当前位置:文档之家› 日本钢筋混凝土结构计算规范(中文版)

日本钢筋混凝土结构计算规范(中文版)

日本钢筋混凝土结构计算规范(中文版)
日本钢筋混凝土结构计算规范(中文版)

目录

钢筋混凝土结构计算规范 (2)

1章总则 (2)

1条目的和适用范围 (2)

2条计量 (2)

2章材料以及容许应力 (2)

3条砼的种类、品质材料由以下确定: (2)

4条钢筋的质量、形状、尺寸 (3)

5条材料系数 (3)

6条容许应力 (3)

3章荷载及应力变形的计算 (4)

7条荷载以及外来组合 (4)

8条结构计算的基本要求 (5)

9条骨架的分析 (6)

10条板的分析 (7)

11条平板结构 (9)

4章构件计算 (10)

12条关于弯曲构件截面计算的基本假定: (10)

13条梁的弯曲所对应的截面计算 (11)

14条针对柱的轴向力和弯曲的截面计算 (12)

15条梁、柱以及梁柱结合部的剪切计算 (13)

16条粘结及焊接 (18)

17条固定 (22)

18条楼板的计算 (25)

19条墙构件的计算 (26)

20条基础 (35)

21条钢筋保护层厚度 (36)

22条特殊的应力所对应的结构构件的加固 (36)

钢筋混凝土结构计算规范解说 (37)

第一章总则 (37)

1条目的与适用范围 (37)

第二章材料及容许应力 (40)

6条容许应力 (40)

第三章荷载及应力和变形计算 (45)

7条荷载和外力及其组合 (45)

8条结构分析基本事项 (47)

第四章材料的计算 (48)

12条弯曲构件断面计算的基本假设 (48)

13条梁弯曲的断面计算 (48)

14条柱的轴向力和弯曲的断面计算 (49)

日本建筑学会钢筋混凝土结构计算规范

1章总则

1条目的和适用范围

1、针对混凝土建筑物的损伤控制性能,确定其实用性能而使用的,其中一部分条款可以确认结构的安全性。

2、本规范适用第3条件规定的混凝土结构,以及第3条砼及第4条规定使用钢筋混凝土结构的结构计算。根据特别的调查研究,能够确认与本规范具有效力的构造性能的情况下,可以把本规范的一部分要求降低。

2条计量

2章材料以及容许应力

3条砼的种类、品质材料由以下确定:

1、砼的种类和品质

(1)按照本学会《建筑工程标准形式书同解说JASS5钢筋混凝土工程》(按JASS5)

本学会根据JASS5而定

(2)砼的配合比制造、运输、浇筑、支模以及质量管理根据JASS5而定

4条 钢筋的质量、形状、尺寸

除特殊情况外,根据JISG3112《钢筋砼用钢的规格》决定,圆钢直径d<19mm.异形钢6mm 可以使用。

5条 材料系数

钢筋和砼一般按表5.1采用

注:r :空气中干燥情况下混凝土的单位体积重量(KN/3mm ),特别是没有进行调查的情况下,按表7.1中数值减去1.0计算。

6条 容许应力

砼及钢筋的容许应力按表6.1、6.2、6.3确定

表6.1混凝土强度容许值(N/2mm )

注:c F 指混凝土的设计强度标准值

表6.2 钢筋容许应力(N/ 2

mm )

**仅限于板的受拉钢筋 表6.3钢筋混凝土对应的容许应力值(N/2mm )

上的混凝土时所对应的钢筋。

2)c F 指混凝土的设计强度标准值

3)异形钢筋到异形钢筋的混凝土的保护层厚度小于1.5倍直径以下,容许粘结应力值在此表中的数值上乘以{保护层厚度/(钢筋直径1.5倍)}

3章 荷载及应力变形的计算

7条 荷载以及外来组合

1、结构计算的荷载与外力以及组合根据《建筑基准法》以及建设部公告,国土交通部公告或者本学会的《建筑荷载指南同解说》、《建筑物基础结构设计指南》当中规定的实施。

2、钢筋的重度根据实际情况而定,若无特别的要求,研究按表7.1确定

8条 结构计算的基本要求

1、构的整体及部分的应力和变形根据下述假定计算: (1)应力和应变计算一般情况下,在弹性刚性基础计算下,一般根据弹性刚性假设计算,但是考虑分析目的和各个构件的水平应力相对应的砼开裂影响,使刚度降低。

材料的弹性模量按表5.1采用,但是考虑长期荷载作用产生的徐变的影响,不按此规定考虑。

2、柱和梁的刚度规定

(1)弯曲变形、剪切变形及轴向变形所对应的强度时,截面面积及截面惯性矩按全截面计算,这些计算如果无法忽略钢筋,则适当考虑钢筋的影响。

(2)(梁上的板,板上的梁)与墙连接的柱等的T 型截面的构件其弯曲变形所对应的板的有效宽度。腹板的宽度应叠加上两侧或单侧板部上共同工作部分的宽度。板部共同工作部分的宽度按8.1式或8.2式确定。

a 0.5,(0.50.6)a a

b a l l

<=- a 0.50.1a b l l

≥=时, (8.1) 00

a 0.5,(0.50.3)a a

b a

l l <=- 00

a 10.2a

b l l ≥=时, (8.2) 两端刚接或连续梁按8.1式,简支梁按8.2式

图8.1 T 型截面构件的有效宽度

(3)构件的变形原则上是根据弯矩和剪力产生的变形,必要条件下考虑轴向力的变形,这种情况下,为了简化应力计算,长细比很大的构件剪力应变可以忽略。(4)构件由于局部开裂造成刚度下降的影响无法忽略,应设定适当的恢复力模型进行非线性分析,计算各部分应力和变形。

3、墙的刚度确定,虑抗震墙或墙形状的构件其弯曲变形、剪切变形和轴向变形的同时,根据分析的目的及水平应力不同,这些变形的所对应的弹性刚度适当降低。

9条骨架的分析

1、板传递到梁上的垂直荷载,应根据板上荷载的分布及板周边条件确定,长方形板的分布荷载,应从梁的两端以及与梁平行的直线所对应的T型或 型所对应的荷载。

2、结构中骨墙体的重量,可视为直接由柱传递,但是基础梁和基础板(桩基的情况下为柱帽及桩),根据视墙体的开口情况以及是否有结构缝,另外梁要适当考虑梁的支撑情况。

3、所受荷载除了计算满荷载外,应根据需要考虑实际荷载的影响。

4、刚接于主梁上的次梁,其弯矩应根据需求考虑主梁的扭转抵抗所产生的束缚,并按连续梁计算。

5、结构建模应根据下述进行

(1)梁柱建模

梁柱根据8.2所示的刚度进行换算,但是要适当考虑一下内容:

1)刚性域

对于梁柱结合和牛腿部位、开口下部和开口两边的墙壁,对应其它相连接构件部分的应力所产生的影响,要适当考虑构件的适宜的刚性域和线性变截面材料所组成的构件,但是此影响小的情况下,将此影响忽视的情况下,计算的应力适当增加的方法也认可。

2)结合部的考虑

梁柱结合部建模时,将此部分作为刚性域假设部分或仅考虑剪切变形,此两种方法均可。

3)对于特殊结构骨架,要考虑所产生的应力变形,建立适当的变形。

(2)抗震墙的建模

抗震墙根据8.(3)中所示的刚性刚度进行模型变换并进行结构分析,这种情况下根据要求,基础的扭转影响适当考虑到模型中去。

6、承受地震力的结构分析

由承受地震作用的梁柱以及抗震墙所组成的结构,其应力应变分析可根据下述进行:

(1)水平地震作用,一般情况下,根据结构两方向互相交叉的直交方向互相作用而计算,但建筑物的平面是特殊形状的情况下,根据要求考虑地震作用特别不利的方向计算。

(2)水平地震作用按集中作用于楼板上考虑,层间作用力影响大的情况下,应另外计算其影响。

(3)一般情况下,楼板在水平面内按刚性假定,特别是不能按刚性假定的情况下,考虑楼板的变形进行计算或者考虑其影响进行适当修正

(4)各层的水平了作用中心和对应层的刚度中心(刚心)原则上要一致,但是两者不一致时,由此产生的扭转影响不能忽略的情况下,要适当考虑其影响

(5)对应直交梁抗震墙轴向变形约束的情况下,扭转影响不能忽略的情况下,要适当考虑其影响

(6)建筑结构凸出的部分如悬臂板等,要适当考虑地震的竖向力的影响

(7)轴向或水平变形大的情况下,要适当考虑p-?效应的影响

7、适当考虑混凝土的开裂所引起的刚度劣化影响的结构分析

对于超过构件开裂强度的应力的构件,在进行结构分析时,建议使用适当考虑裂缝开裂所产生的刚度劣化情况下的构件的力和变形关系,并据此进行逐步分析。

10条板的分析

1、长方形板的玩具和剪力应根据周围的固定情况按弹性理论求解

2、能视为周边固定的长方形板,当其承受分布荷载时,根据公式10.1、10.2按

两个方向弯矩计算(参考图10.1)

图10.1

短边x 方向的弯矩(取单位宽度计算)

两端最大负弯矩 21112

x x x M l ω=- (10.1) 跨中最大正弯矩22118

x x x M l ω=

长边y 方向弯矩如式10.2 两端最大负弯矩21124y x M l ω=-

( 10.2) 跨中最大正弯矩22136

y x M l ω=

x l :短边有效宽度

y l :长边有效宽度 ω:单位面积上的全部荷载

444y x x y l l l ωω=+

但是有效跨度是指所支撑构件之间的净跨,从周边宽度/4x l 的部分(图10.1B 部分)

在10.1、10.2中,按照与周边平行方向的x y M M 、值的一般考虑。

11条 平板结构

1、 本条例适用于无梁板和和柱直接一体化的结构,其中第5条(3)项中所示

的柱顶或者是设置了柱顶和支撑板的情况,称之为B 结构(图11.2设置了柱顶无承托,为A 结构;图11.3柱顶有承托,为B 结构),在有详细计算或特别试验进行的结构安全性能能够确认的情况下,本条例的一部分内容可以不按本条例内容执行。

2、垂直荷载的计算按以下假定:

(1)A 、B 结构按相互交叉的两个梁换算,与其各个方向上的柱子共同构成的骨架,可以按两个方向换算的梁柱骨架考虑。

(2)换算的梁柱骨架其各个方向的全部荷载,计算时按各个方向承担的荷载考虑,换算梁柱骨架中的梁,其跨长为x y l l 、,其截面的宽度为y l 、x l 以及高度t ,关于恒载计算除了根据墙荷载情况下计算外,根据要求考虑部分荷载的影响。

(3)换算梁柱挂架的弯矩在板内的分配,按照板面上L/2(L :计算的柱跨度长),板面宽度的柱之间的部分(图11.1当中的ABDC 部分)以及和L/4宽度部分(图11.1中ABFE 和CDHG ),其所有数字按图11.1采用,跟支持不平行的外侧柱,其单位宽度的弯矩按一般柱的1/2考虑,相邻部分柱间距离的单位宽度上的弯矩,按一般柱间宽度的3/4取值,另外,柱顶周围的剪力分布可按相同考虑,见图11.1

图11.1

3、水平力的计算可按以下假设计算:

(1) 与前项相同,按换算成两方向的梁柱骨架进行。

(2) 换算的梁柱骨架,荷载按各自方向分布负担进行计算,此换算骨架的梁,

其跨长按x y l l 、,其截面宽度(3/4)y l ,(3/4)x l 以及(t )考虑。

(3) 换算梁柱骨架柱列带(y l /2及x l /2),柱列带0.7,柱间带(y l /2宽度及x l /2)

按0.3的比例进行。

4、B 构造、A 构造按柱顶周围不产生剪切破坏(冲击破坏)而进行设计。

5、除前述各项以外,B 结构、A 结构按下面的(1)~(3)进行

(1) 板厚t 150mm,对应屋面板可以不受此约束,但是按18条第5项的构造

要求。

(2) 柱高(圆形截面柱为直径)满足各方向的柱中心距离x y l l 、的1/20以上、

300mm 以上,同时层高h 的1/15以上。

(3) B 结构按图11.3所示的柱顶与支撑板设计,但是相对于板其倾角小于45?

