当前位置:文档之家› 高中物理弹簧问题分类全解析

高中物理弹簧问题分类全解析

高中物理弹簧问题分类全解析

一、有关弹簧题目类型 1、平衡类问题 2、突变类问题

3、简谐运动型弹簧问题

4、功能关系型弹簧问题

5、碰撞型弹簧问题

6、综合类弹簧问题 二、分类解析 1、平衡类问题

例1.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )

A.m1g/k 1

B.m2g/k 2

C.m1g/k 2

D.m2g/k 2

解析:我们把看成一个系统,当整个系统处于平衡状态时,整个系统受重力

和弹力,即

当上面木块离开弹簧时,受重力和弹力,则

【例2】、14、如图所示,与水平面夹角为30°的固定斜面上有一质量m=1.0kg 的物体。细绳的一端摩擦不计的定滑轮与固定的弹簧秤相连。物体静止在斜面上,弹簧秤的示数为4.9N 。关于物体受力的判断(取g=9.8m/s2),下列说法正确的是C A.斜面对物体的摩擦力大小为零

B. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向上

C. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向下

D. 斜面对物体的摩擦力大小为4.9N ,方向垂直斜面向上

练习1、(2010山东卷)17.如图所示,质量分别为1m 、2m 的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动(1m 在地面,2m 在空中),力F 与水平方向成 角。则1m 所受支持力N 和摩擦力f 正确的是AC

A .12sin N m g m g F θ=+-

B .12cos N m g m g F θ=+-

C .cos f F θ=

D .sin f F θ=

2、在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg 的木板相连。若在木板上再作用一个竖直向下的力F 使木板缓慢向下移动0.1米,力F 作功2.5J,此时木板再次处于平衡,力F 的大小为50N ,如图所示,则木板下移0.1米的过程中,弹性势能增加了多少?

解:由于木板压缩弹簧,木板克服弹力做了多少功,弹簧的弹性势能就增加了多少,即:(木板克服弹力做功,就是弹力对木块做负功),

W 弹=-mgx -W F =-4.5J

所以弹性势

能增加4.5焦耳

点评:弹力是变力,缓慢下移,F 也是变力,所以弹力功

2、突变类问题

例1、一个轻弹簧一端B 固定,另一端C 与细绳的一端共同拉住一个质量为m 的小球,绳的另一端A 也固定,如图所示,且AC 、BC 与竖直方向夹角分别为21θθ、、,求

(1)烧断细绳瞬间,小球的加速度

(2)在C处弹簧与小球脱开瞬间,小球的加速度

解:(1)若烧断细绳的瞬间,小球的所受合力与原来AC 绳

拉力TAC 方向等大、反向,即加速度a 1方向为AC 绳的反向,原来断绳前,把三个力画到一个三角形内部,由正弦定理知: mg/sin(180°-θ1-θ2)=T AC /sinθ2,

解得T AC =mgsinθ2/sin(180°-θ1-θ2)=mgsinθ2/sin(θ1+θ2), 故由牛顿第二定律知:a 1=T AC /m=gsinθ2/sin(θ1+θ2) 或者: F AC ×cosθ1+F BC ×cosθ2=mg F AC ×sinθ1=F BC ×sinθ2 解之得

F AC =mgsinθ2/sin(θ1+θ2)

则瞬间加速度大小a 1=gsinθ2/sin(θ1+θ2),方向AC 延长线方向。

0k F E mgx W W ∆=++=弹50J

W Fx ≠=弹

E W ∆=-弹弹

(2)若弹簧在C 处与小球脱开时:则此时AC 绳的拉力突变,使此时沿AC 绳方向合力为0,故加速度沿垂直AC 绳方向斜向下(学完曲线运动那章会明白),故a 2=mgsinθ1/m=gsinθ1

答案:(1)烧断细绳的瞬间小球的加速度为(gsin θ2)/sin (θ1+θ2) (2).在C 处弹簧与小球脱开的瞬间小球的加速度为gsin θ1

例2..如图所示,将两相同的木块a 、b 至于粗糙的水平地面上,中间用一轻弹簧连接,两侧用细绳固定于墙壁。开始时a 、b 均静止。弹簧处于伸长状态,两细绳均有拉力,a 所受摩擦力0≠fa F ,b 所受摩擦力0=fb F ,现将右侧细绳剪断,则剪断瞬间 ( AD )

A .fa F 大小不变

B .fa F 方向改变

C .fb F 仍然为零

D .fb F 方向向右

3、简谐运动型弹簧问题

例1.如图9所示,一根轻弹簧竖直直立在水平面上,下端固定。在弹簧正上方有一个物块从高处自由下落到弹簧上端O ,将弹簧压缩。当弹簧被压缩了x 0时,物块的速度减小到零。从物块和弹簧接触开始到物块速度减小到零过程中,物块的加速度大小a 随下降位移大小x 变化的图像,可能是下图中的 D

分析:我们知道物体所受的力为弹力和重力的合力,而弹力与形变量成正比,所以加速度与位移之间也应该是线性关系,加速度与位移关系的图像为直线。物体在最低点的加速度与重力加速度之间的大小关系应该是本题的难点,借助简谐运动的加速度对称性来处理最方便。若物块正好是原长处下落的,根据简谐运动对称性,可知最低点时所受的合力也是mg ,方向向上,所以弹力为2mg ,加速度为g 。现在,初始位置比原长处要高,这样最低点的位置比上述情况要低,弹簧压缩量也要大,产生的弹力必定大于2mg ,加速度必定大于g 。

