行数据采集,相对与房间型量热计法需要整个试验室达到所需工况热平衡后才能进行数据测量,空气焓差法整个测试过程时间要短,因此空气焓差法测试效率高。6、焓差法装置价廉,投资小7、焓差法能满足多个空调机组的标准测试要求○3 综上所述,为了提高试验室的利用率和合理优化试验室资源,需要将一个试验室建成能够测试各种类型的产品,主要是约克现有产品系列(风冷冷风分体机组、风冷冷水(热泵)机组、水冷冷水机组、柜式空气处理机组)和以后可能在无锡开发的产品系列(屋顶一体机组)。所以在设计时需要考虑到上面系列机组测试的相关标准中的要求。同时考虑到在新产品研发阶段,需要对产品的动态噪声进行研究,因此将此焓差试验室设计成多功能消声试验室,可以检测上面系列各类空调机组、空调用风机极其零部件噪声,通过接风管到风洞也可以做管道机噪声的测试及有水系统可做水冷冷水机组噪声的测试等。 2.2 焓差室的检测原理和方法 依据国标GB/T 17758-1999《单元式空气调节机》,空气焓差法试验室通常需要两个相邻的房间,一个作为室内侧试验房间,一个作为室外侧试验房间,两个试验房间的空气状态在

高频疲劳试验机的主要作用概述

高频疲劳试验机作用 1疲劳试验的对安全的主要作用概述 疲劳强度不仅在航天、航空、车辆、造船和原子能等尖端工业部门有着十分重要的意义,也是影响一般机械产品使用可靠性和使用寿命的一个重要问题。 根据国外的统计,机械零件的破坏50%~90%为疲劳破坏。例如,轴、曲轴、连杆、齿轮、弹簧、螺栓、压力容器、海洋平台、汽轮机叶片和焊接结构等;很多机械零部件和结构件的主要破坏方式都是疲劳。过去的研究表明,军用飞机喷气发动机构件的主要失效原因是高周疲劳。疲劳失效占喷气式发动机全部构件损伤的49%,而高周疲劳又几乎占所有疲劳失效的一半。 疲劳定义:材料在循环应力或循环应变作用下,由于某点或某点逐渐产生了局部的永久结构变化,从而在一定的循环次数以后形成裂纹或发生断裂的过程。 近几十年来,随着机械向高温、高速和大型方向发展,机械的应力越来越高,使用条件越来越恶劣,疲劳破坏事故更是层出不穷。 我国虽然尚未对疲劳破坏问题做过全面检查,但同类产品的使用寿命往往比发达国家为低,问题更为严重。因此,开展疲劳强度研究工作对我国的机械工业也是刻不容缓的。

疲劳问题首先是19世纪初,由于蒸汽机车问题提出的,但在后来的其他领域,如航空航天、交通车辆、轮船、桥梁、建筑等,也都出现了众多的疲劳破坏。 第二次世界大战中,有若干战斗机是自己坠落而非被敌方击落的。当时约有20架“惠灵顿”号重型轰炸机发生疲劳破坏。 20世纪50年代以来,航空事业得到全面发展,但全球性的飞机事故接连不断,大部分是属于结构疲劳破坏造成的。1951年英国“鸽式”飞机因机翼的翼梁疲劳破坏而在澳大利亚失事;1952年美国F-89蝎式歼击机因机翼接头疲劳破坏而连续发生事故;1953年英国“维金”号又因主梁疲劳破坏而在非洲失事;1054年英国喷气式客机“彗星-I”号因铆钉边缘出现疲劳裂纹而连续两次在航线上坠毁。 20世纪80年代,某石油钻井平台沉船事件,从技术角度分析也是疲劳破坏导致的。由于在钻井平台的一个支撑立柱上,在接近海平面的位置开了一个作业用工业圆孔,导致海水腐蚀,从而强度减弱,经过若干次随机载荷作用后导致裂纹破坏,最终丧失抵抗力。 20世纪90年代初以来,日本、韩国不断发生桥梁、高架公路的支撑立柱出现裂纹、断裂、扭曲的事件,都是由于支撑立柱承受高周荷载的长期作用导致的疲劳破坏。 1998年6月德国一列高速列车在行驶中突然出轨,造成100多人遇难身亡。造成事故的原因是一节车厢的车轮内部疲劳断裂。

AT89C51单片机简易计算器的设计

AT89C51单片机简易计算器的设计 单片机的出现是计算机制造技术高速发展的产物,它是嵌入式控制系统的核心,如今,它已广泛的应用到我们生活的各个领域,电子、科技、通信、汽车、工业等。本设计是基于51系列单片机来进行的数字计算器系统设计,可以完成计算器的键盘输入,进行加、减、乘、除六位数范围内的基本四则运算,并在LCD上显示相应的结果。设计电路采用AT89C51单片机为主要控制电路,利用MM74C922作为计算器4*4键盘的扫描IC读取键盘上的输入。显示采用字符LCD静态显示。软件方面使用C语言编程,并用PROTUES仿真。 一、总体设计 根据功能和指标要求,本系统选用MCS-51系列单片机为主控机。通过扩展必要的外围接口电路,实现对计算器的设计。具体设计如下:(1)由于要设计的是简单的计算器,可以进行四则运算,为了得到较好的显示效果,采用LCD 显示数据和结果。 (2)另外键盘包括数字键(0~9)、符号键(+、-、×、÷)、清除键和等号键,故只需要16 个按键即可,设计中采用集成的计算键盘。 (3)执行过程:开机显示零,等待键入数值,当键入数字,通过LCD显示出来,当键入+、-、*、/运算符,计算器在内部执行数值转换和存储,并等待再次键入数值,当再键入数值后将显示键入的数