的柱顶部分,可不进行分担应力。

4章 构件计算

12条 关于弯曲构件截面计算的基本假定:

钢筋混凝土构件的弯矩所对应的截面计算,一般情况下按以下假设进行:

(1) 忽略混凝土的受拉强度

(2) 弯曲构件的各截面在构件弯曲后仍保持平面,混凝土的压缩和混凝土

的压应力是与中性轴开始的距离诚正比。

(3) 钢筋与混凝土的弹性系数比n 与混凝土种类以及长、短期荷载无关,

保持同一值,根据混凝土的设计标准强度c F ,按表12.1取值

图12.1

图12.1与计算截面非垂直钢筋的计算

13条 梁的弯曲所对应的截面计算

1、梁的设计弯矩根据以下方法计算:

(1) 为了确保使用性能的长期计算弯矩,使在梁上作用的长期荷载的最大

弯矩考虑。

(2) 为了损伤控制目的的短期设计弯矩,按其梁上短期荷载作用下的最大

弯矩考虑

2、长方形梁的容许弯矩,根据12条的基本假定,按混凝土的容许压缩应力达到压缩强度C F 时或者受拉钢筋容许受拉应力达到受拉强度t f 时,所对应的值,取其较小值。

3、长方形梁和板视为一体的T 形梁,板在压缩区域内的情况,按以下规定计算:

(1) T 形梁的有效宽度B 一般情况下按8条2项(2)计算

(2) T 形梁容许弯矩按下面的i)或ii)计算:

i)中性轴在板内的情况下

按T 形梁的有效宽度B 作为宽度的长方形梁,按本条2项计算

ii)中性轴在板外的情况下,根据12条的基本假定,判断为T 形截面,其压缩边缘的混凝土的压缩应力达到容许压缩强度c f 时,或者受拉侧的钢筋,其钢筋的受拉应力达到受拉强度t f 时,取较小值。

4、梁的受拉钢筋比在适宜受拉钢筋配筋率的情况下,容许弯矩可按13.1式计算

t t M f j α= (13.1)

符号 M :梁的受拉钢筋适宜受拉钢筋配筋率的情况下容许弯矩

t α:受拉钢筋截面积

t f :受拉钢筋的容许受拉强度

j :梁的应力中心距离,可取7/8d

d:梁的有效高度

图13.1梁的截面

5、除了前述各项的计算以外,梁按下述的(1)~(5)考虑

(1)承受长期荷载下的正负最大弯矩的截面,其受拉钢筋截面积为0.004bd(b:梁宽度,d:梁的有效高度)或者根据内在应力所必须的4/3倍,取大于较小值。

(2)主梁在邻跨使用腹筋梁,但是使用轻质混凝土的梁其受压缩钢筋截面积,按所受钢筋截面积的0.4倍以上取值。

(3)主筋采用D13以上的钢筋取值。

(4)主筋的间距按25mm 以上,同时异形钢筋的直径(公称直径mm )数值的1.5倍以上取值。

(5)主筋的配置除特别情况下,按两层以下考虑

14条 针对柱的轴向力和弯曲的截面计算

1、板的设计弯矩按以下方法计算:

(1) 为确保使用性能的长期设计弯矩,取此柱上长期荷载作用下的最大弯

矩。

(2) 损伤控制所用的短期设计弯矩,取柱上短期荷载作用下的最大弯矩

2、轴力和弯矩同时作用的柱,根据12条的基本假定计算截面的应力,任意的轴向力的作用下,受压边缘混凝土达到受压强度c f 时,受压侧钢筋达到钢筋的受压容许强度c f ,或者受拉钢筋达到容许受拉强度t f 时,所对应的各自的弯矩当中,取其最小值作为容许弯矩M.

3、地震时弯矩有特别增大的可能性的柱子,短期轴力除以柱子的混凝土全截面所得到的数值,要小于1/3C F

4、除了上述计算的各项以外,柱子按(1)~(4)进行计算

(1) 构件的最小直径和其主要支撑点距离的比值,若使用普通混凝土的情况下,为1/15以上,若使用轻质混凝土的情况下,为1/10以上,但是在考虑了柱子的有效长细比的而进行的结构计算,若结构在承载力被确认安全的情况下,不受此限制。

(2) 主筋全截面对混凝土全截面的比值为0.8%以上,但是混凝土的截面增大

到所需截面以上时,可以减小此值。

(3) 主筋按配置了D13以上的异形钢筋配置4根以上

(4) 主筋的间距取20mm 以上,同时异形钢筋直径(公称直径mm )的1.5倍

以上。

15条 梁、柱以及梁柱结合部的剪切计算

1、长方形以及T 形截面的梁、柱结合部的剪切计算,按本条计算,其他的

截面形状情况下,以本条为准计算,但是,试验的方法确认剪切加强梁足够的情况下的容许剪力,可不按本条进行。

2、梁柱的剪切加强

(1) 为确保长期荷载作用下结构的抗剪性能,其验算如下:

i ) 为确保使用性能的梁柱的长期容许剪切,按15.1计算

AL s Q bj f α= (15.1)

符号 b:梁柱的宽度,T 形梁时为腹板的宽度

j:梁、柱的应力中心距离,可按7/8d 采用

s f :混凝土的长期容许剪切强度

α:与梁、柱的剪跨比d

M Q 有关的系数 M:所设计的梁、柱长期荷载下的最大弯矩

Q: 所设计的梁、柱长期荷载下的最大剪力

然而,梁、柱长期容许剪力,若长期荷载剪切裂缝允许的情况下,可按15.2计算进行。

{}0.5(0.002)AL s t Q bj f f p ωωα=+- (15.2)

p ω的值超过0.6%时,按0.6%计算容许剪力。

p ω:梁的分布钢筋比按下式采用

a p bx

ωω= a ω:1组分布钢筋的截面积

x :分布钢筋的间距

t f ω:用于分布钢筋的剪切补强的长期容许强度,其它的符号按以前所述。 ii)梁、柱的长期设计剪力按其构件的长期荷载作用下最大剪力采用

(2) 为验算对应于短期荷载下的剪切损伤控制,按以下进行,但是根据2

项(3)短期设计的情况下,可省略下述计算。

i) 为了控制损伤的梁、柱的短期容许剪力,按(15.3)采用

20.5(0.002)3As s t Q bj f f p ωωα??=+-????

(15.3) 其中4

1d M Q α=+ 1 ≤α≤2(柱1 ≤α≤1.5)

p ω的值若超过1.2%的情况下,按1.2%计算容许剪力

符号b:梁柱的宽度,T 形梁时为腹板的宽度

j:梁、柱的应力中心距离,可按7/8d 采用

d:梁的有效高度

p ω:梁的分布钢筋比

a p bx

ωω= a ω:1组剪切加强钢筋的截面积

x :剪切加固钢筋的间距

s f :混凝土的短期容许剪切强度

t f ω:剪切加强钢筋的短期容许受拉强度,超过3902/N mm 时,按3902/N mm 计算容许剪力。

α:跟梁、柱的剪跨比d

M Q 有关的系数 M:所设计的梁、柱长期荷载下的最大弯矩

Q: 所设计的梁、柱长期荷载下的最大剪力

ii) 为了控制损伤的梁、柱的短期设计剪力,采用(15.4)式

DS L E Q Q Q =+ (15.4)

符号DS Q :梁、柱的设计剪力

L Q :所设计梁、柱的长期荷载作用下的剪力

E Q :所设计梁、柱的水平荷载作用下的剪力

(3) 为确保大地震时安全性能所做的验算,按以下进行,但是根据本条第

2项(2)所进行的短期设计,同时,梁、柱剪切极限强度以及为了检

验根据梁柱的剪切极限强度所对应的剪切破坏安全的情况下,可省略

下列计算。

i) 为确保安全性能的容许剪力,梁按(15.5)式,柱子按(15.6)式计

{}0.5(0.002)A s t Q bj f f p ωωα=+- (15.5)

{}0.5(0.002)A s t Q bj f f p ωω=+- (15.6) 其中4

1d M Q α=+ 1 ≤α≤2

p ω的值若超过1.2%的情况下,按1.2%计算容许剪力

符号b:梁柱的宽度,T 形梁时为腹板的宽度

j:梁、柱的应力中心距离,可按7/8d 采用

d:梁的有效高度

p ω:梁的分布钢筋比

a p bx

ωω= a ω:1组剪切加强钢筋的截面积

x :剪切加固钢筋的间距

s f :混凝土的短期容许剪切强度

t f ω:剪切加强钢筋的短期容许受拉强度,超过3902/N mm 时,按3902/N mm 计算容许剪力。

α:跟梁、柱的剪跨比d

M Q 有关的系数 M:所设计的梁、柱长期荷载下的最大弯矩

Q: 所设计的梁、柱长期荷载下的最大剪力

ii) 为了确保安全性能的设计剪力,梁按(15.7),柱按(15.8),但是,(15.9)

式中的n 若按1.5以上使用的情况下,可不按(15.7)、(15.8)计算

y B

D L M Q Q l =+'∑ (15.7) y c

D M Q h ='∑ (15.8) j 1(1)D D Q Q ξξξ-=-

L Q :由所设计的构件的长期荷载计算的剪力,在式(15.7)中可按简支梁的数值。

y B M ∑

:剪力最大的梁两端的屈服弯矩的绝对值之和 l ':梁的净跨长度

y c M ∑:柱顶部和柱根部屈服弯矩的绝对值之和。

在这种情况下,比较与柱顶的屈服弯矩的绝对值之比,跟柱顶相连的梁的两边的绝对值之和的1/2,比较小的情况下,可按较小的数值昨晚柱顶屈服弯矩,但是,最上层的顶层柱子的情况下,无1/2。

h ':柱的净高

E Q :设计的梁柱的水平荷载计算的剪力

n:水平荷载剪力的有关的系数

(4) 除了以上计算外,梁柱的剪切抗剪钢筋按下述各项进行,但是根据特

殊的调查研究没有问题的情况下,可不按此规定执行。

i) 梁柱的抗剪钢筋,使用直径9mm 以上的圆钢或者D10以上的异形钢

ii) 梁柱的抗剪钢筋比在0.2%以上

iii) 梁的抗剪钢筋(箍筋)的间距,按梁高的1/2以下取值。

iv) 柱的抗剪钢筋(箍筋)的间隔取100mm 以下,但是从柱的上下端开

始,其距离为最大直径的1.5倍或者最小直径的2倍,在数值比较大

的范围内,箍筋间距按前述数值的1.5倍增大。

v) 抗剪钢筋要将箍筋在内的主筋内部的混凝土足够约束度来配置,其端

弯钩按135?以上的角度弯曲,并固定或焊接

vi) 梁宽度比较大的梁,,主筋使用复合箍筋等能够确保韧性的方法

vii) 剪力和压力有可能特殊增大的柱子,端部要配置钢筋端部焊接的封闭

型的箍筋,将主筋包含在内,通过使用复合箍筋等确保构件的韧性。

3、梁、柱节点

(1) 纯框架结构的梁柱节点在大地震作用下,为确保其安全性所做的验

算,按下述进行,但是,为验算根据梁柱节点的剪切极限强度的剪切

破坏的安全性,可省略下述计算。

(2) 为确保梁柱节点的安全性能容许剪力的计算,按式(15.10)进行

()0.5Aj A s j Q f b D κ=- (15.10)