例2:如图所示,小球从a 处由静止自由下落,到b 点时与弹簧接触,到c 点时弹簧被压缩到最短,若不计弹簧的质量和空气阻力,在小球由a →b →c 运动过程中( CE ) A .小球的机械能守恒 B.小球在b 点时的动能最大

C .到C 点时小球重力势能的减少量等于弹簧弹性势能的增加量

A

B

A B

D.小球在C 点的加速度最大,大小为g

E.从a 到c 的过程,重力冲量的大小等于弹簧弹力冲量的大小。

拓展:一升降机在箱底装有若干个弹簧,设在某次事故中,升降机吊索在空中断裂,忽略摩擦力,则升降机在从弹簧下端触地后直到最低点的一段运动过程中( CD )

(A )升降机的速度不断减小 (B )升降机的加速度不断变大

(C )先是弹力做的负功小于重力做的正功,然后是弹力做的负功大于重力做的正功 (D )到最低点时,升降机加速度的值一定大于重力加速度的值。

4、功能关系弹簧问题

例1、如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,g =10m/s2 , 求:(1)此过程中所加外力F 的最大值和最小值。

(2)此过程中外力F 所做的功。

解:(1)A 原来静止时:kx 1=mg ①

当物体A 开始做匀加速运动时,拉力F 最小,设为F 1,对物体A 有: F 1+kx 1-mg =ma ②

当物体B 刚要离开地面时,拉力F 最大,设为F 2,对物体A 有: F 2-kx 2-mg =ma ③ 对物体B 有:kx 2=mg ④ 对物体A 有:x 1+x 2=

2

2

1at ⑤ 由①、④两式解得 a =3.75m/s 2 ,分别由②、③得F 1=45N ,F 2=285N (2)在力F 作用的0.4s 内,初末状态的弹性势能相等,由功能关系得: W F =mg (x 1+x 2)+

2)(2

1

at m 49.5J [点评]本题中考查到弹簧与物体A 和B 相连,在运动过程中弹簧的弹力是变力,为确保系统的加速度恒定,则外加力必须也要随之变化,解决本题的关键找出开始时弹簧的形变量最大,弹力最大,则外力F 最小。当B 刚要离地时,弹簧由缩短变为伸长,此时弹力变为向下拉A ,则外力F 最大。其次,求变力功时必须由动能定理或能量守恒定律求得。

例2(2012 江苏)14.(16分)某缓冲装置的理想模型如图所示,劲度系数足够大的轻质弹簧与轻杆相连,轻杆可在固定的槽内移动,与槽间的滑动摩擦力恒为f ,轻杆向右移动不超过L 时,装置可安全工作,一质量为m 的小车若以速度v 0撞击弹簧,将导致轻杆向右移动L /4,轻杆与槽间最大静摩擦力等于滑动摩擦力,且不计小车与地面的摩擦。 (1)若弹簧的劲度系数为k ,求轻杆开始移动时,弹簧的压缩量x ; (2)为这使装置安全工作,允许该小车撞击的最大速度v m

(3)讨论在装置安全工作时,该小车弹回速度v ˊ与撞击速度v 的关系

A B

F 图 9

解:(1)轻杆开始移动时,弹簧的弹力kx F = ① 且f F = ②

解得k

f

x =

③ (2)设轻杆移动前小车对弹簧所做的功为W ,则小车从撞击到停止的过程中,动能定理 小车以0v 撞击弹簧时 202

104.

mv W l f -=-- ④ 小车以m v 撞击弹簧时 2210m mv W fl -

=-- ⑤ 解m

fl v v m 232

0+= ⑥ (3)设轻杆恰好移动时,小车撞击速度为1v , W mv =2

12

1 ⑦ 由④⑦解得m fl v v 22

01-

= 当m

fl v v 22

0-<时,v v =' 当<-m fl v 22

0m fl v v 2320+

<时,m

fl v v 2'2

0-=。

点评:(1)问告诉我们:小车把弹簧压缩到x=F/k 时,两者一起推动杆向右减速

运动,这个过程中,杆受到的摩擦力不变,弹簧的压缩量x 不变,直到杆的速度减为0,小车才被弹簧反弹。——这就是这个过程的物理过程模型。

(2)问告诉我们:轻杆移动前小车对弹簧所做的功为W (实际上就是弹簧存储的弹性势能)不变,与小车的初速度无关,所以两次W 相等,这就是为什么有第一个问的存在(递进+引导)。这样列两次动能定理就可以求出结果了。 (3)问告诉我们:先把最小的撞击速度v 1求出(此时杆要滑没滑,处于临界状态),然后分情况讨论:若小车速度vv 1,则杆动了,但为了安全,杆移动的最大位移不超过l ,因此,约束了小车的初速度v ,即v 1≤v≤vm,这时,如图我在上面(1)(2)分析的一样,这时,小车、弹簧两者共同压杆,使之向右移动,直到杆的速度减为0,小车才被弹簧反弹,弹簧把开始存储的弹性势能W 释放出来,变为小车反弹的动能,对应的速度v 1即为所求。