值,按等号就会在LCD上输出运算结果。 (4)错误提示:当计算器执行过程中有错误时,会在LCD上显示相应的提示,如:当输入的数值或计算得到的结果大于计算器的表示范围时,计算器会在LCD上提示溢出;当除数为0时,计算器会在LCD 上提示错误。 系统模块图: 二、硬件设计 (一)、总体硬件设计 本设计选用AT89C51单片机为主控单元。显示部分:采用LCD 静态显示。按键部分:采用4*4键盘;利用MM74C922为4*4的键盘扫描IC,读取输入的键值。 总体设计效果如下图:

疲劳万能材料试验机

一、疲劳试验机用途: FLPL疲劳万能材料试验机配置馥勒疲劳测试工装主要用于测试材料及其构件在正弦波、三角波、方波、斜波等动态载荷下的拉压交变疲劳特性。可以完成多种疲劳试验。微机控制系统FULETEST疲劳测试软件基于WINDOWS操作系统作为平台,强大的数据处理功能,试验条件和试验结果自动存盘,显示、打印符合相关国家标准的随机成组试验数据、试验曲线、试验报告。 二、疲劳试验标准参考: GB/T 3075 金属轴向疲劳试验方法; JJG 556-2011 轴向加力疲劳试验机; 三、试验机主机参数: 型号:FLPL104、FLPL204、FLPL304、FLPL504、FLPL105、FLPL305; 轴向试验力:10KN、20KN、25KN、50KN、100KN、250KN; 试验力级别:±0.5%/±1%; 试验力测量范围:1%--100%FS; 电液伺服作动器的最大位移:±50mm/75mm; 疲劳试验频率范围可选:0.1-100 Hz; 框架形式:双立柱;立柱距离:≥600mm;上下夹头间距:50~600 mm; 控制系统:德国多利DOLI控制系统/馥勒FL控制系统测控软件; 控制方式:力、位移两个闭环控制回路,可实现全数字PIDF控制,控制方式可平滑切换。全数字式DSP控制系统,闭环控制频率:1kHz; 全数字内部信号发生器:正弦波、三角波、方波、斜波、组合波等; FLTEST控制系统设计有一套完善的智能化安全管理系统,能实时对试验系统进行巡回自检,实时判断、报告系统的工作状态和工作进程,具有自动监测、自动报警和自动停机功能; 试验控制软件,在Windows多种环境下运行,界面友好,操作简单,能完成试验条件、试样参数等设置、试验数据处理,试验数据能以多种文件格式保存,试验结束后可再现试验历程、回放试验数据,馥勒试验机试验数据可导入在Word、Excel、Access、MATLABFL等多种软件下,进行统计、编辑、分类、拟合试验曲线等操作,试验完成后,可打印出试验报告; 可扩展配置FLWKGD高低温环境试验箱装置、FLWK1200度高温试验炉装置、FLWK1500度快速加热装置等; 四、疲劳万能材料试验机使用环境要求: 室温在10~35℃范围内,其温度波动应不大于2℃/h; 电源电压的变化应不超过额定电压的±10%。电源频率50Hz; 周围应留有不小于0.7m的空间,工作环境整洁、无灰尘; 在无明显电磁场干扰的环境中; 在无冲击、无震动的环境中; 使用环境相对湿度低于80%; 周围环境无腐蚀介质。

空气焓差法试验室

空气焓差法试验室简称“焓差室”,焓差室用于空调器的制冷能力、制热能力、功耗、EER、COP、循环风量、季节能效比等各种参数的测量,并可进行各种极端工况试验。可作为房间空调的检测装置和设计开发的重要试验设备。 焓差室符合标准:GB/T 7725、GB/T 17758、ISO 5151、ARI 210/240、 ANSI/ASHRAE 37、JIS B 8615、EN 14511。 焓差室满足GB/T7725-1996标准要求,采用空气焓差法测试空调器的制冷(热)量,可对各种单、三相窗式、分体式及单元式空调器性能进行试验。系统为半自动工况控制、自动判稳及记录。 一、焓差室测试项目 1.稳定状态额定制冷; 2.稳定状态额定热泵制热,低温热泵制热,超低温热泵制热; 3.电热额定制热; 4.并可为以下型式试验提供环境条件: 5.最大运行制冷,最小运行制冷; 6.热泵最大运行制热,最小运行制热; 7.凝露; 8.凝水; 9.冻结; 10. 除霜;

二、焓差室规格 1.制冷量测试范围:2500~13000W 2.制热量测试范围:2500~14000W 3.风量测试范围:250~2200m3/h 4. 工况控制精度:标准测试工况±0.2℃以内,其他试验工况±0.3℃以内,自动除霜时按国标。 5. 试验结果精度:与标准窗机(标准机本身优于±1.0%)相比,误差在±3%以内,一次装机连续三次测量复现精度为±2%。 三、焓差室控制参数 1.室内侧的干球温度控制 温度控制范围:10~40℃ 测量不确定度:±0.1℃ 控制精度:±0.2℃ 温度传感器:Pt100 A级 温度变送器:VJU7-016 0℃~50℃/1~5V 数据采集:HP34970A 调节器:数字式PID调节器,通过SCR调节电加热。