A κ:与梁柱节点形状有关的系数

A κ=10 (十字形节点)

A κ=7 (T 形节点)

A κ=5(卜形节点)

A κ=3(L 形节点)

s f :混凝土的短期容许剪切强度

j b :梁柱节点的有效宽度,按下式进行

12j b a a b b b b =++

b b :宽度,i a b :为i b /2或D/4的较小者

i b :梁两侧面开始到与其平行的柱侧面的长度

D:柱截面高

(3)为确保梁柱节点的安全性能所需要的设计剪力,按(15.11)进行,但是对于(15.9)式中的n,超过1.5以上的柱的情况下,其设计剪力

D Q 计

算时,可按(15.12)式进行 j (1(1)y

D c c b M j

Q H D j H L ξ=-=-∑ (15.11)

j 1D D Q Q ξξ-= (15.12)

但是,ξ为与箍筋形状有关的系数,按(15.3)取值

(1)c b j

D H L ξ=- (15.3)

y

M j :梁柱节点左右两侧的屈服弯矩,其各自绝对值被其各自的应力中心距离j 除以的和,其中,梁的一个方向上部受拉,另一方向下部受拉。

D Q :根据本条2项(3)当中所述,为确保柱的安全性能所需的设计剪力使用当n 为1.5以上,按(15.9)式所计算的各层的数值,对应一般层的梁柱节点,取其节点的上下柱的设计剪力的平均值,对应顶层梁柱节点,取节点以下柱的设计剪力。

D :柱截面高

j:梁的应力中心距离,(15.13)式当中取梁柱节点左右梁的平均值。

c H :梁柱节点上下柱的平均高度,对于顶层节点取顶层柱高的1/2,柱的高度取上下层梁的中心距离。

b L :节点左右梁的平均长度,外端部的节点取外端部梁的长度,梁的长度按梁两端柱的中心距离。

(4) 梁柱节点箍筋按以下各项考虑,但是根据特别调查以及研究确保没有问

题的情况下,不受此限。

i)箍筋使用直径9mm 以上的圆钢或者D10以上的异形钢筋

ii)箍筋配筋率为0.2%以上

iii)箍筋间隔为150mm 以下,同时小于邻柱箍筋间隔的1.5倍以下。

16条 粘结及焊接

1、粘结

(1)弯曲构件的受拉钢筋在跨度范围内,从需要考虑粘结的截面开始到粘结长度d l 范围内的粘结应力的计算,按本条第1项(4)的规定进行,针对保证长期荷载的使用性能,短期荷载的损伤控制以及大地震作用下为保证安全性能的计算。

(2)弯曲构件的粘结截面的确定按以下考虑:

1)跨度内最大弯矩所对应的截面

2)跨度内不需要计算减少的钢筋计算

(3)弯曲构件的受拉钢筋的粘结长度d l 按以下确定

1)在跨度当中被截断的钢筋的粘结长度

a)从粘结检查截面开始到钢筋端部的长度

b)在钢筋的端部设置标准弯钩(17条规定)的情况下,粘结检查截面开始到弯钩开始点之间的长度

2)跨度内通常配置的钢筋粘结长度

a)两端弯曲屈曲的情况下,2

d L d l += 但是,在能够确认弯曲构件上不产生剪切裂缝的情况下,能够用2

d L l =公式 b)除以上的情况外,d l L =

符号,L :弯曲构件的净长度

d: 弯曲构件的有效长度

(4)弯曲构件的受拉钢筋的粘结应力计算按以下计算

1)为保证长期荷载作用下使用性能所进行的验算,按式(16.1)(16.2)进行

1L a L a Q f j

τψ=≤∑ (16.1) 20.84()L

t b a S b d d f l d στ=≤- (16.2)

2)短期荷载作用下的损伤控制而进行的验算,按式(16.3)(16.4)进行

1L E a s a Q Q f j τψ+=≤∑

(16.3)

20.84()

t b a s a d s d f l d στ=≤- (16.4) 3)为确保大地震作用下的安全性能所进行的验算,按(16.5)进行,但是即使大地震作用下能明确表明发生粘结割裂破坏的弯曲构件以及根据本条1项(4)2)进行的短期设计,并且,粘结割裂强度所进行的粘结割裂破坏的验算另外进行的情况下,以下验算可以忽略:

4()y b

y b d d Kf l d στ=≤- (16.5)

0.30.4 2.5b

C W K d ??+=+≤ ??? (16.6) 80

2.5st b A W d sN

=≤ (16.7) 符号 1a τ:受拉钢筋弯曲粘结应力 2a τ:受拉钢筋平均粘结应力

y τ:受拉钢筋弯曲屈服时的平均粘结应力

L Q :长期荷载作用下的剪力

E Q :水平荷载作用下的剪力

ψ:受拉钢筋的长度

j :弯曲构件的应力中心距,取j =(7/8)d

d :弯曲构件的有效长度

d l :受拉钢筋的粘结长度,在(16.2)、(16.4)、(16.5)当中,根据所受荷载的情况,在能确保弯曲构件不发生剪切裂缝的情况下,公式中d l -d 可以按d l 考虑。 L t σ:粘结验算截面的长期荷载作用下的钢筋所产生的应力,钢筋端部设置标准弯钩的情况下,其值的2/3倍考虑

s t σ:粘结验算截面位置上在短期荷载作用下,钢筋内所存在的应力,钢筋端部设置标准弯钩的情况下,其值的2/3倍考虑

y σ:粘结验算截面位置上的钢筋的屈服强度,钢筋端部设置标准弯钩的情况下,其值的2/3倍考虑

L a f :长期容许粘结应力,按6条进行。

S a f :短期容许粘结应力,按6条进行。

b f :粘结割裂的基本强度按16.1考虑

K :钢筋的配置方式和分布钢筋所采用的修正系数,取2.5以下。

C :取粘结验算截面上钢筋之间的间距或最小保护层厚度的3倍,两者之中的较小值,按5b d 以下取值。

W :考虑了粘结割裂面上的横切截面上横向分布钢筋的效果的长度,2.5b d 以下取值。

st A :所考虑的钢筋列的粘结割裂面横切面上横向分布钢筋的截面面积

S :一组横向分布钢筋(截面st A )的间距

N :考虑的钢筋其粘结割裂面上的钢筋根数

b d :弯曲抗弯钢筋直径,异形钢筋的情况下,取公称直径。

筋 2)c F 是混凝土的设计基本强度2(/)N mm

3)多层配筋的第一层(截面外侧)以为的钢筋,其值按上表乘0.6

(5)关于粘结的构造要求

1)切断的钢筋是在计算上不需要的截面以外,按构件有效高度的d 以上延长。

2)受拉上部钢筋的1/3以上,要超过反弯点,并且按梁有效高度的d 以上延长,但是,由短期应力存在的构件,由1/3以上的钢筋构件延伸贯通或设置连接。

3)受拉的下部钢筋,其1/3以上的混凝土构件全贯通或搭接。

4)受拉钢筋的粘结强度,原则上不应小于300mm

5)钢筋束按等价的一根钢筋考虑

6)柱以及梁(基础梁除外)挑出部分以及烟囱,原则上钢筋的端部设置标准弯钩

2、钢筋搭接

(1)钢筋的搭接包括重叠搭接、压接搭接、焊接搭接或机械式搭接,但是本条当中以下仅对重复搭接

(2)D35以上的钢筋原则上不能用重复搭接

(3)钢筋的重复搭接位置原则上在构件以及钢筋上应力较小部位设置,同一截面上不作全部截面受拉钢筋的搭接。

钢筋混凝土结构中的钢筋有哪几种

钢筋的分类和用途 钢筋种类很多,通常按化学成分、生产工艺、轧制外形、供应形式、直径大小,以及在结构中的用途进行分类: 1.按化学成分分 碳素钢钢筋和普通低合金钢筋。碳素钢钢筋按碳量多少,又分为低碳钢钢筋(含碳量低于0.25%,如I级钢筋),中碳钢钢筋(含碳量0.25%~0.7%,如IV级钢筋),高碳钢钢筋(含碳量0.70%~1.4%,如碳素钢丝),碳素钢中除含有铁和碳元素外,还有少量在冶炼过程中带有的硅、锰、磷、硫等杂质。普通低合金钢钢筋是在低碳钢和中碳钢中加入少量合金元素,获得强度高和综合性能好的钢种,在钢筋中常用的合金元素有硅、锰、钒、钛等,普通低合金钢钢筋主要品种有:20MnSi、40Si2MnV、45SiMnTi等。 各种化学成分含量的多少,对钢筋机械性能和可焊性的影响极大。一般建筑用钢筋在正常情况下不作化学成分的检验,但在选用钢筋时,仍需注意钢筋的化学成分。下面介绍钢筋中主要的五种元素对其性能的影响。 碳(C):碳与铁形成化合物渗碳体(Fe3C),材性硬且脆,钢中含碳量增加渗碳体量就大,钢的硬度和强度也提高,而塑性和韧性则下降,材性变脆,其焊接性也随之变差。 锰(Mn):它是炼钢时作为脱氧剂加入钢中的,可使钢的塑性及韧性下降,因此含量要合适,一般含量在1.5%以下。

硅(Si):它也是作为脱氧剂加入钢中的,可使钢的强度和硬度增加。有时特意加入一些使其含量大于0.4%,但不能超过0.6%,因为它含量大时与碳(C)含量大时的作用一样。硫(S):它是一种导致钢热脆性、使钢在焊接时出现热裂纹的有害杂质。它在钢中的存在使钢的塑性和韧性下降。一般要求其含量不得超过0.045%。 磷(P):它也是一种有害物质。磷使钢容易发生冷脆并恶化钢的焊接性能,尤其在200℃时,它可使钢材或焊缝出现冷裂纹。一般要求其含量低于0.045%,即使有些低合金钢也必须控制在0.050%~0.120%之间。 2.按轧制外形分 (1)光面钢筋:I级钢筋(Q235钢钢筋)均轧制为光面圆形截面,供应形式有盘圆,直径不大于10mm,长度为6m~12m。 (2)变形钢筋/带肋钢筋:有螺旋形、人字形和月牙形三种,一般Ⅱ、Ⅲ级钢筋轧制成人字形,Ⅳ级钢筋轧制成螺旋形及月牙形。 3.按直径大小分 钢丝(直径3~5mm)、细钢筋(直径6~10mm)、粗钢筋(直径大于22mm)。 4.按力学性能分 Ⅰ级钢筋(235/370级);Ⅱ级钢筋(335/510级);Ⅲ级钢筋

钢结构建筑结构荷载规范

《建筑结构荷载规范》 (GB50009-2001)新内容有关调整部分:新规范于2002年3月1日启用,原规范(GBJ9-87)于2002年12月31日废止;新规范规定必须严格执行的强制性条文共13条,具体分配为:第1章有1条、第3章有3条、第4章有5条、第6章有2条、第7章有2条;楼面活荷载作了一些调整和增项,屋面不上人活荷载也作了一些调整;风、雪荷载由原按30年一遇重新规定为按50年一遇,同时对滁州市的风、雪荷载值也作了一点调整:10米高50年一遇基本风压值为0.35KN/M2,雪压值为0.40KN/M2,雪荷载准永久值系数为0.2,属于第Ⅱ分区;在计算风载时,风压高度变化系数根据地面粗糙度类别来确定:原规范(GBJ9-87)将地面粗糙度类别分为三类(A、B、C)。随着我国建设事业的蓬勃发展,城市房屋的高度和密度日益增大,因此,对大城市中心地区的粗糙程度也有不同程度的提高,新规范(GB50009-2001)特将地面粗糙度改为四类(A、B、C、D),其中A、B类的有关参数不变,C类指有密集建筑群的城市市区,其粗糙度指数α由0.2改为0.22,梯度风高度HG仍取400m,新增添的D类,是指有密集建筑群且有大量高层建筑的大城市市区,其粗糙度指数α为0.3,梯度风高度HG取450m;专门规定了围护结构构件的风荷载及相关计算;在常用材料和构件的自重之“附表A”中,增设了“建筑墙板”一览表。强制性条文部分:第1章“总则”之强制性条文:第1.0.5条:规范采用的设计基准期一律为50年;第3章“荷载分类和荷载效应组合”之强制性条文:第3.1.2条:建筑结构设计时,对不同荷载应采用不同的代表值:对永久荷载应采用标准值作为代表值;对可变荷载应根据设计要求采用标