练习1:A 、B 两木块叠放在竖直的轻弹簧上,如图所示。已知木块A 、B 的质量为 mA=mB=1kg ,轻弹簧的劲度系数k=100N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以2m/s 2的加速度竖直向上作匀加速运动(g 取10m/s2) (1)使木块A 竖直向上做匀加速运动的过程中,力F 的最小值和最大值各为多少? (2)若木块由静止开始做匀加速运动直到A 、B 分离的过程中,弹簧的弹性势能减

小1.28J ,求力F 做的功。

解:(1)对A: F-m A g+F B A=m A a ,

A 静止时F BA =m A g ,开始时F 最小,即F min =m A a=2N 当F BA =0时,F 最大,即F max =m A g+m A a=12 N :(2)初始位置弹簧的压缩量x1=(mAg+mBg)/k=0.20m A 、

B 分离时,F BA =0,以B 为研究对象可得: F N -m B g=m B a , F N =12N

此时x 2=F N /k=0.12m

A 、

B 上升的高度:△x=x 1-x 2=0.08 m 对A 、B 的v 2= 2a △x

以A 、B 作为一个整体,由动能定理得 w F +w N -(m A +m B )g △x=1/2(m A +m B )v 2 其中w N =1.28J

解得:w F =0.64J ,即此过程力F 对木块做的功是0.64J .

[点评]此题命题意图是考查对物理过程、状态的综合分析能力。难点和失分点在于能否通过对此物理过程的分析后,确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力N=0时 ,恰好分离

练习2:.有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质量分别为m A =m B =m , m C =3m ,它们与斜面间的动摩擦因数都相同. 其中木块A 放于斜面上并通过一轻弹簧与挡板M 相连,如图所示. 开始时,木块A 静止在P 处,弹簧处于自然伸长状态. 木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L . 已知木块B 在下滑过程中做匀速直线运动,与木块A 相撞后立刻一起向下运动,但不粘连. 它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点. 若木块A 仍静放于P 点,木块C 从Q 点处开始以初速度

0v 3

2

向下运动,经历同样过程,最后木块C 停在斜面的R 点,求: (1)木块B 与A 相撞后瞬间的速度v 1。

(2)弹簧第一次被压缩时获得的最大弹性势能E p 。

(3)P 、R 间的距离L ′ 的大小。

解:(1)木块B 下滑做匀速直线运动,有:sin cos mg mg θμθ= (1) (2分)

B 与A 碰撞前后总动量守恒,有:012mv mv = (2) (2分) 所以 v 1=

2

v (2)设AB 两木块向下压缩弹簧的最大长度为S ,弹簧具有的最大弹性势能为E P ,压缩

过程对AB 由能量守恒定律得: 211

22sin 2cos 2

P mv mgS mgS E θμθ+=⋅+ (3) (2分)

联立上三式解得: 201

4

P E mv =

(4) (1分)

(3)木块C 与A 碰撞过程,由动量守恒定律得:/0134m m v =⋅ (5) (2分)

碰后AC 的总动能为:/

/221011

424

k E mv mv =⋅=

(6) (1分)

由(3)式可知AC 压缩弹簧具有的最大弹性势能和AB 压缩弹簧具有的最大弹性势能相等,两次的压缩量也相等。(在木块压缩弹簧的过程中,重力对木块所做的功与摩擦力对木块所做的功大小相等,因此弹簧被压缩而具有的最大弹性势能等于开始压缩弹簧时两木块的总动能.

因此,木块B 和A 压缩弹簧的初动能E ,4

12·2

1

2

02

11mv mv k ==木块C 与A 压缩弹簧的初动能E ,4

121202

12mv mv k ='=

即E 21k k E =因此,

弹簧前后两次的最大压缩量相等,即s=s ′) 设AB 被弹回到P 点时的速度为v 2,从开始压缩到回到P 点有: 22121

12cos 2222

2

mg S mv mv μθ⋅⋅=⋅-⋅ (7)

(2分)

两木块在P 点处分开后,木块B 上滑到Q 点的过程: 221

(sin cos )2

mg mg L mv θμθ+= (8) (2分)

设AC 回到P 点时的速度为v 2/,同理有: /2/212114cos 24422

mg S mv mv μθ⋅⋅=⋅-⋅ (9)

(1分)

//221

(3sin 3cos )32

mg mg L mv θμθ+⋅= (10)

(1分)

联立(7)(8)(9)(10)得:

2

/

032sin v L L g θ

=-

(1分)

5、碰撞型弹簧问题

例1:如图34,木块AB用轻弹簧连接,放在光滑的水平面上,A紧靠墙壁,在木块B上施加向左的水平力F,使弹簧压缩,当撤去外力后;ACD A.A尚未离开墙壁前,弹簧和B的机械能守恒; B.A尚未离开墙壁前,系统的动量守恒;

C.A离开墙壁后,系统动量守恒; D.A离开墙壁后,系统机械能守恒。

思考:若力F 压缩弹簧做的功为E ,m B =2m A ,求从A 物体开始运动以后的过程中,弹簧最大的弹性势能?