疲劳试验-大纲

金属疲劳试验 一、实验目的 1.了解疲劳试验的基本原理; 2.掌握疲劳极限、S-N曲线的测试方法; 3.观察疲劳失效现象和断口特征 二、实验原理 1.疲劳抗力指标的意义 目前评定金属材料疲劳性能的基本方法就是通过试验测定其S-N曲线(疲劳曲线),即建立最大应力σmax或应力振幅σa与相应的断裂循环周次N之间的曲线关系。不同金属材料的S-N曲线形状是不同的,大致可以分为两类,如图1所示。其中一类曲线从某应力水平以下开始出现明显的水平部分,如图1(a)所示。这表明当所加交变应力降低到这个水平数值时,试样可承受无限次应力循环而不断裂。因此将水平部分所对应的应力称之为金属的疲劳极限,用符号σR表示(R为最小应力与最大应力之比,称为应力比)。若试验在对称循环应力(即R=-1)下进行,则其疲劳极限以σ-1表示。中低强度结构钢、铸铁等材料的S-N曲线属于这一类。实验表明,黑色金属试样如经历107次循环仍未失效,则再增加循环次数一般也不会失效。故可把107次循环下仍未失效的最大应力作为持久极限。另一类疲劳曲线没有水平部分,其特点是随应力降低,循环周次N不断增大,但不存在无限寿命,如图1(b)所示。在这种情况下,常根据实际需要定出一定循环周次(108或5×107…)下所对应的应力作为金属材料的“条件疲劳极限”,用符号σR(N)表示。 (a)(b) 图1 金属的S-N曲线示意图 (a)有明显水平部分的S-N曲线(b)无明显水平部分的S-N曲线

2. S-N 曲线的测定 (1) 条件疲劳极限的测定 测试条件疲劳极限采用升降法,试件取13根以上。每级应力增量取预计疲劳极限的5%以内。第一根试件的试验应力水平略高于预计疲劳极限。根据上根试件的试验结果,是失效还是通过(即达到循环基数不破坏)来决定下根试件应力增量是减还是增,失效则减,通过则增。直到全部试件做完。第一次出现相反结果(失效和通过,或通过和失效)以前的试验数据,如在以后试验数据波动范围之外,则予以舍弃;否则,作为有效数据,连同其他数据加以利用,按以下公式计算疲劳极限: ∑==n i i i N R v m 1)(1σσ 式中m —有效试验总次数;n —应力水平级数;σi —第i 级应力水平;v i —第i 级应力水平下的试验次数。 例如某实验过程如图2所示,共14根试件。预计疲劳极限为390MPa ,取其2.5%约10 MPa 为应力增量,第一根试件的应力水平402 MPa ,全部试验数据波动如图2,可见,第四根试件为第一次出现的相反结果,在其之前,只有第一根在以后试验波动范围之外,为无效,则按上式求得条件疲劳极限如下: σR(N)=13 1(3×392+5×382+4×372+1×362)=380MPa 图2 增减法测定疲劳极限试验过程 (2) S-N 曲线的测定 测定S-N 曲线(即应力水平-循环次数N 曲线)采用成组法。至少取五级应力水平,各级取一组试件,其数量分配,因随应力水平降低而数据离散增大,故要随应力水平降低而增多,通常每组5根。升降法求得的,作为S-N 曲线最低应力水平点。然后以其为纵坐标,以循环数N 或N 的对数为横坐标,用最佳拟合法绘制成S-N 曲线,如图3所示。

高频疲劳试验机的工作原理

高频疲劳试验机的工作原理 一、高频疲劳试验机的风冷装置 本实用新型涉及一种风冷装置,具体来说是一种用于高频疲劳试验机的风冷装置,为现有的高频疲劳试验机提供一种非常实用的附加功能。工程结构失效约80%以上是由疲劳引起的。为使设计出来的工程结构及其零部件满足现场对疲劳强度和寿命的要求,必须首先通过开展疲劳试验,掌握相关材料的抗疲劳性能,如疲劳S-N曲线、疲劳极限等。高频疲劳试验机便是这样一种用来进行材料抗疲劳性能测试的机器。相对于电液伺服疲劳试验机,它具有加载频率高、试验周期短的特点,广泛应用于我国冶金、航天、交通等研究领域。然而,如果受测材料具有较高的阻尼,或者试验载荷接近材料的屈服强度,则会因试验中较高的加载频率,导致试验件局部(通常是最小截面处)过热,甚至发生蠕变,迫使试验无法在预期载荷下进行,获得的试验数据也就不能反映材料真实抗疲劳性能。通过在高频疲劳试验机上附加风冷装置,可以有效地解决这个问题;利用夹持单元,可以将该装置方便地附加于现有试验机上,并实现任意受风部位的定位;利用气流控制单元,可根据试验件发热情况,和试验对试验件单侧受风冷却或整体受风冷却的需求,改变试验件受风部位气流分布模式。该装置成本低廉,只增加很少的附加费用就可获得这一非常实用的功能。另外,可在风管入口处配一流量调节阀,用来调节送风量大小。 二、产品特征: 1、本实用新型的目的在于在此提供一种用于高频疲劳试验机的风冷装置,为现有的高频疲劳试验机提供一种非常实用的附加功能。频疲劳试验过程中对试验件的冷却,为现有的高频疲劳试验机提供了一种非常简便实用的功能。通过夹持单元将装置安装在疲劳试验机主立柱上,利用立柱升降及单元部件自身的移动与旋转,便可实现对试验件任意受风部位的定位;通过在气流控制单元中的出风罩,便可根据试验件实际发热情况,和试验对试验件单侧受风冷却或整体受风冷却的需求,调整出风气流分布状态。利用这种风冷装置,无须对高频疲劳试验机进行任何改动,安装使用方便,且装置所需原材料价格低廉,加工制造简单,维护部件少,可靠性高。 2、本实用新型的优点在于:用本实用新型提供的风冷装置,能够实现高频疲劳试验过程中需进行冷却试验件的风冷处理,这对高频疲劳试验而言是一个非常实用的功能;该装置能够很便捷地安装到现有的高频疲劳试验机上,并且具有加工简单、成本低廉等突出优点。 三、操作方法: 下面结合附图对本实用新型做出详细说明: 1、如图l所示;本实用新型提供一种用于高频疲劳试验机的风冷装置,本装置设有夹持单元101和气流控制单元102,利用夹持单元101将风冷装置固定在试验机主立柱104上;利用气流控制单元102调节风冷气流分布状态。 2、图2是本实用新型所述夹持单元示意图,所述夹持单元101由立柱夹持环lOla 和连接臂lOlb组成。所述立柱夹持环lOla通过螺栓紧固的方式将装置固定于高频疲劳试验机的主立柱104上,利用主立柱104升降或夹持环lOla固定位置的调整,能够实现装置在z轴方向移动;通过转动立柱夹持环lOla,能够实现装置绕