钢筋混凝土结构中的钢筋有哪几种

钢筋的分类和用途钢筋种类很多,通常按化学成分、生产工艺、 轧制外形、供应形式、直径大小,以及在结构中的用途进行分类:1.按化学成分分碳素钢钢筋和普通低合金钢筋。碳素钢钢筋按碳量多少,又分为低碳钢钢筋(含碳量低于0.25%,如I 级钢筋),中碳钢钢筋(含碳量0.25%?0.7%,如IV级钢筋),高碳钢钢筋(含碳量0.70%?1.4%,如碳素钢丝),碳素钢中除含有铁和碳元素外,还有少量在冶炼过程中带有的硅、锰、磷、硫等杂质。普通低合金钢钢筋是在低碳钢和中碳钢中加入少量合金元素,获得强度高和综合性能好的钢种,在钢筋中常用的合金元素有硅、锰、钒、钛等,普通低合金钢钢筋主要品种有: 20MnSi、40Si2MnV 、4 5SiMnTi 等。各种化学成分含量的多少,对钢筋机械性能和可焊性的影响极大。一般建筑用钢筋在正常情况下不作化学成分的检验,但在选用钢筋时,仍需注意钢筋的化学成分。下面介绍钢筋中主要的五种元素对其性能的影响。碳(C):碳与铁形成化合物渗碳体(Fe3C),材性硬且脆,钢中含碳量增加渗碳体量就大,钢的硬度和强度也提高,而塑性和韧性则下降,材性变脆,其焊接性也随之变差。 锰(Mn):它是炼钢时作为脱氧剂加入钢中的,可使钢的塑性及 韧性下降,因此含量要合适,一般含量在1.5%以下。 硅(Si):它也是作为脱氧剂加入钢中的,可使钢的强度和硬 度增加。有时特意加入一些使其含量大于0.4%,但不能超 过0.6%,因为它含量大时与碳(C)含量大时的作用一样。硫

(S):它是一种导致钢热脆性、使钢在焊接时出现热裂纹的有害杂质。它在钢中的存在使钢的塑性和韧性下降。一般要求其含量不得超过0.045%。 磷(P):它也是一种有害物质。磷使钢容易发生冷脆并恶化钢的焊接性能,尤其在200 C时,它可使钢材或焊缝出现冷 裂纹。一般要求其含量低于0.045%,即使有些低合金钢也 必须控制在0.050%?0.120%之间。 2.按轧制外形分 (1 )光面钢筋:I 级钢筋(Q235 钢钢筋)均轧制为光面圆形截面,供应形式有盘圆,直径不大于10mm ,长度为6m~12m 。 (2)变形钢筋/带肋钢筋:有螺旋形、人字形和月牙形三种,一般□、川级钢筋轧制成人字形,W级钢筋轧制成螺旋形及月牙形。 3.按直径大小分 钢丝(直径3~5mm )、细钢筋(直径6?10mm )、粗钢筋(直径大于22mm)。 4.按力学性能分 I级钢筋(235/370级);H级钢筋(335/510级);川级钢筋

建筑结构荷载规范汇总

建筑结构荷载规范汇 总 1.0.1 为了适应建筑结构设计的需要,以符合安全适用、经济合理的要求,制定本规范。 1.0.2 本规范适用于建筑工程的结构设计。 1.0.3 本规范是根据《建筑结构可靠度设计统一标准》(GB50068-2001)规定的原则制订的。 1.0.4 建筑结构设计中涉及的作用包括直接作用(荷载)和间接作用(如地基变形、混凝土收缩、焊接变形、温度变化或地震等引起的作用)。本规范仅对有关荷载作出规定。 1.0.5 本规范采用的设计基准期为50 年。 1.0.6 建筑结构设计中涉及的作用或荷载,除按本规范执行外,尚应符合现行的其他国家标准的规定。 2.1.1 永久荷载permanent load 在结构使用期间,其值不随时间变化,或其变化与平均值相比可以忽略不计,或其变化是单调的并能趋于限值的荷载。 2.1.2 可变荷载variable load 在结构使用期间,其值随时间变化,且其变化与平均值相比不可以 忽略不计的荷载。 2.1.3 偶然荷载accidental load 在结构使用期间不一定出现,一旦出现,其值很大且持续时间很 短的荷载。 2.1.4 荷载代表值representative values of a load 设计中用以验算极限状态所采用的荷载量值, 例如标准值、组合值、频遇值和准永久值。 2.1.5 设计基准期design reference period 为确定可变荷载代表值而选用的时间参数。 2.1.6 标准值characteristic value/nominal value 荷载的基本代表值,为设计基准期内最大荷载统计分布的特征值(例如均值、众值、中值或某个分位值)。 2.1.7 组合值combination value 对可变荷载,使组合后的荷载效应在设计基准期内的超越概率,能与该荷载单独出现时的相应概率趋于一致的荷载值;或使组合后的结构具有统一规定的可靠指标的荷载值。 2.1.8 频遇值frequent value 对可变荷载,在设计基准期内,其超越的总时间为规定的较小比率或超越频率为规定频率的荷载值。 2.1.9 准永久值quasi-permanent value 对可变荷载,在设计基准期内,其超越的总时间约为设计 基准期一半的荷载值。 2.1.10 荷载设计值design value of a load 荷载代表值与荷载分项系数的乘积。 2.1.11 荷载效应load effect 由荷载引起结构或结构构件的反应,例如内力、变形和裂缝等。 2.1.12 荷载组合load combination 按极限状态设计时,为保证结构的可靠性而对同时出现的各种 荷载设计值的规定。 2.1.13 基本组合fundamental combination 承载能力极限状态计算时,永久作用和可变作用的组 合。 2.1.14 偶然组合accidental combination 承载能力极限状态计算时,永久作用、可变作用和一个偶 然作用的组合。 2.1.15 标准组合characteristic/nominal combination 正常使用极限状态计算时,采用标准值或组 合值为荷载代表值的组合。 2.1.16 频遇组合frequent combinations 正常使用极限状态计算时,对可变荷载采用频遇值或准永 久值为荷载代表值的组合。

混凝土计算题与答案解析

四、计算题(要求写出主要解题过程及相关公式,必要时应作图加以说明。每题15分。) 第3章 轴心受力构件承载力 1.某多层现浇框架结构的底层内柱,轴向力设计值N=2650kN ,计算长度m H l 6.30==,混凝土强度等级为C30(f c =mm 2),钢筋用HRB400级(2'/360mm N f y =),环境类别为一类。确定柱截面积尺寸及纵筋面积。(附稳定系数表) 2.某多层现浇框架厂房结构标准层中柱,轴向压力设计值N=2100kN,楼层高l 0=H =,混凝土用C30(f c =mm 2),钢筋用HRB335级(2'/300mm N f y =),环境类别为一类。确定该柱截面尺寸及纵筋面积。(附稳定系数表) 3.某无侧移现浇框架结构底层中柱,计算长度m l 2.40=,截面尺寸为300mm ×300mm ,柱内配有416纵筋(2'/300mm N f y =),混凝土强度等级为C30(f c =mm 2),环境类别为一类。柱承载轴心压力设计值N=900kN ,试核算该柱是否安全。(附稳定系数表) 第4章 受弯构件正截面承载力 1.已知梁的截面尺寸为b ×h=200mm ×500mm ,混凝土强度等级为C25,f c =mm 2, 2/27.1mm N f t =, 钢筋采用HRB335,2/300mm N f y =截面弯矩设计值M=。环境类别 为一类。求:受拉钢筋截面面积。 2.已知梁的截面尺寸为b ×h=200mm ×500mm ,混凝土强度等级为C25, 22/9.11,/27.1mm N f mm N f c t ==,截面弯矩设计值M=。环境类别为一类。 3.已知梁的截面尺寸为b ×h=250mm ×450mm;受拉钢筋为4根直径为16mm 的HRB335钢筋,即Ⅱ级钢筋,2 /300mm N f y =,A s =804mm 2;混凝土强度等级为C40, 22/1.19,/71.1mm N f mm N f c t ==;承受的弯矩M=。环境类别为一类。验算此梁截面 是否安全。 4.已知梁的截面尺寸为b ×h=200mm ×500mm ,混凝土强度等级为C40, 22/1.19,/71.1mm N f mm N f c t ==,钢筋采用HRB335,即Ⅱ级钢筋,2 /300mm N f y =, 截面弯矩设计值M=。环境类别为一类。受压区已配置3φ20mm 钢筋,A s ’=941mm 2,求受拉钢筋A s 5.已知梁截面尺寸为200mm ×400mm ,混凝土等级C30,2 /3.14mm N f c =,钢筋 采用HRB335,2 /300mm N f y =,环境类别为二类,受拉钢筋为3φ25的钢筋,A s =1473mm 2,受压钢筋为2φ6的钢筋,A ’s = 402mm 2;承受的弯矩设计值M=。试验算此截面是否安全。 6.已知T 形截面梁,截面尺寸如图所示,混凝土采用C30, 2/3.14mm N f c =,纵向钢筋采用HRB400级钢筋,