解:用E 的功压缩弹簧,则弹簧弹性势能为E.撤去外力后,弹性势能完全转变为B 物体的动能,此时B 物体的动能即为E 所以E=1/2(m B )V B 2

而A 物体开始运动以后,弹簧的弹性势能最大时为两物体共速时,设为V,由动量定理

m B V B =(m A +m B )V,因为m A =2m B ,所以(m B )(V B )=(3m B )V,可得V=V B /3 则此时A,B 物体动能之和为1/2(m A +m B )(V B /3) 2= m B V B 2/6=E/3

由机械能守恒,总能量仍为E,故此时弹性势能等于总能量减去A,B 物体动能之和 弹性势能E=E-E/3=(2/3)E

练习1、光滑的水平面上,用弹簧相连的质量均为2kg 的A 、B 两物块都以V 0=6m/s 的速度向右运动,弹簧处于原长,质量为4kg 的物块C 静止在前方,如图8所示。B 与C 碰撞后二者粘在一起运动,在以后的运动中,当弹簧的弹性势能达到最大为 J 时,物块A 的速度是 m/s 。

解:B ,C 碰撞瞬间,B ,C 的总动量守恒 m B v 0=(m B +m C )v 1,v 1=2 m/s

三个物块速度相同时弹簧的弹性势能最大 m A v 0+m B v 0=(m A +m B +m C )v 2 得v 2=3m/s 设最大弹性势能为E P ,由能量守恒

图34

A

B

图8

C

练习2:如图5所示,质量为M 的小车A 右端固定一根轻弹簧,车静止在光滑水平面上,一质量为m 的小物块B 从左端以速度v 0冲上小车并压缩弹簧,然后又被弹回,回到车左端时刚好与车保持相对静止.求整个过程中弹簧的最大弹性势能E P 和B 相对于车向右运动过程中系统摩擦生热Q 各是多少?

解:v M m mv )(0+=,2

20)(2

1212v M m mv Q +-=,

E P =Q=)

(42

M m mMv +

6、综合类弹簧问题

例1:一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。如图7所示。现让木板由静止开始以加速度a(a <g)匀加速向下移动。求经过多长时间木板开始与物体分离。

解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。据牛顿第二定律有: mg-kx-N=ma 得N=mg-kx-ma

当N=0时,物体与平板分离,所以此时k

a g m x )

(-= 因为2

21at x =

,所以ka

a g m t )

(2-=

例2:质量均为m 的两个矩形木块A 和B 用轻弹簧相连接,弹簧的劲度系数为k,将它们竖直叠放在水平地面上,如图13所示,另一质量也是m 的物体C ,从距离A 为H 的高度自由下落,C 与A 相碰,相碰时间极短,碰后A 、C 不粘连,当A 、C 一起回到最高点时,地面对B 的支持力恰好等于B 的重力。若C 从距离A 为2H 高处自由落下,在A 、C 一起上升到某一位置,C 与A 分离,C 继续上升,求:

(1)C 没有与A 相碰之前,弹簧的弹性势能是多少?

(2)C 上升到最高点与A 、C 分离时的位置之间距离是多少?

解:(1)C 由静止下落H 高度。即与A 相撞前的速度为

,则:

图7

A

B 图5

,得出:

C与A相撞,由动量守恒定律可得:得出:

A、C一起压缩弹簧至A、C上升到最高点,由机械能守恒定律得:

得出

(2)C由静止下落2H高度时的速度为,则:

得出

C与A相撞:得出:

A、C一起压缩弹簧至A、C分离,由机械能守恒定律得:

得出:

C单独上升X高度,由机械能守恒定律得:得出:

练习:(09年四川卷)25.(20分)如图所示,轻弹簧一端连于固定点O,可在竖直平面内自由转动,另一端连接一带电小球P,其质量m=2×10-2 kg,电荷量q=0.2 C.将弹簧拉至水平后,以初速度V0=20 m/s竖直向下射出小球P,小球P到达O点的正下方O1点时速度恰好水平,其大小V=15 m/s.若O、O1相距R=1.5 m,小球P在O1点与另一由细绳悬挂的、不带电的、质量M=1.6×10-1 kg的静止绝缘小球N相碰。碰后瞬间,小球P脱离弹簧,小球N脱离细绳,同时在空间加上竖直向上的匀强电场E和垂直于纸面的磁感应强度B=1T的弱强磁场。此后,小球P在竖直平面内做半径r=0.5 m的圆周运动。

小球P、N均可视为质点,小球P的电荷量保持不变,不计空气阻力,取g=10 m/s2。

那么,

•(1)弹簧从水平摆至竖直位置的过程中,其弹力做功为多少?

•(2)请通过计算并比较相关物理量,判断小球P、N碰撞后能否在某一时刻具有相

同的速度。

•(3)若题中各量为变量,在保证小球P、N碰撞后某一时刻具有相同速度的前

•提下,请推导出r的表达式(要求用B、

•q、m、θ表示,其中θ为小球N的

•运动速度与水平方向的夹角)

解:(1)设弹簧的弹力做功为W,有:①

代入数据得:W=-2.05J②

(2)由题给条件知,N碰后作平抛运动,P所受电场力和重力平衡,P带正电荷。设P、N 碰后的速度大小分别为v1和V,并令水平向右为正方向,有③

而④

若P、N碰后速度同向时,计算可得V<v1,这种碰撞不能实现。P、N碰后瞬时必为反向运动。有:⑤

P、N速度相同时,N经过的时间为t N,P经过的时间为t P。设此时N的速度V1的方向与水平方向的夹角为θ,有:⑥

代入数据,得:⑧

对小球P,其圆周运动的周期为T,有:⑨

经计算得:t N<T

P经过t P时,对应的圆心角为α,有:⑩

当B的方向垂直纸面朝外时,P、N的速度相同,如图可知,有:

联立相关方程得:

比较得,,在此情况下,P、N的速度在同一时刻不可能相同

当B的方向垂直纸面朝里时,P、N的速度相同,同样由图,有:

同上得:

比较得,,在此情况下,P、N的速度在同一时刻也不可能相同

(3)当B的方向垂直纸面朝外时,设在t时刻P、N的速度相同,

再联立④⑦⑨⑩解得:

当B的方向垂直纸面朝里时,设在t时刻P、N的速度相同,

同理得:

考虑圆周运动的周期性,有(给定的B、q、r、m、θ等物理量决定n的取值)

高中物理弹簧问题分类全解析

高中物理弹簧问题分类全解析 一、有关弹簧题目类型 1、平衡类问题 2、突变类问题 3、简谐运动型弹簧问题 4、功能关系型弹簧问题 5、碰撞型弹簧问题 6、综合类弹簧问题 二、分类解析 1、平衡类问题 例1.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( ) A.m1g/k 1 B.m2g/k 2 C.m1g/k 2 D.m2g/k 2 解析:我们把看成一个系统,当整个系统处于平衡状态时,整个系统受重力 和弹力,即 当上面木块离开弹簧时,受重力和弹力,则 【例2】、14、如图所示,与水平面夹角为30°的固定斜面上有一质量m=1.0kg 的物体。细绳的一端摩擦不计的定滑轮与固定的弹簧秤相连。物体静止在斜面上,弹簧秤的示数为4.9N 。关于物体受力的判断(取g=9.8m/s2),下列说法正确的是C A.斜面对物体的摩擦力大小为零 B. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向上 C. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向下 D. 斜面对物体的摩擦力大小为4.9N ,方向垂直斜面向上 练习1、(2010山东卷)17.如图所示,质量分别为1m 、2m 的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动(1m 在地面,2m 在空中),力F 与水平方向成 角。则1m 所受支持力N 和摩擦力f 正确的是AC

A .12sin N m g m g F θ=+- B .12cos N m g m g F θ=+- C .cos f F θ= D .sin f F θ= 2、在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg 的木板相连。若在木板上再作用一个竖直向下的力F 使木板缓慢向下移动0.1米,力F 作功2.5J,此时木板再次处于平衡,力F 的大小为50N ,如图所示,则木板下移0.1米的过程中,弹性势能增加了多少? 解:由于木板压缩弹簧,木板克服弹力做了多少功,弹簧的弹性势能就增加了多少,即:(木板克服弹力做功,就是弹力对木块做负功), W 弹=-mgx -W F =-4.5J 所以弹性势 能增加4.5焦耳 点评:弹力是变力,缓慢下移,F 也是变力,所以弹力功 2、突变类问题 例1、一个轻弹簧一端B 固定,另一端C 与细绳的一端共同拉住一个质量为m 的小球,绳的另一端A 也固定,如图所示,且AC 、BC 与竖直方向夹角分别为21θθ、、,求 (1)烧断细绳瞬间,小球的加速度 (2)在C处弹簧与小球脱开瞬间,小球的加速度 解:(1)若烧断细绳的瞬间,小球的所受合力与原来AC 绳 拉力TAC 方向等大、反向,即加速度a 1方向为AC 绳的反向,原来断绳前,把三个力画到一个三角形内部,由正弦定理知: mg/sin(180°-θ1-θ2)=T AC /sinθ2, 解得T AC =mgsinθ2/sin(180°-θ1-θ2)=mgsinθ2/sin(θ1+θ2), 故由牛顿第二定律知:a 1=T AC /m=gsinθ2/sin(θ1+θ2) 或者: F AC ×cosθ1+F BC ×cosθ2=mg F AC ×sinθ1=F BC ×sinθ2 解之得 F AC =mgsinθ2/sin(θ1+θ2) 则瞬间加速度大小a 1=gsinθ2/sin(θ1+θ2),方向AC 延长线方向。 0k F E mgx W W ∆=++=弹50J W Fx ≠=弹 E W ∆=-弹弹

高中物理弹簧问题考点大全及常见典型考题

常见弹簧类问题分析 高考要求 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 一、与物体平衡相关的弹簧问题 1.(1999年,全国)如图示,两木块的质量分别为m 1 和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在 这过程中下面木块移动的距离为( ) k 1 k 2 k 2 k 2 此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹 簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m 1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m 1 + m 2)g /k 2,而m l 刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m 2g /k 2,因而m 2移动△x =(m 1 + m 2)·g /k 2 - m 2g /k 2=m l g /k 2. 此题若求m l 移动的距离又当如何求解 参考答案:C

高中物理中的弹簧问题归类(教师版)

有关弹簧的题目在高考中几乎年年出现,由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高.在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能、冲量和动量等多个物理概念和规律,所以弹簧试题也就成为高考中的重、难、热点, 一、“轻弹簧”类问题 在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F . 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加水平方向的力1F 、2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 . 【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12 F F a m -= 仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F . 说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的. 【答案】12 F F a m -= 1F 二、质量不可忽略的弹簧 【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况. 【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M = ,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为: x x F x T ma M F L M L == = 【答案】x x T F L = 三、弹簧的弹力不能突变(弹簧弹力瞬时)问题 弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a = 【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大 小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可图 3-7-2 图 3-7-1 图 3-7-3 高中物理中的弹簧问题归类