疲劳试验简介

疲劳试验(fatigue test)利用金属试样或模拟机件在各种环境下,经受交变载荷循环作用而测定其疲劳性能判据,并研究其断裂过程的试验,即为金属疲劳试验。 1829年德国人阿尔贝特(J.Albert)为解决矿山卷扬机服役过程中钢索经常发生突然断裂,首先以10次/分的频率进行疲劳试验。1852~1869年德国人沃勒(A.W hler)为研究机车车辆,开始以15次/分的频率对车辆部件进行拉伸疲劳试验,以后又用试样以72次/分的频率在旋转弯曲疲劳试验机进行旋转弯曲疲劳试验,他的功绩是指出一些金属存在疲劳极限,并将疲劳试验结果绘成应力与循环周次关系的S-N曲线(图1),又称为W hler曲线。1849年英国人古德曼(J.Goodman)首先考虑了平均应力不为零时非对称载荷下的疲劳问题,并提出耐久图,为金属制件的寿命估算和安全可靠服役奠定理论基础。1946年德国人魏布尔(W.Weibull)对大量疲劳试验数据进行统计分析研究,提出对数疲劳寿命一般符合正态分布(高斯分布),阐明疲劳测试技术中应采用数理统计。 60年代初,从断裂力学观点分析金属疲劳问题,进一步扩大了疲劳研究内容。近年来,由于电液伺服闭环控制疲劳试验机的出现以及近代无损检验技术、现代化仪器仪表等新技术的采用,促进了金属疲劳测试技术的发展。今后应着重各种不同条件(特别是接近服役条件)下金属及其制件的疲劳测试技术的研究。 试验种类和判据 金属疲劳试验种类很多,通常可分为高周疲劳、低周疲劳、热疲劳、冲击疲劳、腐蚀疲劳、接触疲劳、声致疲劳、真空疲劳、高温疲劳、常温疲劳、低温疲劳、旋转弯曲疲劳、平面弯曲疲劳、轴向加载疲劳、扭转疲劳、复合应力疲劳等。应根据金属制件的服役(工作)条件来选择适宜的疲劳试验方法,测试条件要尽量接近服役条件。进行金属疲劳试验的目的在于测定金属的疲劳强度(抗力),由于试验条件不同,表征金属疲劳强度的判据(指标)也不一样。 高周疲劳:高周疲劳时,金属疲劳强度判据是疲劳极限(或条件疲劳极限)即金属经受“无限”多次(或规定周次)应力循环而不断裂的最大应力,以σr表示,其中γ为应力比,即循环中

疲劳试验机的基本参数.doc

1 PWS-E1000电液伺服动静万能试验机 PWS-E1000 电液伺服动静万能试验机 技 术 方 案 书 济南鸿君试验机制造有限公司 2012 年 12 月 技术支持 : 济南鸿君试验机制造有限公司动态专机开发部 1

2 PWS-E1000电液伺服动静万能试验机 PWS-E1000 电液伺服动静万能试验机 技术方案 1、简介:1000kN 电液伺服动静万能试验机是济南试金开发的PWS系列试验机之一,该试验机采用试金成熟的动静态电液伺服试验技术,利用单元化、标准化、模块化 设计手段设计制造,从而大大提高了系统的稳定性和可靠性,系统的关键单元和元 件均采用当今国际先进技术制造,整个试验系统的整体性能与国际著名动态试验机 公司相当。 1000kN 电液伺服疲劳试验机主要用于金属材料及结构件的动态疲劳试 验,和静态拉、压、弯、剪力学性能试验。是高校、科研院所、企业等进行材料试 验的理想设备。 2方案描述:该方案描述的试验机主要进行各种零部件的静态力学试验和动态疲劳 试验。该试验机主要由主机(上置试金伺服直线作动器NCA1000)、德国DOLI 公司全数字伺服控制器EDC580及相关软件、以及其他必要的附件等组成。系统进行工作的基本原理如下图。 信号发生器伺服控制器伺服驱动伺服阀恒压伺服泵站 测量放大器伺服直线作动器 传感器被试件试验用夹具 2.1 主机:主机为四立柱框架式结构,伺服直线作动器上置。 2.1.1横梁采用液压升降、液压夹紧、弹性松开式结构,保证横梁升降方便,夹持 稳固可靠。 2.1.2 横梁升降油缸外形美观质量可靠,可无级调整试验空间。 2.1.3 横梁夹紧、运动液压模块采用进口液压元件制造,其中换向阀采用手动方式,保证高频试验时具有较高的可靠性。 2.1.4 进回油路配置由精度不大于3u 国产温州黎明(引进德国贺德克技术)精 密滤油器以及具有消脉、蓄能功能的进回油路蓄能器(中英合资奉化奥莱尔)组成 的液压滤油蓄能稳压模块。 2.1.5 伺服直线作动器上置,下联负荷传感器。 技术支持 : 济南鸿君试验机制造有限公司动态专机开发部 2