钢筋混凝土结构复习资料

★在普通钢筋混凝土结构中,采用高强度钢筋是否合理?为什么?不合理。强度太高,在正常使用时受拉钢筋应力太大,造成裂缝开展过宽;用作受压钢筋则破坏时混凝土最大压应变只能达到0.002,超过此值混凝土已压坏了,因此钢筋最大压应力只能达到0.002Es,约为400N/mm2。若钢筋的屈服强度超过400N/mm2,在受压时就不能充分发挥作用。★正常配筋的钢筋混凝土梁从加载到破坏的三个阶段及其特点和与计算的联系?①第Ⅰ阶段即未裂阶段,初始荷载很小时,截面上混凝土应力和钢筋应力都不大,两者的变形基本是弹性的,且应力与应变之间保持线性关系,当荷载持续加大到该阶段末尾时,混凝土受拉区的应力达到了其抗拉强度,出现了很大的塑性变形。若是荷载再增大则受拉区就会出现裂缝,而受压区的压应力远小于混凝土的抗压强度,还处于弹性阶段。受弯构件正常实用阶段抗裂验算即以此应以状态为依据。②当弯矩继续增加,进入第Ⅱ应力阶段即裂缝阶段。受拉区产生裂缝,裂缝所在截面的受拉区混凝土几乎完全脱离工作,拉力由钢筋单独承担。裂缝宽度随荷载的增大而增大并向上发展,受压区也有一定的塑性变形发展,应力图形呈平缓的曲线形。正常使用阶段变形和裂缝宽度的验算即以此应力阶段为依据。③第Ⅲ阶段——“破坏阶段”。荷载继续增加,钢筋应力达到屈服强度fy,即认为梁已进入此时钢筋应力不增加而应变迅速增大,促使裂缝急剧开展并向上延伸,混凝土受压区面积减小,混凝土的压应力增大。在边缘纤维受压应变达到极限值时,受压混凝土发生纵向水平裂缝而被压碎,梁就随之破坏。计算正截面承载力时即以此应力阶段为依据。 ★受弯构件正截面有哪几种破坏形态?破坏特点有何区别?在设计时如何防止发生这几种破坏?①适筋破坏,受拉钢筋的应力首先到达屈服强度,有一根或几根裂缝迅速扩展并向上延伸,受压区面积大大减小,迫使混凝土边缘应变达到极限压应变εcu而被压碎,构件即告破坏。破坏前,构件有明显的裂缝开展和挠度,属于延性破坏。②超筋梁,加载后受拉钢筋应力尚未达到屈服强度前,受压混凝土却已先达到极限压应变而被压坏,这种破坏属于脆性突然破坏。超筋梁承载力控制由于混凝土截面受压区,受拉钢筋未能发挥其应有的作用,裂缝条数多但宽度细小,挠度也小属脆性破坏。③少筋梁,受拉区混凝土一出现裂缝,裂缝截面的钢筋应力很快达到屈服强度,并可能经过流幅段而进入强化阶段。这种少筋梁在破坏时往往只出现一条裂缝,但是裂缝开展极宽,挠度也增长极大,少筋构件的破坏基本上属于脆性破坏,而且构件的承载力又很低,所以在设计中也应避免采用。为防止超筋破坏,应使截面破坏时受压区的计算高度x不致过大,即应使x≤α1ξb?0。为防止少筋破坏,应使受拉纵筋配筋率ρ≥ρmin。 ★影响梁斜截面承载力的因素有哪些?①剪跨比:剪跨比是集中荷载作用下影响梁斜截面承载力的主要因素,随着剪跨比的增加,斜截面受剪承载力降低。②混凝土强度等级:从斜截面破坏的几种主要形态可知,斜拉破坏主要取决于混凝土的抗拉强度,剪压破坏和斜压破坏与混凝土的抗压强度有关,因此,在剪跨比和其他条件相同时,斜截面受剪承载力随混凝土强度的提高而增大,试验表明二者大致呈线性关系。③腹筋数量及其强度:试验表明,在配箍量适当的情况下,梁的受剪承载力随腹筋数量增多、腹筋强度的提高而有较大幅度的增长。④纵筋配筋率:在其他条件相同时,纵向钢筋配筋率越大,斜截面承载力也越大,试验表明,二者大致呈线性关系。 ★什么叫偏心受压构件的界限破坏?常用钢筋是否都有明显的屈服极限?设计时它们取什么强度作为设计的依据?为什么?常用钢筋都有明显的屈服极限。设计时取它们的屈服强度fy作为设计的依据。因为钢筋达到fy后进入屈服阶段,应力不加大而应变大大增加,当进入强化阶段时应变已远远超出允许范围。所以钢筋的受拉设计强度以fy为依据。强化阶段超过fy的强度只作为安全储备,设计时不予考虑。 ★什么是连续梁的内力包络图?将恒载在各截面上产生的内力叠加上各相应截面最不利活荷载所产生的内力,便得出各截面的弯矩图和剪力图,最后将各种活荷载不利布置的

传统文化赏析

正面影响:1、造成了中国文化中整体系统的、辩证发展的思维方式。例如:儒家博施济众、成己成物的仁心,道家“万物与我为一”的宽容,佛家“普渡众生”的情志,都是“天、地、人统一”观念的结晶。2、造成了追求和谐社会的理想主义倾向。例如:自孔子提出“人能弘道”、“修己以安百姓”的主张之后,“内圣外王”的思想,“治国平天下”的志向,“大同”的理想,遂成为历代士人追求的目标。他们极力要把这种思想、志向、理想实现于现实社会之中,即使并不能够实现,也仍然认为不能没有对于理想的追求。 3、造成“诚明合能”的人生修养哲学,推动人们在成人成物、人我交融中实现人格、品德的完善。“诚明合能”中的“诚”,是“天”在“人”中之德,“明”是对于理想以及一己之“德”、“能”的觉悟。“诚明合能”是要使人的心性修养与人我的和谐、对天地自然的顺应都融洽为一,以培养真善美统一的理想人格,把品德、精神逐层提升至道德境界、天地境界。 其负面影响是: 1、思维方式过分强调整体联系与统一,缺乏必要的分析和论证,致使我们没有能够经过近代的实验科学而进入现代科学; 2、过分强调社会的和谐与统一;而使封建社会长期停滞,资本主义萌芽生长缓慢,在一个长时期内民族心理自视过高而缺乏进取精神; 3、空想的理想主义使主观易于脱离实际,而不得不违心地去美化现实; 4、“心性之学”重体悟,不重客观观察,把道德实践作为根本的实践活动,很难解决社会生活中的种种矛盾,也限制了实证科学的发展。 答:“天人合一”的观念对中国传统文化的影响是多方面的: 第一,造成了中国文化中整体系统的、辨证发展的思维方式。儒家博施济众,成己成物的仁心,道家“万物与我合一”的宽容,佛家普度众生的情志,都是天、地、人统一观念的结晶。效法天的刚健日新与地的厚德载物,造就了中华民族专直精诚,含弘广大的秉性与开物成务、自强不息的民族精神。 第二,造成了追求和谐社会的理想主义倾向。 第三,造成“成明合能”的人生修养哲学,推动人们在成己成物、人我交融中实现人格、品格的完善。 天人合一的哲学观念也给中国文化及其发展以负面的影响。思维方式过分强调整体联系与统一,缺乏必要的分析和论证,致使我们没能经过近代的实验而进入现代科学过分强调社会的和谐与统一,而使封建社会长期停滞,资本主义萌芽生长缓慢,在一个长时期内民族心理自视过高而缺乏进取精神。 天人合一并不复杂,可以说这种思想和意识渗透在我们生活中的方方面面,影响着我们一切决择,它是我们思维中最深层的潜意识,而且是一种集体潜意识,也就是每一个人所共有的。只不过,有一些先知先觉的人可以将此潜意识提炼出来,并作为一种明悟时刻指引自己的生活,从而创造出惊世骇俗的杰出成就。 天人合一是中华民族价值观的核心精髓,做为一种集体潜意识,它融入到了中国社会、文化、与组织形态、个人成长的方方面面。 它首先代表的是一种中国人整体把握世界的观察模式,仰观天象、俯视地理、中察人事,而世事知;人在天中,天中有人,天人合一。

有限元分析在钢筋混凝土结构中的应用

论文题目:钢筋混凝土有限元分析技术在结构工程中的应用 学生姓名:刘畅 学号:2014105110 学院:建筑与工程学院 2015年06月30日

有限元分析在钢筋混凝土结构中的应用【摘要】在国内外的土木工程中,钢筋混凝土结构因具有普遍性、可靠性良好、操作简单等优点,而得到了广泛的应用。钢筋混凝土结构是钢筋与混凝土两种性质截然不同的材料组合而成,由于其组合材料的性质较为复杂,同时存在非线性与几何线形的特征,应用传统的解析方法进行材料的分析与描述在受力复杂、外形复杂等情况下较为困难,往往不能得到准确的数据,给工程安全带来隐患。而有限元分析方法则充分利用现代电子计算机技术,借助有限元模型有效解决了各种实际问题。 【关键词】有限元分析;钢筋混凝土结构;应用 随着计算机在工程设计领域中的广泛应用,以及非线性有限元理论研究的不断深入,有限元作为一个具有较强能力的专业数据分析工具,在钢筋混凝土结构中得到了广泛的应用。在现代建筑钢筋混凝土结构的分析中,有限元分析方法展现了较强的可行性、实用性与精确性。例如:在计算机上应用有限元分析法,对形状复杂、柱网复杂的基础筏板,转换厚板,体型复杂高层建筑侧向构件、楼盖,钢-混凝土组合构件等进行应力,应变分析,使设计人员更准确的掌握构件各部分内力与变形,进而进行设计,有效解决传统分析方法的不足,满足当前建筑体型日益复杂,工程材料多样化的实际情况。但是在有限元分析方法的应用中,必须结合钢筋混凝土结构工程的实际情况,选取作为合理的有限元模型,才能保证模拟与分析结果的真实性、精确性与可靠性。 在钢筋混凝土结构工程中,非线性有限元分析的基本理论可以概括为:1)通过分离钢筋混凝土结构中的钢筋、混凝土,使其成为有限单位、二维三角形单元,钢箍离散为一维杆单元,以利于分析模型的构建;2)为了合理模拟钢筋、混凝土之间的粘结滑移关系,以及

《钢筋混凝土结构》 参考答案

《钢筋混凝土结构》 专科 试卷一 一、填空题 1、混凝土抗压试验时加载速度对立方体抗压强度也有影响,加载速度越快,测得的强度越高。 2、混凝土的抗拉强度f tk比抗压强度低得多,一般只有抗压强度的1/20~1/10 。 3、混凝土在荷载保持不变的情况下随时间而增长的变形称为徐变,;混凝土在空气中结硬时体积减小的现象称为收缩。 4、结构功能的极限状态分为半概率极限状态设计法和概率极限状态设计法.两类 5、结构可靠性是指结构在规定的时间内,在规定的条件下,完成预定功能的概率。 6、抗剪钢筋也称作腹筋,腹筋的形式可以采用 箍筋 和__弯起钢筋 。 7、剪跨比对无腹筋梁破坏形态的影响表现在:一般λ>3常为斜拉破坏;当λ≤1时,可能发生斜压破坏;当1<λ≤3时,一般是剪压破坏。 8、试验表明,若构件中同时有剪力和扭矩作用,剪力的存在,会降低构件的抗 扭承载力;同样,由于扭矩的存在,也会引起构件抗剪承载力的降低。这便是剪力和扭矩的相关性。 9、两类偏心受压破坏的本质区别就在于破坏时受拉钢筋能否达到屈服。 10、在偏心受压构件的正截面承载力计算中,应考虑轴向压力在偏心方向存在的附加偏心距e a,其值取和偏心方向截面尺寸的两者中的较大者。 二、选择题 1、双筋矩形截面承载力计算,受压钢筋设计强度不超过400N/mm2,因为( A )

(A) 受压混凝土强度不足 (B) 混凝土受压边缘混凝土已达到极限应变 (C) 需要保证截面具有足够的延性 2、在进行受弯构件斜截面受剪承载力计算时,若所配箍筋不能满足抗剪要求(V>V cs)时,采取哪种解决办法较好( C ) (A) 将纵向钢筋弯起为斜筋或加焊斜筋 (B) 将箍筋加密或加粗 (C) 增大构件截面尺寸 (D) 提高混凝土强度等级 3、钢筋混凝土大偏心受压构件的破坏特征是( A ) (A) 远离轴向力一侧的钢筋拉屈,随后另一侧钢筋压屈,混凝土被压碎 (B) 远离轴向力一侧的钢筋应力不定,而另一侧钢筋压区,混凝土被压碎 (C) 靠近轴向力一侧的钢筋和混凝土应力不定,而另一侧受拉钢筋受拉屈服 4、指的是混凝土的( A ) (A)弹性模量 (B) 割线模量 (C) 切线模量 (D) 原点切线模量 5、普通钢筋混凝土结构不能充分发挥高强钢筋的作用,主要原因是( C ) (A) 受压混凝土先破坏 (B) 未配置高强混凝土 (C) 不易满足正常使用极限状态 三、简答题 1、如何确定混凝土的立方体抗压强度标准值?它与试块尺寸的关系如何? 答:按标准方法制作、养护的边长为150mm的立方体在28天龄期用标准试验方法测得的具有95%保证率的抗压强度。试件尺寸越小,抗压强度值越高。 2、荷载设计值与荷载标准值有什么关系? 答:荷载代表值乘以荷载分项系数后的值,称为荷载设计值。设计过程中,只是在按承载力极限状态计算荷载效应组合设计值的公式中引用了