高中物理弹簧弹力问题(含答案)

弹簧问题归类 一、“轻弹簧”类问题 在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤 示数为F . 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为,弹簧秤的读数为. 【解析】以整个弹簧秤为研究对象,利用牛顿运动定律得:12F F ma -=,即12F F a m -=,仅以轻质弹簧 为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m -=1F 二、质量不可忽略的弹簧 【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况. 【解析】弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M =,取弹簧左部任意长 度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F x T ma M F L M L == =【答案】x x T F L = 三、弹簧的弹力不能突变(弹簧弹力瞬时)问题 弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变.即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a =与B a = 【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可 知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0说明:区别于不可伸长的轻质绳中张力瞬间可以突变. 【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为() A.0 B.大小为23 3 g ,方向竖直向下 C.大小为2 33 g ,方向垂直于木板向下 D.大小为2 33 g ,方向水平向右 【解析】末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡, 如图3-7-5所示,有cos N mg F θ = .撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的 N F (三力平衡),方向与N F 相反,故 加速度 方向为垂直木 板向下,大小为 图 图 图3-7-2 图3-7-1 图3-7-3

高中物理 弹簧问题

高中物理弹簧问题 弹簧问题是物理学中常见的问题之一。轻弹簧是指不考虑弹簧本身质量和重力的弹簧,是一个理想模型,可以充分拉伸和压缩。无论弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向,合力恒等于零。弹簧读数始终等于任意一端的弹力大小。 弹簧弹力是由弹簧形变产生的,弹力大小和方向时刻与当时形变对应。一般应从弹簧的形变分析入手,先确定弹簧原长位置和现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。 轻弹簧的性质有三点:1、在力的作用下无论是平衡状态 还是加速运动状态,各个部分受到的力大小是相同的,其伸长量等于弹簧任意位置受到的力和劲度系数的比值;2、两端与 物体相连的轻质弹簧上的弹力不能在瞬间突变,具有缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零; 3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应

弹力的方向相反。分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。 弹簧问题的题目类型主要包括弹簧问题受力分析、瞬时性问题和动态过程分析。在受力分析中,需要找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程,并通过弹簧形变量的变化来确定物体位置的变化。在瞬时性问题中,需要针对不同类型的物体的弹力特点,对物体做受力分析。在动态过程分析中,可以采用三点分析法,明确接触点、平衡点和最大形变点,来分析物体的运动情况。 除了以上几种题型,弹簧问题还涉及到动量和能量以及简谐振动的问题。在解决弹簧问题时,需要注意抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向,合力恒等于零的特点求解,同时要灵活运用整体法隔离法,优先对受力少的物体进行隔离分析。 在解决临界极值问题时,需要考虑弹簧连接物体的分离临界条件和最大最小速度、加速度。对于分离瞬间的分析,需要采用隔离法,并且需要根据具体条件来判断弹簧是否处于原长状态。在物体做变加速运动时,加速度等于零时速度达到最大

高考弹簧问题专题详解

高考弹簧问题专题详解 高考动向 弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。 知识升华 一、弹簧的弹力 1、弹簧弹力的大小 弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。 说明: ①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关; ②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长(或压缩)跟外力成正比这一性质可制成弹簧秤。 2、弹簧劲度系数 弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,

以下主要讨论螺旋式弹簧的劲度系数。 (1)定义:在弹性限度内,弹簧产生的弹力F(也可认为大小等于弹簧受到的外力)和弹簧的形变量(伸长量或者压缩量)x的比值,也就是胡克定律中的比例系数k。 (2)劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。 弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之则越大。如两根完全相同的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;若两根完全相同的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致; 二、轻质弹簧的一些特性 轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。 性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。其伸长量等于弹簧任意位置受到的力和劲度系数的比值。 如图1和2中相同的轻弹簧,其端点受到相同大小的力时,无论弹簧是处于静止、匀速还是加速运动状态,各个弹簧的伸长量都是相同的。

高中物理-弹簧问题

弹簧问题 轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。 无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。合力恒等于零。 弹簧读数始终等于任意一端的弹力大小。 弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。 性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。 其伸长量等于弹簧任意位置受到的力和劲度系数的比值。 性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性; 有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。 性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。 分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。 弹簧问题的题目类型 1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数) 2、求与弹簧相连接的物体的瞬时加速度 3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断v S a F变化) 4、有弹簧相关的临界问题和极值问题 除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题 1、弹簧问题受力分析 受力分析对象是弹簧连接的物体,而不是弹簧本身 找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。(灵活运用整体法隔离法); 通过弹簧形变量的变化来确定物体位置。(高度,水平位置)的变化 弹簧长度的改变,取决于初末状态改变。(压缩——拉伸变化) 参考点,F=kx 指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。 抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。合力恒等于零的特点求解。 注:如果a相同,先整体后隔离。 隔离法求内力,优先对受力少的物体进行隔离分析。 2、瞬时性问题 题型:改变外部条件(突然剪断绳子,撤去支撑物) 针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析 3、动态过程分析 三点分析法(接触点,平衡点,最大形变点) 竖直型: 水平型:明确有无推力,有无摩擦力。物体是否系在弹簧上。 小结:弹簧作用下的变加速运动, 速度增减不能只看弹力,而是看合外力。(比较合外力方向和速度方向判断) 加速度等于零常常是出现速度极值的临界点。速度等于零往往加速度达到最大值。