电子计算器的设计

目录 第1章电子计算器控制工艺分析 (1) 1.1PLC简介 (1) 1.2PLC电子计算器特点 (1) 1.3电子计算器控制要求 (2) 1.4电子计算器设计要求 (2) 第2章电子计算器PLC控制系统设计 (3) 2.1系统选型 (3) 2.2系统硬件连接图 (3) 2.3输出I/O点数 (3) 2.4梯形图 (4) 2.5程序运行 (6) 第3章电子计算器PLC监控系统设计 (7) 结论与体会 (8) 参考文献 (9) 附录 (10)

第1章电子计算器控制工艺分析 1.1 PLC简介 PLC英文全称为Programmable Logical Controller即:可编程逻辑控控制器,顾名思义;它本来的含义是具有柔性的(可编程)主要来完成逻辑控制(针对数字量)工业控制器,它代替了传统的靠硬触点来做的控制系统就象当初的计算机已经演变为电脑一样,现在的PLC也由早期单纯地实现逻辑控制演变为一个可进行数模、模数转换,可进行定位控制,等一个功能强大的工业控制器,可以说它在现代社会各种需要自动控制的场合发挥了巨大的作用。 可编程序控制器是一种数字运算操作的电子系统,专为工业环境下应用而设计。它采用可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字式、模拟式的输入和输出,控制各种机械或生产过程。 高可靠性是电气控制设备的关键性能。PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。例如三菱公司生产的F系列PLC平均无故障时间高达30 万小时。一些使用冗余CPU的PLC的平均无故障工作时间则更长。从PLC 的机外电路来说,使用PLC构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。这样,整个系统具有极高的可靠性也就不奇怪了。 1.2 PLC电子计算器特点 从某种角度而言,广义的“计算机”概念是包括“电子计算器”的。电子计算器中也有集成电路,但计算器的功能简便,价格更加便宜,利于携带与稳定性好。与电子计算机的最大区别在于:计算器只是简单的计算工具,有些机型具备函数计算功能,有些机型具备一定的贮存功能,但一般只能存储几组数据。计算机则具备复杂存贮功能、控制功能,更加强大,在中国俗称“电脑”者也。计算器和计算机一样都能够实现数据的录入、处理、存储和输出,但它所以区别于计算机的就是,它不能自动地实现这些操作过程,必须由人来操作完成。而计算机通过编制程序能够自动进行处理。所以以自动化程度来区别二者,就在于是否需要人工干预其运行。

电液伺服疲劳试验机技术参数

电液伺服疲劳试验机技术参数 一、招标设备 20KN电液伺服疲劳试验机1台。 ★该产品须为国内知名品牌厂家生产的市场成熟稳定产品。设备生产厂家必须具有该设备的制造计量器具许可证资质及通过相应质量体系认证;必须具有同型号设备在近3年内案例至少五家以上(提供合同复印件。 二、产品适用标准 JJG 556-2011《轴向加荷疲劳试验机》、GB/T3075、HB5287、ASTM E647、ASTM E399、GB/T4161、GJB715、NASM1312标准等。 三、应用范围 该设备主要用于对各种金属或非金属材料及零部件进行疲劳试验、断裂力学性能试验、拉压弯剪等静态性能试验等。可配备高温炉、高低温环境箱等还可进行多种环境条件下的动静态力学性能试验。 四、主要技术指标 1)最大试验力:±20kN。 2)最大动态幅值:20kN。 3)有效测量范围:2%~100%F.S。 4)静态试验力示值相对误差:≤±0.5%;动态试验力示值相对误差:≤±1%。 5)作动器行程(位移):±50mm。 6)位移测量精度:≤±0.3% F.S;位移分辨率:≤0.001mm。 7)变形测量精度:≤示值的±0.5%,有效范围为满量程的2%~100%F.S。 8)试验波形:正弦波、三角波、方波、斜波、梯形波、锯齿波、半正弦波、脉动三角波、脉动锯齿波、脉冲波、自定义波、组合波等;频率范围为0.001Hz ~ 50Hz;分辨率≤0.001Hz。 ★9)最大载荷20kN,振幅±2mm时,可达到的最大频率不小于4Hz。

10)最大记数范围:109-1;计数误差:≤±1次。 11)控制模式:具有位移、负荷、变形三种控制模式,且模式可平滑转换。 ★12)受力同轴度:≤6%。 ★13)夹具形式:采用液压夹具,配置棒材及板材夹块各1套,三点弯家具1套。 ★14)夹头间距:700mm。并带T型槽工作台(有效工作长度≥800mm、宽度≥600mm)。 ★15)液压泵站:应采用进口液压泵组,额定流量不低于20L/min、额定压力不低于20MPa。 五、性能要求 1)具有完备的保护功能:油源过压保护,油温互锁保护,滤芯堵塞保护,位移、负荷、变形上下限设定超限保护,伺服阀失控保护,电机过流保护等,试验过程中可做到无人值守。 2)计算机系统应操作直观便捷,能轻松完成试验参数设置、试验控制、数据分析与处理;负荷、变形、位移具有多种显示模态,如瞬时值、峰谷值、平均值和幅值、循环次数等;统计、打印试验结果及试验曲线等;可用常规数据处理软件对存储记录的数据进行二次处理等。 六、主要配置及要求

金属疲劳试验

金属疲劳试验主讲教师:

一、实验目的 1. 了解疲劳试验的基本原理。 2. 掌握疲劳极限、S-N曲线的测试方 法。

二、实验原理 1.疲劳抗力指标的意义 目前评定金属材料疲劳性能的基本方法就是通过试验测定其S-N曲线(疲劳曲线),即建立 最大应力σ max 或应力振幅σ α 与其相应的断裂 循环周次N之间的关系曲线。不同金属材料的S-N曲线形状是不同的,大致可以分为两类,如图1所示。其中一类曲线从某应力水平以下开始出现明显的水平部分,如图1(a)所示。这表明当所加交变应力降低到这个水平数值时,试样可承受无限次应力循环而不断裂。