建筑结构荷载规范标准

3 荷载分类和荷载效应组合 3.1 荷载分类和荷载代表值 3.1.1 结构上的荷载可分为下列三类: 1 永久荷载,例如结构自重、土压力、预应力等。 2 可变荷载,例如楼面活荷载、屋面活荷载和积灰荷载、吊车荷载、风荷载、雪荷载等。 3 偶然荷载,例如爆炸力、撞击力等。 注:自重是指材料自身重量产生的荷载(重力)。 3.1.2 建筑结构设计时,对不同荷载应采用不同的代表值。对永久荷载应采用标准值作为代表值。 对可变荷载应根据设计要求采用标准值、组合值、频遇值或准永久值作为代表值。 对偶然荷载应按建筑结构使用的特点确定其代表值。 3.1.3 永久荷载标准值,对结构自重,可按结构构件的设计尺寸与材料单位体积的自重计算确定。对于自重变异较大的材料和构件(如现场制作的保温材料、混凝土薄壁构件等),自重的标准值应根据对结构的不利状态,取上限值或下限值。 注:对常用材料和构件可参考本规附录A采用。 3.1.4 可变荷载的标准值,应按本规各章中的规定采用。 3.1.5 承载能力极限状态设计或正常使用极限状态按标准组合设计时,对可变荷载应按组合规定采用标准值或组合值作为代表值。 可变荷载组合值,应为可变荷载标准值乘以荷载组合值系数。 3.1.6 正常使用极限状态按频遇组合设计时,应采用频遇值、准永久值作为可变荷载的代表值;按准永久组合设计时,应采用准永久值作为可变荷载的代表值。 可变荷载频遇值应取可变荷载标准值乘以荷载频遇值系数。 可变荷载准永久值应取可变荷载标准值乘以荷载准永久值系数。 3.2 荷载组合 3.2.1 建筑结构设计应根据使用过程中在结构上可能同时出现的荷载,按承载能力极限状态和正常使用极限状态分别进行荷载(效应)组合,并应取各自的最不利的效应组合进行设计。 3.2.2 对于承载能力极限状态,应按荷载效应的基本组合或偶然组合进行荷载(效应)组合,并应采用下列设计表达式进行设计: γoS≤R (3.2.2)

钢筋混凝土结构习题及答案教学内容

钢筋混凝土结构习题 及答案

钢筋混凝土结构习题及答案 一、填空题 1、斜裂缝产生的原因是:由于支座附近的弯矩和剪力共同作用,产生的 超过了混凝土的极限抗拉强度而开裂的。 2、随着纵向配筋率的提高,其斜截面承载力。 3、弯起筋应同时满足、、,当设置弯起筋仅用于充当支座负弯矩时,弯起筋应同时满足、,当允许弯起的跨中纵筋不足以承担支座负弯矩时,应增设支座负直筋。 4、适筋梁从加载到破坏可分为3个阶段,试选择填空:A、I;B、 I a;C、II;D、II a;E、III;F、III a。①抗裂度计算以阶段为依据;②使用阶段裂缝宽度和挠度计算以阶段为依据;③承载能力计算以阶段为依据。 5、界限相对受压区高度b 需要根据等假定求出。 6、钢筋混凝土受弯构件挠度计算中采用的最小刚度原则是指在 弯矩范围内,假定其刚度为常数,并按截面处的刚度进行计算。 7、结构构件正常使用极限状态的要求主要是指在各种作用下 和 不超过规定的限值。

8、受弯构件的正截面破坏发生在梁的 ,受弯构件的斜截面破坏发生在梁的 ,受弯构件内配置足够的受力纵筋是为了防止梁发生 破坏,配置足够的腹筋是为了防止梁发生 破坏。 9、当梁上作用的剪力满足:V ≤ 时,可不必计算抗剪腹筋用量,直接按构造配置箍筋满足max min ,S S d d ≤≥;当梁上作用的剪力 满足:V ≤ 时,仍可不必计算抗剪腹筋用量,除满足max min ,S S d d ≤≥以外,还应满足最小配箍率的要求;当梁上作用的剪 力满足:V ≥ 时,则必须计算抗剪腹筋用量。 10、当梁的配箍率过小或箍筋间距过大并且剪跨比较大时,发生的破坏形式为 ;当梁的配箍率过大或剪跨比较小时,发生的破坏形式为 。 11、由于纵向受拉钢筋配筋率百分率的不同,受弯构件正截面受弯破坏形态有 、 和 。 12、斜截面受剪破坏的三种破坏形态包括 、 和 13、钢筋混凝土构件的平均裂缝间距随混凝土保护层厚度的增大而 。用带肋变形钢筋时的平均裂缝间距比用光面钢筋时的平均裂缝间距_______(大、小)些。 14、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成 形状,且箍筋的两个端头应 。 答案: 1、复合主拉应力;

建筑荷载规范

民用建筑荷载标准值(自重): 住宅办公楼旅馆医院标准值2.0 KN/m2 食堂餐厅 2.5 KN/m2 礼堂剧场影院 3.0 KN/m2 商店车站3.5 KN/m2 健身房舞厅 4.0 KN/m2 书房储藏室 5.0 KN/m2 KN是千牛kg是千克。1KN=1000N,1Kg=9.81N。纠正以下kn指节(用于航海). 在物理中牛顿(Newton,符号为N)是力的公制单位。它是以发现经典力学的艾萨克·牛顿(Sir Isaac Newton)命名。 般住宅就用两种级别规格的板就可以了,就是所说的一级板和二级板,一级板就是说可以承受的活荷载是1KN/M2,二级板,可以承受的活荷载是2KN/M2,西南地区已经规定了最小为四级板,即可以承受活荷载是4KN/M2。 商品楼一般是10CM的厚度,200KG/M3的承重设计,280KG/M3的安全系数还是有的,但是实际上可以承重多少就不知道了,至少我们没有听说过谁家来了10多个客人把楼板踩塌的新闻。但是有一点要注意,东西放上去不塌,不代表楼板就可以承受这种重量,长期承受超过楼板负载的重量肯定会导致楼板开裂变形的。 另外每平方米200公斤的承重是平均承重不是一点上的承重能力,不然的话一个50KG的人单脚站立的话就该把楼板踩踏了,按照我的理解这应该是一个空间内每方米都承受200KG的重量后中心点所能够承受的最大负载。如果有比较沉重的东西,比如说浴缸、大书柜什么的只要靠承重墙摆放还是比较安全的。 PS:以上纯属个人理解,非专业 一般情况下住宅楼板板厚最小取100mm(视楼板跨度大小有可能取更厚,一般楼板板厚是取 1/40 的楼板跨度)。除阳台,卫生间楼面均布活荷载标准值为250 KG/m^2。其他房间的楼面布活活荷载标准值均为200KG/m^2。 活荷载设计值=1.4x活荷载标准值 所指荷载为均布荷载。注意均布二字