高中物理中的弹簧问题归类剖析

高中物理中的弹簧问题归类分析 (教师版 ) 有关弹簧的题目在高考取几乎年年出现,因为弹簧弹力是变力,学生常常对弹力大小和方向的变化过程缺少清楚的认识,不可以成立与之有关的物理模型并进行分类,致使解题思路 不清、效率低下、错误率较高 .在详细实质问题中,因为弹簧特征使得与其相连物体所构成系统的运动状态拥有很强的综合性和隐蔽性,加之弹簧在伸缩过程中波及力和加快度、功和能、冲量 和动量等多个物理观点和规律,所以弹簧试题也就成为高考取的重、难、热门, 一、“轻弹簧”类问题 在中学阶段,凡波及的弹簧都不考虑其质量,称之为“轻弹簧” ,是一种常有的理想化物 理模型 .因为“轻弹簧”质量不计,选用随意小段弹簧,其两头所受张力必定均衡,不然,这 小段弹簧的加快度会无穷大 .故轻弹簧中各部分间的张力到处相等,均等于弹簧两头的受力 . 弹簧一端受力为 F ,另一端受力必定也为 F ,假如弹簧秤,则弹簧秤示数为 F . 【例 1】如下图,一个弹簧秤放在圆滑的水平面上,外壳质量 m 不可以忽视,弹簧及挂钩质 量不计,施加水平方向的力 F 1、 F 2 ,且 F 1 F 2 ,则弹簧秤沿水平方向的加快度为 ,弹 簧秤的读数为 . 【分析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: F 1 F 2 ma ,即 a F 1 F 2 m 仅以轻质弹簧为研究对象,则弹簧两头的受力都 F 1 ,所以弹簧秤的读数为 F 1 . 说明 : F 2 作用在弹簧秤外壳上, 并无作用在弹簧左端, 弹簧左端的受力是由外壳内侧供给的. F 1 F 2 F 1 【答案】 a m 二、质量不行忽视的弹簧 【例 2】如图 3-7-2 所示,一质量为 M 、长为 L 的均质弹簧平放在圆滑的水平面 , 在弹簧右 端施加一水平力 F 使弹簧向右做加快运动 . 试分析弹簧上各部分的受力状况. 【分析】 弹簧在水平力作用下向右加快运动,据牛顿第 二定律得其加快度 F , 取弹簧左部随意长度 x 为研究 a M 图 3-7-2 对象,设其质量为 m 得弹簧上的弹力为: x M F x F x F T x ma 【答案】 T x L M L L 三、 弹簧的弹力不可以突变 ( 弹簧弹力刹时 ) 问题 弹簧 (特别是软质弹簧 )弹力与弹簧的形变量有关, 因为弹簧两头一般与物体连结, 因弹簧 形变过程需要一段时间,其长度变化不可以在瞬时达成,所以弹簧的弹力不可以在瞬时发生突变 . 即能够以为弹力大小和方向不变,与弹簧对比较,轻绳和轻杆的弹力能够突变 . 【例 3】如下图,木块 A 与 B 用轻弹簧相连,竖直放在木块 C 上,三者静置 于地面, A 、B 、C 的质量之比是 1:2:3. 设全部接触面都圆滑,当沿水平方向迅 速抽出木块 C 的刹时,木块 A 和 B 的加快度分别是 a A = 与 a B = 【分析】由题意可设 A 、B 、C 的质量分别为 m 、2m 、3m ,以木块 A 为研究对象,抽出木块 C 前, 木块 A 遇到重力和弹力一对均衡力,抽出木块 C 的刹时,木块 A 遇到重力和弹力的大小和方 向均不变,故木块 A 的刹时加快度为 0. 以木块 A 、B 为研究对象,由均衡条件可知,木块 C 对 木块 B 的作使劲 3 F CB mg . 以木块 B 为研究对象, 木块 B 遇到重力、 弹力和 F CB 三力均衡, 抽出木块 C 的刹时,木块 B 遇到重力和弹力的大小和方向均不变, F CB 刹时变成 0,故木块 C 的刹时合外力为 3mg , 竖直

高中物理弹簧问题考点大全及常见典型考题

常见弹簧类问题分析 高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 一、与物体平衡相关的弹簧问题 1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质 弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴 接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离 开上面弹簧.在这过程中下面木块移动的距离为( ) A.m1g/k1 B.m2g/k2 C.m1g/k2 D.m2g/k2 此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g /k2=m l g/k2. 此题若求m l移动的距离又当如何求解? 参考答案:C 2.S1和S2表示劲度系数分别为k1,和k2两根轻质弹簧,k1>k2;A和B表示质量分别为m A和m B的两个小物块,m A>m B,将弹簧与物块按图示方式悬挂起来.现要求两根 弹簧的总长度最大则应使( ). A.S1在上,A在上 B.S1在上,B在上 C.S2在上,A在上 D.S2在上,B在上