这表明当所加交变应力降低到这个水平数值时,试样可承受无限次应力循环而不断裂。因此将水平部分所对应的应力称之为金属的疲劳极限,用符号σ R 表示(R为最小应力与最大应力之比,称为应力比)。若试验在对称循环应力(即R=-1)下进行,则其疲劳 极限以σ -1表示。中低强度结构钢、铸铁等材料的S- N曲线属于这一类。对这一类材料在测试其疲劳极限时,不可能做到无限次应力循环,而试验表明,这类材料在交变应力作用下,如果应力循环达到107周次不断裂,则表明它可承受无限次应力循环也不会断裂,所以对这类材料常用107周次作为测定疲劳极限的基数。另一类疲劳曲线没有水平部分,其特点是随应力降低,循环周次N不断增大,但不存在无限寿命。如图1(b)所示。在这种情况下,常根据实际需要定出一定循环周次(108或5×107…)下所对应的应力作为金属材料的“条件疲劳极限”,用符号σ R(N) 表示。

2.S-N 曲线的测定 (1) 条件疲劳极限的测定 测试条件疲劳极限采用升降法,试件取13根以上。每级应力增量取预计疲劳极限的5%以内。第一根试件的试验应力水平略高于预计疲劳极限。根据上根试件的试验结果,是失效还是通过(即达到循环基数不破坏)来决定下根试件应力增量是减还是增,失效则减,通过则增。直到全部试件做完。第一次出现相反结果(失效和通过,或通过和失效)以前的试验数据,如在以后试验数据波动范围之外,则予以舍弃;否则,作为有效数据,连同其他数据加以利用,按下列公式计算疲劳极限: ()11n R N i i i v m σσ==∑ 1

3HP焓差实验室技术方案 (单套 )1012

建设方案及技术协议

家用3HP焓差实验室(防爆) 技术方案

一、设备构成 1.3HP 空调焓差实验室: 1) 试验室房间 室内侧室 1个 室外侧室 1个 2) 焓差测试装置 1套 3) 空气处理设备 室内侧 1套 室外侧 1套 4)、电控与测试软件 1套 5)、防爆系统 1套 2. 实验室整体优势概述: 1)、精度高: 本套试验室是3HP焓差室,可以满足不大于3HP家用一拖一空调机的测试,工况控制精度±0.1℃,与标准窗机测试偏差≤±1.5%; 2)、自动化程度高: 设备的运转采用可编程序控制器+人机界面控制,软件可根据设定工况自动开启设备,无需人工干预,实现全自动测试;其测量参数由计算机进行数据采集处理并存档,自动打印试验报告,并可查询、分析试验结果和测试数据。 3)、数据分析功能强大: 室内外侧安装有工况测试装置,可测控实验室工况环境温湿度,针对【家用空调机组挂壁机、柜机、窗机】制冷量、制热量测试及各类工况测试,系统压力、各部件工作温度布点、电气性能及电参数据采样分析。 4)、漏风量检测: 室内侧设计一套200-1200 m3/h风量装置,该装置带漏风量检测功能,能测试漏风量,确保实验数据的准确; 5)、防爆功能: 本套实验室带R32检测防爆功能,能检测R32的泄漏量,并且自动启动换风装置,确保安全;

6)、节能: 室内外压缩机采用变频压缩机,能根据房间内负荷自动调节压缩机频率,减少电加热与电加湿的输出; 二、测试条件 1. 测试标准 1、GB/T 7725 《房间空气调节器》 2、GB/T 17758 《单元式空气调节机》 3、GB/T 4706.32 《家用和类似用途电器的安全热泵、空调器和除湿机的特 殊要求》 4、GB/T 12021.3 《房间空气调节器能效限定值及能源效率等级》 5、GB/T 21455 《转速可控型房间空气调节器能效限定值及能效等级》 6、GB/T 18836 《风管送风式空调(热泵)机组》 7、ARI210/240,ASHRAE 33-78 8、EN 14825 以上标准均为最新版本 2.施工标准 ●GB 50274-1998 制冷设备、空气分离设备安装工程施工及验收规范; ●GB 50236-1998 现场设备、工业管道焊接工程施工及验收规范; ●GB 50231-1998 机械设备安装工程施工及验收规范; ●GB 50243-2002 通风与空调工程施工及验收规范; ●GB 50303-2002 建筑电气工程施工及验收规范; ●GB 50194-1993 建设工程施工现场供用电安全规范; ●GB/T 50114-2001 暖通空调工程制图标准; ●GB 9237-2001 制冷与供热用机械制冷系统安全要求; 3. 被测空调器类型 室内机类型:分体壁挂式、立柜式、窗机、风管机、移动空调 室外机类型:水平出风 4. 焓差测试范围

PLG_C型微机控制高频拉压疲劳试验机说明书

PLG-100C 微机控制高频拉压疲劳试验机使用说明书 长春试验机研究所 2 0 0 5年

目录 一.用途 (3) 二.性能及规格指标 (4) 三.试验机的结构及工作原理 (5) 3.1 主机系统工作原理简介 (5) 3.2 微机系统工作原理简介 (5) 3.3模拟控制系统原理简介 (5) 四.试验机的安装、调整与检查 (6) 4.1 主机的安装 (6) 4.2 主机的调整与检查 (7) 4.3 电控系统的调整与检查 (7) 五.试验机的使用 (7) 5.1 试样的装夹 (8) 5.2 电控系统的操作与使用 (8) 5.2.1 几个注意事项的说明 (8) 5.2.2 电控系统面板操作 (8) 5.2.3 磁铁电感量的选择 (9) 六.计算机软件的操作说明 (10) 6.1软件的安装 (10) 6.2 软件的操作 (10) 6.2.1 控件及其使用方法 (11) 6.2.2 软件的起动过程 (12) 6.2.3 功能按钮的使用 (12)