混凝土结构复习资料_

1. 什么是混凝土结构?根据混凝土中添加材料的不同通常分哪些类型?答:混凝土结构是以混凝土材料为主,并根据需要配置和添加钢筋、钢骨、钢管、预应力钢筋和各种纤维,形成的结构,有素混凝土结构、钢筋混凝土结构、钢骨混凝土结构、钢管混凝土结构、预应力混凝土结构及纤维混凝土结构。混凝土结构充分利用了混凝土抗压强度高和钢筋抗拉强度高的优点。 2.钢筋与混凝土共同工作的基础条件是什么?答: 混凝土和钢筋协同工作的条件是:(1)钢筋与混凝 土之间产生良好的粘结力,使两者结合为整体;(2) 钢筋与混凝土两者之间线膨胀 系数几乎相同,两者之间不会发生相对的温度变形使 粘结力遭到破坏;(3)设置一定厚度混凝土保护层; (4)钢筋在混凝土中有可靠的锚固。 3.混凝土结构有哪些优缺点?答:优点:(1)可模性好;(2)强价比合理;(3)耐火性能好;(4)耐久性能好;(5)适应灾害环境能力强,整体浇筑的钢筋混凝土结构整体性好,对抵抗地震、风载和爆炸冲击作用有良好性能;(6)可以就地取材。钢筋混凝土结构的缺点:如自重大,不利于建造大跨结构;抗裂性差,过早开裂虽不影响承载力,但对要求防渗漏的结构,如容器、管道等,使用受到一定限制;现场浇筑施工工序多,需养护,工期长,并受施工环境和气候条件限制等。 第2章 钢筋和混凝土的力学性能 1.软钢和硬钢的区别是什么?设计时分别采用什么值作为依据?答:有物理屈服点的钢筋,称为软钢,如热轧钢筋和冷拉钢筋;无物理屈服点的钢筋,称为硬钢,如钢丝、钢绞线及热处理钢筋。 软钢有两个强度指标:一是屈服强度,这是钢筋混凝土构件设计时钢筋强度取值的依据,因为钢筋屈服后产生了较大的塑性变形,这将使构件变形和裂缝宽度大大增加以致无法使用,所以在设计中采用屈服强度 作为钢筋的强度极限。另一个强度指标是钢筋极限强度 ,一般用作钢筋的实际破坏强度。设计中硬钢极限抗拉强度不能作为钢筋强度取值的依据,一般取残余应变为0.2%所对应的应力σ0.2作为无明显流幅钢筋的强度限值,通常称为条件屈服强度。对于高强钢丝,条件屈服强度相当于极限抗拉强度0.85倍。对于热处理钢筋,则为0.9倍。为了简化运算,《混凝土结构设计规范》统一取σ0.2=0.85σb ,其中σb 为无明显流幅钢筋的极限抗拉强度。 2.我国用于钢筋混凝土结构的钢筋有几种?我国热轧钢筋的强度分为几个等级?答:目前我国用于钢筋混凝土结构和预应力混凝土结构的钢筋主要品种有钢筋、钢丝和钢绞线。根据轧制和加工工艺,钢筋可分为热轧钢筋、热处理钢筋和冷加工钢筋。热轧钢筋分为热轧光面钢筋HPB235、热轧带肋钢筋HRB335、HRB400、余热处理钢筋RRB400(K 20MnSi ,符号 ,Ⅲ级)。热轧钢筋主要用于钢筋混凝土结构中的钢筋和预应力混凝土结构中的非预应力普通钢筋。 3.在钢筋混凝土结构中,宜采用哪些钢筋? 答:钢筋混凝土结构及预应力混凝土结构的钢筋,应按下列规定采用:(1)普通钢筋宜采用HRB400级和HRB335级钢筋,也可采用HPB235级和RRB400级钢筋;(2)预应力钢筋宜采用预应力钢绞线、钢丝,也可采用热处理钢筋。 4.简述混凝土立方体抗压强度。答:混凝土标准立方体的抗压强度,我国《普通混凝土力学性能试验方法标准》(GB/T50081-2002)规定:边长为150mm 的标准立方体试件在标准条件(温度20±3℃,相对温度≥90%)下养护28天后,以标准试验方法(中心加载,加载速度为0.3~1.0N/mm2/s),试件上、下表面不涂润滑剂,连续加载直至试件破坏,测得混凝土抗压强度为混凝土标准立方体的抗压强度fck ,单位N/mm2。A F f ck = fck ——混凝土立方体试件抗压强度;F ——试件破坏荷载;A ——试件承压面积。 5.简述混凝土轴心抗压强度。答:我国《普通混凝土力学性能试验方法标准》(GB/T50081-2002)采用150mm×150mm×300mm 棱柱体作为混凝土轴心抗压强度试验的标准试件,混凝土试件轴心抗压强度fcp ——混凝土轴心抗压强度;F ——试件破坏荷载;A ——试件承压面积。 6.混凝土的强度等级是如何确定的。答:混凝土强度 等级应按立方体抗压强度标准值确定,混凝土立方体抗 压强度标准值fcu ,k ,我国《混凝土结构设计规范》规 定,立方体抗压强度标准值系指按上述标准方法测得 的具有95%保证率的立方体抗压强度,根据立方体抗 压强度标准值划分为C15、 C20、 C25、C30、C35、C40、C45、C50、 C55、 C60、 C65、 C70、 C75、 C80十四个等级。 7.简述混凝土三轴受压强度的概念。答:三轴受压试验是侧向等压σ2=σ3=σr 的三轴受压,即所谓常规三轴。试验时先通过液体静压力对混凝土圆柱体施加径向等压应力,然后对试件施加纵向压应力直到破坏。在这种受力状态下,试件由于侧压限制,其内部裂缝的产生和发展受到阻碍,因此当侧向压力增大时,破坏时的轴向抗压强度相应地增大。根据试验结果分析,三轴受力时混凝土纵向抗压强度为fcc′= fc′+βσr 式中:fcc′——混凝土三轴受压时沿圆柱体纵轴的轴心抗压强度; fc′ ——混凝土的单轴圆柱体轴心抗压强度; β ——系数,一般普通混凝土取4; σr ——侧向压应力。 8.简述混凝土在单轴短期加载下的应力~应变关系特点。答:一般用标准棱柱体或圆柱体试件测定混凝土受压时的应力应变曲线。轴心受压混凝土典型的应力应变曲线如图,各个特征阶段的特点如下。混凝土轴心受压时的应力应变曲线1)应力σ≤0.3 fc sh 当荷载较小时,即σ≤0.3 fc sh ,曲线近似是直线(图2-3中OA 段),A 点相当于混凝土的弹性极限。此阶段中混凝土的变形主要取决于骨料和水泥石的弹 性变形。2)应力0.3 f cc ′= f c ′+βσr 随着荷载的增加,当应力约为(0.3~0.8) fc sh ,曲线明显偏离直线,应变增长比应力快,混凝土表现出越来越明显的弹塑性。3)应力0.8 f c sh <σ≤1.0 f c sh 随着荷载进一步增加,当应力约为(0.8~1.0) fc sh ,曲线进一步弯曲,应变增长速度进一步加快,表明混凝土的应力增量不大,而塑性变形却相当大。此阶段中混凝土内部微裂缝虽有所发展,但处于稳定状态,故b 点称为临界应力点,相应的应力相当于混凝土的条件屈服强度。曲线上的峰值应力C 点,极限强度fc sh ,相应的峰值应变为ε0。 4)超过峰值应力后超过C 点以后,曲线进入下降段,试件的承载力随应变增长逐渐减小,这种现象为应变软化。 9.什么叫混凝土徐变?混凝土徐变对结构有什么影响?答:在不变的应力长期持续作用下,混凝土的变形随时间而缓慢增长的现象称为混凝土的徐变。徐变对钢筋混凝土结构的影响既有有利方面又有不利方面。有利影响,在某种情况下,徐变有利于防止结构物裂缝形成;有利于结构或构件的内力重分布,减少应力集中现象及减少温度应力等。不利影响,由于混凝土的徐变使构件变形增大;在预应力混凝土构件中,徐变会导致预应力损失;徐变使受弯和偏心受压构件的受压区变形加大,故而使受弯构件挠度增加,使偏压构件的附加偏心距增大而导致构件承载力的降低。 10.钢筋与混凝土之间的粘结力是如何组成的?答:试验表明,钢筋和混凝土之间的粘结力或者抗滑移力,由四部分组成:(1)化学胶结力:混凝土中的水泥凝胶体在钢筋表面产生的化学粘着力或吸附力,来源于浇注时水泥浆体向钢筋表面氧化层的渗透和养护过程中水泥晶体的生长和硬化,取决于水泥的性质和钢筋表面的粗糙程度。当钢筋受力后变形,发生局部滑移后,粘着力就丧失了。(2)摩擦力:混凝土收缩后,将钢筋紧紧地握裹住而产生的力,当钢筋和混凝土产生相对滑移时,在钢筋和混凝土界面上将产生摩擦力。它取决于混凝土发生收缩、荷载和反力等对钢筋的径向压应力、钢筋和混凝土之间的粗糙程度等。钢筋和混凝土之间的挤压力越大、接触面越粗糙,则摩擦力越大。3)机械咬合力:钢筋表面凹凸不平与混凝土产生的机械咬合作用而产生的力,即混凝土对钢筋表面斜向压力的纵向分力,取决于混凝土的抗剪强度。变形钢筋的横肋会产生这种咬合力,它的咬合作用往往很大,是变形钢筋粘结力的主要来源,是锚固作用的主要成份。(4)钢筋端部的锚固力:一般是用在钢筋端部弯钩、弯折,在锚固区焊接钢筋、短角钢等机械作用来维持锚固力。各种粘结力中,化学胶结力较小;光面钢筋以摩擦力为主;变形钢筋以机械咬合力为主。 第3章 受弯构件正截面承载力 1.受弯构件适筋梁从开始加荷至破坏,经历了哪几个阶段?各阶段的主要特征是什么?各个阶段是哪种极限状态的计算依据?答:适筋受弯构件正截面工作分为三个阶段。 第Ⅰ阶段荷载较小,梁基本上处于弹性工作阶段,随着荷载增加,弯矩加大,拉区边缘纤维混凝土表现出一定塑性性质。第Ⅱ阶段弯矩超过开裂弯矩Mcrsh ,梁出现裂缝,裂缝截面的混凝土退出工作,拉力由纵向受拉钢筋承担,随着弯矩的增加,受压区混凝土也表现出塑性性质,当梁处于第Ⅱ阶段末Ⅱa 时,受拉钢筋开始屈服。第Ⅲ阶段钢筋屈服后,梁的刚度迅速下降,挠度急剧增大,中和轴不断上升,受压区高度不断减小。受拉钢筋应力不再增加,经过一个塑性转动构成,压区混凝土被压碎,构件丧失承载力。第Ⅰ阶段末的极限状态可作为其抗裂度计算的依据。第Ⅱ阶段可作为构件在使用阶段裂缝宽度和挠度计算的依据。第Ⅲ阶段末的极限状态可作为受弯构件正截面承载能力计算的依据。 2.钢筋混凝土受弯构件正截面有哪几种破坏形式?其破坏特征有何不同?答:钢筋混凝土受弯构件正截面有适筋破坏、超筋破坏、少筋破坏。梁配筋适中会发生适筋破坏。受拉钢筋首先屈服,钢筋应力保持不变而产生显著的塑性伸长,受压区边缘混凝土的应变达到极限压应变,混凝土压碎,构件破坏。梁破坏前,挠度较大,产生较大的塑性变形,有明显的破坏预兆,属于塑性破坏。梁配筋过多会发生超筋破坏。破坏时压区混凝土被压坏,而拉区钢筋应力尚未达到屈服强度。破坏前梁的挠度及截面曲率曲线没有明显的转折点,拉区的裂缝宽度较小,破坏是突然的,没有明显预兆,属于脆性破坏,称为超筋破坏。梁配筋过少会发生少筋破坏。拉区混凝土一旦开裂,受拉钢筋即达到屈服,并迅速经历整个流幅而进入强化阶段,梁即断裂,破坏很突然,无明显预兆,故属于脆性破坏。 3.什么叫最小配筋率?它是如何确定的?在计算中作用是什么?答:最小配筋率是指,当梁的配筋率ρ很小,梁拉区开裂后,钢筋应力趋近于屈服强度,这时的配筋率称为最小配筋率ρmin 。是根据Mu=Mcy 时确定最小配筋率。控制最小配筋率是防止构件发生少筋破坏,少筋破坏是脆性破坏,设计时应当避免。 4.单筋矩形受弯构件正截面承载力计算的基本假定是什么?答:单筋矩形受弯构件正截面承载力计算的基本假定是(1)平截面假定;(2)混凝土应力—应变关系曲线的规定;(3)钢筋应力—应变关系的规定;(4)不考虑混凝土抗拉强度,钢筋拉伸应变值不超过0.01。以上规定的作用是确定钢筋、混凝土在承载力极限状态下的受力状态,并作适当简化,从而可以确定承载力的平衡方程或表达式。 5.确定等效矩形应力图的原则是什么?《混凝土结构设计规范》规定,将实际应力图形换算为等效矩形应力图形时必须满足以下两个条件:(1) 受压区混凝土压应力合力C 值的大小不变,即两个应力图形的面积应相等;(2) 合力C 作用点位置不变,即两个应力图形的形心位置应相同。等效矩形应力图的采用使简化计算成为可能。 6.什么是双筋截面?在什么情况下才采用双筋截面?答:在单筋截面受压区配置受力钢筋后便构成双 筋截面。在受压区配置钢筋,可协助混凝土承受压力,提高截面的受弯承载力;由于受压钢筋的存在,增加了截面的延性,有利于改善构件的抗震性能;此外,受压钢筋能减少受压区混凝土在荷载长期作用下产生的徐变,对减少构件在荷载长期作用下的挠度也是有利的。 双筋截面一般不经济,但下列情况可以采用:(1)弯矩较大,且截面高度受到限制,而采用单筋截面将引起超筋;(2)同一截面内受变号弯矩作用;(3)由于某种原因(延性、构造),受压区已配置 ;(4)为了提高构件抗震性能或减少结构在长期荷载下的变形。 7.双筋矩形截面受弯构件正截面承载力计算的基本公式及适用条件是什么?