高中物理弹簧问题考点大全及常见典型考题

高中物理弹簧问题考点大全及常见典型考题(总14页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

常见弹簧类问题分析 高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 一、与物体平衡相关的弹簧问题 1.(1999年,全国)如图示,两木块的质量分别为m 1 和 m 2 ,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上 面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向 上提上面的木块,直到它刚离开上面弹簧.在这过程中下面 木块移动的距离为( ) k 1k 2 k 2 k 2 此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变 化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m 1 离开上面的弹簧.开始时,下面的弹簧被压缩,比原长 短(m 1 + m 2 )g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短 m 2 g/k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g/k2=m l g/k2. 此题若求m l 移动的距离又当如何求解 参考答案:C

高中物理轻质弹簧问题全解析

高中物理轻质弹簧问题全解析 一、引言 在高中物理中,轻质弹簧问题是一个经常出现的考点。它考察了我们对力学、能量转化和振动等基本物理概念的理解和应用。本文将对高中物理中轻质弹簧问题的常见类型和解决方法进行全面的解析。二、轻质弹簧的特性 轻质弹簧的主要特性在于其弹力与伸长量成正比,这一特性在胡克定律中得到了数学表达。当弹簧被压缩或拉伸时,弹力的大小与弹簧的形变量成正比,即F = kx,其中F为弹力,k为弹簧的劲度系数,x 为弹簧的形变量。 三、轻质弹簧问题的解析方法 1、受力分析法:对于轻质弹簧的问题,首先要进行受力分析。要明确弹簧的受力情况,包括弹簧自身的重力和外部施加的力。在分析过程中,应注意力的方向和大小,并选择合适的坐标系进行表示。 2、过程分析法:在轻质弹簧问题中,常常涉及到弹簧的压缩或拉伸过程。这个过程往往伴随着能量的转化和力的变化。因此,我们需要

对每个过程进行分析,明确每个过程中的受力情况和能量转化情况。 3、能量守恒法:在某些轻质弹簧问题中,能量的转化和守恒是解决问题的关键。我们需要明确在各个过程中能量的来源和去处,并利用能量守恒定律进行计算。 4、运动学分析法:对于涉及弹簧振动的轻质弹簧问题,我们需要对振动的运动学过程进行分析。要明确振动的振幅、周期和相位等参数,并利用牛顿第二定律和运动学公式进行计算。 四、常见轻质弹簧问题的解析示例 1、轻质弹簧的形变量问题:这类问题主要考察我们对胡克定律的理解和应用。例如,一个劲度系数为k的轻质弹簧,原始长度为L0,现将其压缩x0,求弹簧的弹力F和形变量x。解这类问题主要使用胡克定律F = kx。 2、轻质弹簧的能量转化问题:这类问题主要考察我们对能量守恒定律的理解和应用。例如,一个劲度系数为k的轻质弹簧,将其压缩 x0后放手,求弹簧的最大弹性势能E和最终的静止长度L。解这类问题主要使用能量守恒定律。 3、轻质弹簧的振动问题:这类问题主要考察我们对振动的基本概念

高中物理中的弹簧问题归类剖析

常见弹簧类问题归类剖析 高考分析: 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高.在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能等多个物理概念和规律,所以弹簧类问题也就成为高考中的重、难、热点.我们应引起足够重视. 弹簧类命题突破要点: 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也 可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =- ( 21kx 22-2 1kx 12 ),弹力的功等于弹性势能增量的负值或弹力的功等于弹性势能的减少.弹性势能的公式E p =2 1kx 2 ,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以 能量的转化与守恒的角度来求解. 一、“轻弹簧”类问题 在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故簧轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹一端受力为F ,另一端受力一定也为F 。若是弹簧秤,则弹簧秤示数等于弹簧自由端拉力的大小. 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加水平方向的力1F 、2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 . 【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12 F F a m -= 仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F . 说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的. 【答案】12 F F a m -= 1F 练习: 如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同: ①弹簧的左端固定在墙上; 图 3-7-1

高中物理经典问题---弹簧类问题全面总结解读

高中物理经典问题---弹簧类问题全面总结解读 一:专题训练题 1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板 将物体托住,并使弹簧处于自然长度。如图7所示。现让木板由静止开始以加速度a(a <g = 匀加速向下移动。求经过多长时间木板开始与物体分离。 分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。据牛顿第二定律有: mg-kx-N=ma 得N=mg-kx-ma 当N=0时,物体与平板分离,所以此时k a g m x )(-= 因为221at x =,所以ka a g m t )(2-=。 2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静 止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。现在给P 施加一个竖直向上的力F , 使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒 力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。 .分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离 开秤盘。此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于 原长。在0_____0.2s 这段时间内P 向上运动的距离: x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m t x a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有 F min =ma=240N. 当P 与盘分离时拉力F 最大,F max =m(a+g)=360N. 3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的 物体A 、B 。物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面 物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个 过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求: (1)此过程中所加外力F 的最大值和最小值。 (2)此过程中外力F 所做的功。 解:(1)A 原来静止时:kx 1=mg ① 当物体A 开始做匀加速运动时,拉力F 最小,设为F 1,对物体A 有: F 1+kx 1-mg =ma ② 当物体B 刚要离开地面时,拉力F 最大,设为F 2,对物体A 有: F 2-kx 2-mg =ma ③ 对物体B 有:kx 2=mg ④ 对物体A 有:x 1+x 2=22 1at ⑤ 由①、④两式解得 a =3.75m/s 2 ,分别由②、③得F 1=45N ,F 2=285N F 图8 A B F 图 9 图7

相关主题
文本预览
相关文档 最新文档