6.2.4 各种参数的给定操作 (18) 6.2.5 菜单项的使用 (19) 6.3 测量放大器的档位设置 (24) 6.4 电控箱的操作 (24) 七.维修保养 (25) 7.1 定期校准负荷力及标定 (25) 7.2 计算机的检查 (25) 7.3 功放单元的检查 (25) 7.4 速度控制单元 (25) 八.几个问题的说明 (25) 8.1交流稳压电源的使用 (25) 8.2 试样破断时频率降的设定 (26) 8.3 使用环境 (26) 九.日常使用操作规程 (27) 十.维护及使用注意事项 (28) 附表一:电气系统连接电缆表 (30) 附图一:电气原理图 (31) 附图二:强电接线原理图 (33) 附图三:主机结构示意图 (34) 附图四:试样装夹示意图 (35) 附图五:主机吊运示意图 (36) 附图六:主机安装示意图 (37) 附图七:夹具安装示意图 (38)

计算器设计

昆明理工大学理学院 信技专业 课程设计报告 基于c++builder的表达式计算器及播放器 软件设计 课程:程序设计 班级:信技151 学号:201511101105 、201511101127 姓名:郭峰、魏兴宇 指导教师:张志坚 2016年9 月6日

目录 1引言------------------------------------------------------------------------------- 1 1.1课题背景-----------------------------------------------------------------2 1.2课程设计目的-----------------------------------------------------------3 2需求分析-------------------------------------------------------------------------5 2.2系统功能模块-----------------------------------------------------------5 2.3设计要求-----------------------------------------------------------------6 3系统实现------------------------------------------------------------------------8 3.1 对话框界面设计-------------------------------------------------------8 3.2 数值计算功能的实现-----------------------------------------------10 4程序关键代码及运行结果-------------------------------------------------12 5总结与体会------------------------------------------------------------------15

空调器焓差法试验室

空调器焓差法测试 空调器焓差法试验室 使 用 说 明 书 机电工程系制冷专业

目录 一、设备概要 (1) 二、软件简介 (2) 三、软件触摸屏介绍 (3) 四、能力计算公式 (4) 五、工作原理 (6) 六、操作步骤 (6) 七、电脑程序的运行 (9) 八、关闭测试台 (13) 九、运行故障及处理 (13) 十、注意事项 (14) 十一、仪器、电器基本配置 (15)

一、设备概要 本测试台是根据国家空调器检测标准(GB/T 7725-1996)中的相关要求和规定而设计制造。不仅可用于测量国标规定的各类模拟工况条件下空调器的制冷量、制热量、风量、电量等参数,而且可根据用户之需设定不同类型的工况条件进行测试,并依据测量之数值判别被测空调器合格与否。本测试台由电脑软件程序自动控制,控制及测量精度均很高。不仅适合产品开发中的匹配试验,而且可用于批量生产的抽检。 1.适用范围 a.测试标准:国家标准GB/T 7725-1996、GB/T4706.32-32-1996 b.空调类型:窗式、分体式、柜式空调器 c.允许负荷:1~5匹空冷型房间空调器 风量:200~2500 m3/min 制冷量:1400~15000W 制热量:1800~18000 W d.供电电源:3φ45 KV A变频电源 e.测试精度:与样机比对≤2.0%(目标值1%),重复性≤1.5% f.过渡时间:从室温到常规测试工况稳定过渡时间<1.5小时 2.设备构成 a.恒温室房间 室内侧试验室1个约6500×5000×4000 mm (长×宽×高) 室外侧试验室1个约5000×5000×4000 mm (长×宽×高) b.风量测试装置 空调器5匹室内机用1套 c.空气处理设备 室内侧1套配置BIZER制冷机3台 室外侧1套配置BIZER制冷机3台 3.设备使用条件 a.操作室温度15~30℃湿度≤85% 不结露 b.电器室及机房温度5~25℃湿度≤85% 不结露 用户应根据设备现场安装环境,在相应房间安装空气调节器。 ........................... 4.工况控制方法

瑞玛高频疲劳试验机产品详情介绍

瑞玛高频疲劳试验机产品详情介绍 公司 - 简介 RUMUL 公司是材料共振测试系统和动态疲劳试验机的开发设计和领导者。 我们公司15名员工,每个人都是认真负责地工作,确保有序高效率的工作步骤,从开始收到的订单到机器安装后所有必要服务。在产品生产过程,疲劳测试软件,电子数控产品的研发,有限元(FEM)计算机处理的需求上,委外合作伙伴也给与我们很大的支持。 今天的材料测试市场表明有着对高品质和快速的测试结果需求趋势。 RUMUL 的共振测试技术涵盖以上需要,并且是在低能耗方面非常有效。 RUMUL 公司的产品,有40多年实践经验的积累和沉淀, 从我们数以百计的客户和满足他们不同的测试需求和结果中。 共振试验机的工作原理 电磁协振试验机通过动态载荷叠加在静态载荷上, 给试样或零配件施加应力。该机配备的数字控制器适用于各种测试载荷传感器。 动态载荷是由励磁系统(谐振器)运行产生的,依照试样的固有频率。励磁系统是由砝码和弹簧组成,另外试样也是其中很重要的部分。可以通过改变砝码来逐步改变运行频率。 静态载荷是由机器的主丝杆驱动, 通过弹簧连接在系统上。 这里讨论的机器运行在完全共振环境下,即工作点是在共振曲线的峰值。该谐振器是被磁铁激发提供的能量,以便能维持测试所必须的载荷振幅。 由于共振效应使得能耗很低(一般20到1000瓦),即相当于电液伺服试验机3%至10%。标准试验机的工作频率范围为40到300Hz 。 RUMUL 荣誉产品-家族企业 VIBRO-FORTE 大型共振疲劳试验机,最大到700KN TESTRONIC 中型共振疲劳试验机,最大到250KN