为什么要规定适用条件? 答:双筋矩形截面受弯构件正截面承载力的两个基本公式:适用条件:(1) ,是为了保证受拉钢筋屈服,不发生超筋梁脆性破坏,且保证受压钢筋在构件破坏以前达到屈服强度;(2)为了使受压钢筋能达到抗压强度设计值,应满足 , 其含义为受压钢筋位置不低于受压应力矩形图形的重心。当不满足条件时,则表明受压钢筋的位置离中和轴太近,受压钢筋的应变太小,以致其应力达不到抗压强度设计值。 8.双筋矩形截面受弯构件正截面承载力计算为什么要规定 ?当x <2a…s 应如何计算?答:为了使受压钢筋能达到抗压强度设计值,应满足 '2s a x ≥, 其含义为受压钢筋位置不低于受压应力矩形图形的重心。当不满足条件时,则表明受压钢筋的位置离中和轴太近,受压钢筋的应变太小,以致其应力达不到抗压强度设计值。此时对受压钢筋取矩 )2()(10x a bx f a h A f M s c s s y u -+-=αx<2s a 时,公式中的右边第二项相对很小,可忽略不计,近似取 ,即近似认为受压混凝土合力点与受压钢筋合力点重合,从而使受压区混凝土合力对受压钢筋合力点所产生的力矩等于零,因此() ' 0s y s a h f M A -= 9.第二类T 形截面受弯构件正截面承载力计算的基本公式及适用条件是什么?为什么要规定适用条件?答:第二类型T 形截面:(中和轴在腹板内)适用条件:s y c f f c A f bx f h b b f =+-1''1)(αα) 2()()2(' 0''101f f f c c u h h h b b f x h bx f M --+-=αα 规定适用条件b ξξ≤ 是为了避免超筋破坏,而少筋破坏一般不会发生。 12.写出桥梁工程中单筋截面受弯构件正截面承载力计算的基本公式及适用条件是什么?比较这些公式与建筑工程中相应公式的异同。 答: s sd cd A f bx f = ) 2(00x h bx f M cd d -=γ 适用条件: b ξξ≤ ; bh A s m in ρ≥ 《公路桥规》和《混凝土结构设计规范》中,受弯构件计算的基本假定和计算原理基本相同,但在公式表达形式上有差异,材料强度取值也不同。 10.计算T 形截面的最小配筋率时,为什么是用梁肋 宽度b 而不用受压翼缘宽度bf ?答:最小配筋率从理论上是由Mu=Mcy 确定的,主要取决于受拉区的形状,所以计算T 形截面的最小配筋率时,用梁肋宽度b 而不用受压翼缘宽度bf 。 11.单筋截面、双筋截面、T 形截面在受弯承载力方面,哪种更合理?,为什么?答:T 形截面优于单筋截面、单筋截面优于双筋截面。 第4章 受弯构件斜截面承载力 1. 斜截面破坏形态有几类?分别采用什么方法加以控制?答:(1)斜截面破坏形态有三类:斜压破坏,剪压破坏,斜拉破坏 (2)斜压破坏通过限制最小截面尺寸来控制;剪压破坏通过抗剪承载力计算来控制;斜拉破坏通过限制最小配箍率来控制; 2. 影响斜截面受剪承载力的主要因素有哪些?答:(1)剪跨比的影响,随着剪跨比的增加,抗剪承载力逐渐降低; (2)混凝土的抗压强度的影响,当剪跨比一定时,随着混凝土强度的 提高,抗剪承载力增加;3)纵筋配筋率的影响,随着纵筋配筋率的增加,抗剪承载力略有增加;(4)箍筋的配箍率及箍筋强度的影响,随着箍筋的配箍率及箍筋强度的增加,抗剪承载力增加;(5)斜裂缝的骨料咬合力和钢筋的销栓作用;(6)加载方式的影响;(7)截面尺寸和形状的影响; 3. 斜截面抗剪承载力为什么要规定上、下限?具体包含哪些条件?答:斜截面抗剪承载力基本公式的建立是以剪压破坏为依据的,所以规定上、下限来避免斜压破坏和斜拉破坏。 4.钢筋在支座的锚固有何要求?答:钢筋混凝土简支梁和连续梁简支端的下部纵向受力钢筋,其伸入梁支座范围内的锚固长度 应符合下列规定:当剪力较小( )时, ;当剪力较大( )时, (带肋钢筋), (光圆钢筋), 为纵向受力钢筋的直径。如纵向受力钢筋伸入梁支座范围内的锚固长度不符合上述要求时,应采取在钢筋上加焊锚固钢板或将钢筋端部焊接在梁端预埋件上等有效锚固措施。 5.什么是鸭筋和浮筋?浮筋为什么不能作为受剪钢筋?答:单独设置的弯起钢筋,两端有一定的锚固长度的叫鸭筋,一端有锚固,另一端没有的叫浮筋。由于受剪钢筋是受拉的,所以不能设置浮筋。 , 第5章 钢筋混凝土构件的变形和裂缝 1.为什么说裂缝条数不会无限增加,最终将趋于稳定?答:假设混凝土的应力σc 由零增大到ft 需要经过l 长度的粘结应力的积累,即直到距开裂截面为l 处,钢筋应力由σs1降低到σs2,混凝土的应力σc 由零增大到ft ,才有可能出现新的裂缝。显然,在距第一条裂缝两侧l 的范围内,即在间距小于2l 的两条裂缝之间,将不可能再出现新裂缝。 2.裂缝宽度与哪些因素有关,如不满足裂缝宽度限值,应如何处理?答:与构件类型、保护层厚度、配筋率、钢筋直径和钢筋应力等因素有关。如不满足,可以采取减小钢筋应力(即增加钢筋用量)或减小钢筋直径等措施。 3.钢筋混凝土构件挠度计算与材料力学中挠度计算有何不同? 为何要引入“最小刚度原则”原则?答:主要是指刚度的取值不同,材料力学中挠度计算采用弹性弯曲刚度,钢筋混凝土构件挠度计算采用由短期刚度修正的长期刚度。“最小刚度原则”就是在简支梁全跨长范围内,可都按弯矩最大处的截面抗弯刚度,亦即按最小的截面抗弯刚度,用材料力学方法中不考虑剪切变形影响的公式来计算挠度。这样可以简化计算,而且误差不大,是允许的。 4.简述参数ψ的物理意义和影响因素?答:系数ψ的物理意义就是反映裂缝间受拉混凝土对纵向受拉 钢筋应变的影响程度。ψ的大小还与以有效受拉混凝 土截面面积计算的有效纵向受拉钢筋配筋率ρte 有 关。 5.受弯构件短期刚度Bs 与哪些因素有关,如不满足构件变形限值,应如何处理?答:影响因素有:配筋率ρ、 截面形状、 混凝土强度等级、 截面有效高度h0。可以看出,如果挠度验算不符合要求,可增大截面高度,选择合适的配筋率ρ。 6.确定构件裂缝宽度限值和变形限值时分别考虑哪些因素?答:确定构件裂缝宽度限值主要考虑(1)外观要求;(2)耐久性。 变形限值主要考虑(1) 保证建筑的使用功能要求 (2) 防止对非结构构件产生不良影响 (3) 保证人们的感觉在可接受的程度之内。 第6章 钢筋混凝土受压构件承载力 1.轴心受压构件设计时,如果用高强度钢筋,其设计 强度应如何取值?答:纵向受力钢筋一般采用HRB400级、HRB335级和RRB400级,不宜采用高强度钢筋,因为与混凝土共同受压时,不能充分发挥其高强度的作用。混凝土破坏时的压应变0.002,此时相应的纵筋应力值бs’=Esεs’=200×103×0.002=400 N/mm2;对于HRB400级、HRB335级、HPB235级和RRB400级热扎钢筋已达到屈服强度,对于Ⅳ级和热处理钢筋在计算fy’值时只能取400 N/mm2。 2.轴心受压构件设计时,纵向受力钢筋和箍筋的作用分别是什么?答:纵筋的作用:①与混凝土共同承受压力,提高构件与截面受压承载力;②提高构件的变形能力,改善受压破坏的脆性;③承受可能产生的偏心弯矩、混凝土收缩及温度变化引起的拉应力;④减少混凝土的徐变变形。横向箍筋的作用:①防止纵向钢筋受力后压屈和固定纵向钢筋位置;②改善构件破坏的脆性;③当采用密排箍筋时还能约束核芯内混凝 土,提高其极限变形值。 3.简述轴心受压构件徐变引起应力重分布?(轴心受 压柱在恒定荷载的作用下会产生什么现象?对截面中纵向钢筋和混凝土的应力将产生什么影响?)答:当柱子在荷载长期持续作用下,使混凝土发生徐变而 引起应力重分布。此时,如果构件在持续荷载过程中突然卸载,则混凝土只能恢复其全部压缩变形中的弹 性变形部分,其徐变变形大部分不能恢复,而钢筋将能恢复其全部压缩变形,这就引起二者之间变形的差异。当构件中纵向钢筋的配筋率愈高,混凝土的徐变较大时,二者变形的差异也愈大。此时由于钢筋的弹 性恢复,有可能使混凝土内的应力达到抗拉强度而立即断裂,产生脆性破坏。 4.对受压构件中纵向钢筋的直径和根数有何构造要 求?对箍筋的直径和间距又有何构造要求?答:纵向受力钢筋直径d 不宜小于12mm ,通常在12mm~32mm 范围内选用。矩形截面的钢筋根数不应小于4根,圆形截面的钢筋根数不宜少于8根,不 应小于6根。纵向受力钢筋的净距不应小于50mm ,最大净距不宜大于300mm 。其对水平浇筑的预制柱,其纵向钢筋的最小净距为上部纵向受力钢筋水平方向不应小于30mm 和1.5d (d 为钢筋的最大直径), 下部纵向钢筋水平方向不应小于25mm 和d 。上下接头处,对纵向钢筋和箍筋各有哪些构造要求? 5.进行螺旋筋柱正截面受压承载力计算时,有哪些限 制条件?为什么要作出这些限制条件?答:凡属下列 条件的,不能按螺旋筋柱正截面受压承载力计算:① 当l0/b >12时,此时因长细比较大,有可能因纵向弯 曲引起螺旋箍筋不起作用;② 如果因混凝土保护层退出工作引起构件承载力降低的幅度大于因核芯混凝土强度提高而使构件承载力增加的幅度,③ 当间接钢筋换算截面面积Ass0小于纵筋全部截面面积的 25%时,可以认为间接钢筋配置得过少,套箍作用的 效果不明显。 6.简述轴心受拉构件的受力过程和破坏过程?答:第Ⅰ阶段——加载到开裂前 此阶段钢筋和混凝土共同工作,应力与应变大致成正比。在这一阶段末,混凝土拉应变达到极限拉应变,裂缝即将产生。第Ⅱ阶段——混凝土开裂后至钢筋屈服前 裂缝产生后,混凝土不再承受拉力,所有的拉力均由钢筋来承担,这种应力间的调整称为截面上的应力重分布。第Ⅱ阶段是构件的正常使用阶段,此时构件受到的使用荷载大约为构件破坏时荷载的50%—70%,构件的裂缝宽度和变形的验算是以此阶段为依据的。第Ⅲ阶段——钢筋屈服到构件破坏当加载达到某点时,某一截面处的个别钢筋首先达到屈服,裂缝迅速发展,这时荷载稍稍增加,甚至不增加都会导致截面上的钢筋全部达到屈服(即荷载达到屈服荷载Ny 时)。评判轴心受拉破坏的标准并不是构件拉断,而是钢筋屈服。正截面强度计算是以此阶段为依据的。 7.判别大、小偏心受压破坏的条件是什么?大、小偏心受压的破坏特征分别是什么?答:(1) ,大偏心受压破坏; ,小偏心受压破坏;(2)破坏特征: 大偏心受压破坏:破坏始自于远端钢筋的受拉屈服,然后近端混凝土受压破坏;小偏心受压破坏:构件破坏时,混凝土受压破坏,但远端的钢筋并未屈服; 8.偏心受压短柱和长柱有何本质的区别?偏心距增大系数的物理意义是什么?答:(1)偏心受压短柱和长柱有何本质的区别在于,长柱偏心受压后产生不可忽略的纵向弯曲,引起二阶弯矩。 (2)偏心距增大系数的物理意义是,考虑长柱偏心受压后产生的二阶弯矩对受压承载力的影响。 9.附加偏心距 的物理意义是什么?如何取值?答:附加偏心距 的物理意义在于,考虑由于荷载偏差、施工误差等因素的影响, 会增大或减小,另外,混凝土材料本身的不均匀性,也难保证几何中心和物理中心的重合。其值取20mm 和偏心方向截面尺寸的1/30两者中的较大者。 10.偏心受拉构件划分大、小偏心的条件是什么?大、小偏心破坏的受力特点和破坏特征各有何不同?答:(1)当 作用在纵向钢筋 合力点和 合力点范围以外时,为大偏心受拉;当 作用在纵向钢筋 合力点和 合力点范围之间时,为小偏心受拉;(2)大偏心受拉有混凝土受压区,钢筋先达到屈服强度,然后混凝土受压破坏;小偏心受拉破坏时,混凝土完全退出工作,由纵筋来承担所有的外力。 11.大偏心受拉构件为非对称配筋,如果计算中出现 或出现负值,怎么处理?答:取 ,对混凝土受压区合力点(即受压钢筋合力点)取矩, 钢混结构重的钢筋:熱轧钢筋,消除应力钢丝,钢绞线,热处理钢筋。 混凝土结构最基本的要求:强度和塑性 结构的可靠性包括:安全性,适用性,耐久性 结构上的荷载:静态荷载,动态荷载 梁受力破坏情况:适筋破坏,少筋破坏,超筋破坏 柱在单独基础的设计:确定基础尺寸,确定基础高度,计算基础底面配筋 钢筋混凝土梁板按施工方法可分:整体式梁板结构,装配式梁板结构,整体装配式结构

相关主题
文本预览
相关文档 最新文档