简易计算器设计

自动化控制系统及装置综合实习 控制系统及装置综合实习 实 习 报 告 学院: XX学院 专业: XXX 姓名: XX 学号: XXXXXXX 指导教师: XXX 二〇一一年九月十六日

目录 1.实习课题任务 (3) 1.1课题:简易计算器的设计 (3) 1.2设计、实习要求 (3) 2.课题任务方案 (3) 3.硬件部分: (4) 3.1电路的整体设计 (4) 3.2单元电路设计 (5) 3.2.1 单片机部分 (5) 3.2.2输入单元 (8) 3.2.3显示单元 (9) 4.软件部分 (9) 4.1LED显示程序 (9) 4.2读键输入程序 (10) 4.3运算主程序的设计 (12) 5.实习中出现的问题 (13) 6.实习感想 (13)

1. 实习课题任务 1.1 课题:简易计算器的设计 1.2 设计要求: 根据功能和指标要求,本系统选用80C51单片机为主控机实现对计算器 的设计。可以进行两位数的加、减、乘、除,可连续运算。当键入值大于99时,将自动清零,可以重新输入。按“+”、“-”、“×”号可以进行操作数的相应运算,减法中运算结果为“-”时,“-”号要跟着结果。 2. 课题任务方案 本次设计使用单片机来完成两位数以内简易计算器。本设计以AT80C51为单片机,P2口作为输入端外接4*4键盘,通过键盘扫描确定输入数字。在P0口、P1口接驱动电路,用以保证LED 数码管工作正常。计算器将完成的功能有两位数以内加、减、乘、除功能。整体框图如下: 在设计过程中,先着手编写主程序,再根据需要设计从属程序和子程序,逐层细化最终完成一个复杂程序的设计。程序流图如下所示: 单 片 机 输入单元 运算单元 显 示 单 元

50HP高落差焓差实验室技术方案

建设方案及技术协议 制作方: 2019年

50HP高落差测试实验室 技术方案 投标人名称: 日期:

一、设备构成 1. 20HP 空调焓差实验室(防爆): 1) 试验室房间 室内侧室 1个室外侧室 1个 2) 焓差测试装置 1套 3) 空气处理设备 室内侧 1套室外侧 1套2. 30HP 空调焓差实验室(防爆): 1) 试验室房间 室内侧室 1个室外侧室 1个 2) 焓差测试装置 1套 3) 空气处理设备 室内侧 1套室外侧 1套3. 50HP 空调焓差实验室(防爆): 1) 试验室房间 室外侧室 1个2) 空气处理设备 室外侧 1套 3. 防爆系统 5套 4、电控与测试软件 1套

5. 实验室整体概述: 1)、50HP高落差试验室由一楼20HP焓差室一套(内室+外室)、30HP焓差实验室一套(内室+外室),10楼50HP焓差一套(外室)组成,1楼20HP+30HP可以组合成一套50HP室外侧实验室,1楼任意一套实验室可以与10楼50HP室外侧组成一套高落差试验室,进行样机高落差运行。 2)、可以满足不大于50HP一拖多多联机测试,同时20HP室外侧、30HP室外侧配置水系统,进行风冷冷热水机组的测试。最大测试能力为50HP 3)、设备的运转采用可编程序控制器+人机界面控制,其测量参数由计算机进行数据采集处理并存档,自动打印试验报告,并可查询、分析试验结果和测试数据。 4)、上下两层试验室通过的管道井放置不同规格的的连接管和通讯线将两套试验室室联接起来测试,而实现高落差的测试需求。 5)、两套试验室可实互联互通,可以在任一室监控其他两室的设备运行情况和测量数据。 6)、两套同时可实行集中控制和数据读取,需留有远程控制端口。 7)、20HP室内侧、30HP室内侧安装有工况测试装置,20HP室外侧、30HP室外侧配备水系统;可测控实验室工况环境温湿度,进出水温与水流量,针对【多联式空调(热泵)机组、风冷冷水(热泵)机组、风管送风式空调(热泵)机组、单元式空气调节器(挂壁式、柜式空调器)】制冷量、制热量测试及各类工况测试,系统压力、各部件工作温度布点、电气性能及电参数据采样分析。 8)、配备R32(可燃冷媒)测试功能,采用防爆电器和布线, R32泄漏自动报警、自动强制排风功能。 9)、20HP内侧设计一套1800-12000 m3/h风量装置,30HP内侧设计一套4000-30000 m3/h风量装置;根据现场情况布局在设备间,采用50MM聚氨酯做进回风风道,出风口增加不锈钢混合器保证出风均匀再送入空气处理柜。 10)、20HP室外侧配置水系统测试回路一套,测量范围:2-12m3/h;30HP室外侧配置水系统测试回路二套,分为大小测试回路,测量范围分别为:4-12m3/h、7-30m3/h; 二、测试条件 1. 测试标准 1、GB/T 7725 《房间空气调节器》 2、GB/T 17758 《单元式空气调节机》 3、GB 4706.32 《家用和类似用途电器的安全热泵、空调器和除湿机的特殊要求》

相关主题
文本预览
相关文档 最新文档