当前位置:文档之家› 抽象函数常见解法及意义总结

抽象函数常见解法及意义总结

含有函数记号“

()f x ”有关问题解法

由于函数概念比较抽象,学生对解有关函数记号

()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地

掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下:

一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出

()f x ,这也是证某些公式或等式常用的方法,此法解培养学生

的灵活性及变形能力。

例1:已知

(

)211x

f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u

-=+=--∴

2()1x

f x x

-=

- 2.凑合法:在已知

(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,

还能进一步复习代换法。

例2:已知

33

11()f x x x x

+=+,求

()f x

解:∵

22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11

||||1||

x x x x +=+≥

23()(3)3f x x x x x =-=-,(|x |≥1)

3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .

解:设

()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+

=22

222()24ax bx a c x x +++=++比较系数得2()4

1321

,1,2222

a c a a

b

c b +=??=?===??=?

∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x

解:∵

()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-,

()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0

x x f x x x +≥?=?--

例5.一已知()f x 为偶函数,()g x 为奇函数,且有()f x +1

()1

g x x =

-, 求()f x ,()g x . 解:∵

()f x 为偶函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,

不妨用-x 代换

()f x +()g x =

1

1

x - ………①中的x ,

1()()1f x g x x -+-=

--即()f x -1

()1

g x x =-+……②

显见①+②即可消去()g x ,求出函数21()1f x x =-再代入①求出2()1

x

g x x =-

5.赋值法:给自变量取特殊值,从而发现规律,求出()f x 的表达式

例6:设()f x 的定义域为自然数集,且满足条件(1)()()f x f x f y xy +=++,及(1)f =1,求()f x

解:∵

()f x 的定义域为N ,取y =1,则有(1)()1f x f x x +=++

∵(1)f =1,∴(2)f =(1)f +2,(3)(2)3f f =+……()(1)f n f n n =-+

以上各式相加,有()f n =1+2+3+……+n =(1)2n n +∴1

()(1),2

f x x x x N =+∈

二、利用函数性质,解

()f x 的有关问题

1.判断函数的奇偶性: 例7 已知

()()2()()f x y f x y f x f y ++-=,对一切实数x 、y 都成立,且(0)0f ≠,求证()f x 为偶函数。

证明:令x =0, 则已知等式变为()()2(0)()f y f y f f y +-=……①

在①中令

y =0则2(0)f =2(0)f ∵ (0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为偶函数。

2.确定参数的取值范围 例8:奇函数()f x 在定义域(-1,1)内递减,求满足2(1)(1)0f m f m -+-<的实数m 的取值范围。

解:由

2(1)(1)0f m f m -+-<得2(1)(1)f m f m -<--,∵()f x 为函数,∴2(1)(1)f m f m -<-

又∵()f x 在(-1,1)内递减,∴221111110111m m m m m -<-

-<--?

3.解不定式的有关题目 例9:如果

()f x =2ax bx c ++对任意的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小

解:对任意t 有

(2)2)f t f t +=-∴x =2为抛物线y =2ax bx c ++的对称轴 又∵其开口向上∴f

(2)最小,

f

(1)=

f

(3)∵在[2,+∞)上,

()f x 为增函数

f

(3)<

f

(4),∴

f

(2)<

f

(1)<

f

(4)

五类抽象函数解法

1、线性函数型抽象函数

线性函数型抽象函数,是由线性函数抽象而得的函数。

例1、已知函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且当x >0时,f (x )>0,f (-1)=-2,求f (x )在区间[-2,1]上的值域。 分析:由题设可知,函数f (x )是

的抽象函数,因此求函数f (x )的值域,关键在于研究它的单调性。

解:设,∵当,∴,

∵,

∴,即,∴f(x)为增函数。

在条件中,令y=-x,则,再令x=y=0,则f(0)=2 f(0),∴f(0)=0,故f(-x)=f(x),f (x)为奇函数,

∴f(1)=-f(-1)=2,又f(-2)=2 f(-1)=-4,

∴f(x)的值域为[-4,2]。

例2、已知函数f(x)对任意,满足条件f(x)+f(y)=2 + f(x+y),且当x>0时,f(x)>2,f(3)=5,求不

等式的解。

分析:由题设条件可猜测:f(x)是y=x+2的抽象函数,且f(x)为单调增函数,如果这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。解:设,∵当,∴,则

即,∴f(x)为单调增函数。∵

,又∵f(3)=5,∴f(1)=3。∴

,∴,即,解得不等式的解为-1 < a < 3。

2、指数函数型抽象函数

例3、设函数f(x)的定义域是(-∞,+∞),满足条件:存在,使得,对任何x和y,

成立。求:

(1)f(0);(2)对任意值x,判断f(x)值的正负。

分析:由题设可猜测f(x)是指数函数的抽象函数,从而猜想f(0)=1且f(x)>0。

解:(1)令y=0代入,则,∴

。若f(x)=0,则对任意,有,这与题设矛盾,∴f(x)≠0,∴f(0)=1。

(2)令y=x≠0,则,又由(1)知f(x)≠0,∴f(2x)>0,即f(x)>0,故对任意x,f(x)>0恒成立。

例4、是否存在函数f(x),使下列三个条件:①f(x)>0,x∈N;②;③f(2)=4。同时成立?若存在,求出f(x)的解析式,如不存在,说明理由。

分析:由题设可猜想存在,又由f(2)=4可得a=2.故猜测存在函数,用数学归纳法证明如下:

(1)x=1时,∵,又∵x∈N时,f(x)>0,∴,结论正确。

(2)假设时有,则x=k+1时,,∴x=k+1时,结论正确。

综上所述,x为一切自然数时。

3、对数函数型抽象函数

对数函数型抽象函数,即由对数函数抽象而得到的函数。

例5、设f(x)是定义在(0,+∞)上的单调增函数,满足,求:

(1)f(1);

(2)若f(x)+f(x-8)≤2,求x的取值范围。

分析:由题设可猜测f(x)是对数函数的抽象函数,f(1)=0,f(9)=2。

解:(1)∵,∴f(1)=0。

(2),从而有f(x)+f(x-8)≤f(9),

即,∵f(x)是(0,+∞)上的增函数,故

,解之得:8<x≤9。

例6、设函数y=f(x)的反函数是y=g(x)。如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否正确,试说明理由。

分析: 由题设条件可猜测y=f(x)是对数函数的抽象函数,又∵y=f(x)的反函数是y=g(x),∴y=g(x)必为指数函数的抽象函数,于是猜想g(a+b)=g(a)·g(b)正确。

解:设f(a)=m,f(b)=n,由于g(x)是f(x)的反函数,∴g(m)=a,g(n)=b,从而

,∴g(m)·g(n)=g(m+n),以a、b分别代替上式中的m、n即得g(a +b)=g(a)·g(b)。

4、三角函数型抽象函数

三角函数型抽象函数即由三角函数抽象而得到的函数。

例7、己知函数f(x)的定义域关于原点对称,且满足以下三条件:

①当是定义域中的数时,有;

②f(a)=-1(a>0,a是定义域中的一个数);

③当0<x<2a时,f(x)<0。

试问:(1)f(x)的奇偶性如何?说明理由。

(2)在(0,4a)上,f(x)的单调性如何?说明理由。

分析: 由题设知f(x)是的抽象函数,从而由及题设条件猜想:f(x)是奇函数且在(0,4a)上是增函数(这里把a看成进行猜想)。

解:(1)∵f(x)的定义域关于原点对称,且是定义域中的数时有

,∴在定义域中。∵

∴f(x)是奇函数。

(2)设0<x1<x2<2a,则0<x2-x1<2a,∵在(0,2a)上f(x)<0,

∴f(x1),f(x2),f(x2-x1)均小于零,进而知中的,于是f(x1)<f(x2),∴在(0,2a)上f(x)是增函数。

又,∵f(a)=-1,∴,∴f(2a)=0,设2a<x<4a,则0<x-2a<2a,

,于是f(x)>0,即在(2a,4a)上f(x)>0。设2a<x1<x2<4a,则0<x2

-x1<2a,从而知f(x1),f(x2)均大于零。f(x2-x1)<0,∵,∴,即f(x1)<f(x2),即f(x)在(2a,4a)上也是增函数。综上所述,f(x)在(0,4a)上是增函数。

5、幂函数型抽象函数

幂函数型抽象函数,即由幂函数抽象而得到的函数。

例8、已知函数f(x)对任意实数x、y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当时,。(1)判断f(x)的奇偶性;

(2)判断f(x)在[0,+∞)上的单调性,并给出证明;

(3)若,求a的取值范围。

分析:由题设可知f(x)是幂函数的抽象函数,从而可猜想f(x)是偶函数,且在[0,+∞)上是增函数。

解:(1)令y=-1,则f(-x)=f(x)·f(-1),∵f(-1)=1,∴

f(-x)=f(x),f(x)为偶函数。

(2)设,∴,,

∵时,,∴,∴f(x1)<f(x2),故f(x)在0,+∞)上是增函数。

(3)∵f(27)=9,又,

∴,∴,∵,∴,

∵,∴,又,故。

抽象函数常见题型解法综述

抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。本文就抽象函数常见题型及解法评析如下:

一、定义域问题

例1. 已知函数的定义域是[1,2],求f(x)的定义域。

解:的定义域是[1,2],是指,所以中的满足

从而函数f(x)的定义域是[1,4]

评析:一般地,已知函数的定义域是A,求f(x)的定义域问题,相当于已知中x的取值范围为A,据此求的值域问题。

例2. 已知函数的定义域是,求函数的定义域。

解:的定义域是,意思是凡被f作用的对象都在中,由此可得

所以函数的定义域是

评析:这类问题的一般形式是:已知函数f(x)的定义域是A,求函数的定义域。正确理解函数符号及其定义域的含义是求解

此类问题的关键。这类问题实质上相当于已知的值域B,且,据此求x的取值范围。例2和例1形式上正相反。

二、求值问题

例3. 已知定义域为的函数f(x),同时满足下列条件:①;②,求f(3),f(9)的值。

解:取,得

因为,所以

又取

评析:通过观察已知与未知的联系,巧妙地赋值,取,这样便把已知条件与欲求的f(3)沟通了起来。赋值法是解此类问题的常用技巧。

三、值域问题

例4. 设函数f(x)定义于实数集上,对于任意实数x、y,总成立,且存在,使得,求函数的值域。

解:令,得,即有或。

若,则,对任意均成立,这与存在实数,使得成立矛盾,故,必有。

由于对任意均成立,因此,对任意,有

下面来证明,对任意

设存在,使得,则

这与上面已证的矛盾,因此,对任意

所以

评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。

四、解析式问题

例5. 设对满足的所有实数x,函数满足,求f(x)的解析式。

解:在中以代换其中x,得:

再在(1)中以代换x,得

化简得:

评析:如果把x和分别看作两个变量,怎样实现由两个变量向一个变量的转化是解题关键。通常情况下,给某些变量适当赋值,使之在关系中“消失”,进而保留一个变量,是实现这种转化的重要策略。

五、单调性问题

例6. 设f(x)定义于实数集上,当时,,且对于任意实数x、y,有,求证:在R 上为增函数。

证明:在中取,得

若,令,则,与矛盾

所以,即有

当时,;当时,

所以

又当时,

所以对任意,恒有

设,则

所以

所以在R上为增函数。

评析:一般地,抽象函数所满足的关系式,应看作给定的运算法则,则变量的赋值或变量及数值的分解与组合都应尽量与已知式或所给关系式及所求的结果相关联。

六、奇偶性问题

例7. 已知函数对任意不等于零的实数都有,试判断函数f(x)的奇偶性。

解:取得:,所以

又取得:,所以

再取则,即

因为为非零函数,所以为偶函数。

七、对称性问题

例8. 已知函数满足,求的值。

解:已知式即在对称关系式中取,所以函数的图象关于点(0,2002)对称。根据原函数与其反函数的关系,知函数的图象关于点(2002,0)对称。

所以

将上式中的x用代换,得

评析:这是同一个函数图象关于点成中心对称问题,在解题中使用了下述命题:设a、b均为常数,函数对一切实数x都满

足,则函数的图象关于点(a,b)成中心对称图形。

八、网络综合问题

例9. 定义在R上的函数f(x)满足:对任意实数m,n,总有,且当x>0时,0

(1)判断f(x)的单调性;

(2)设,

,若,试确定a的取值范围。

解:(1)在中,令,得,因为,所以。

在中,令

因为当时,

所以当时

所以

又当x=0时,,所以,综上可知,对于任意,均有。

设,则

所以

所以在R上为减函数。

(2)由于函数y=f(x)在R上为减函数,所以

即有

又,根据函数的单调性,有

由,所以直线与圆面无公共点。因此有,解得。

评析:(1)要讨论函数的单调性必然涉及到两个问题:一是f(0)的取值问题,二是f(x)>0的结论。这是解题的关键性步骤,完成这些要在抽象函数式中进行。由特殊到一般的解题思想,联想类比思维都有助于问题的思考和解决。

抽象函数解题方法与技巧

抽象函数解题方法与技巧 函数的周期性: 1、定义在x ∈R 上的函数y=f(x),满足f(x+a)=f(x-a)(或f(x-2a)=f(x))(a >0)恒成立,则y=f(x)是周期为2a 的周期函数; 2、若y=f(x)的图像关于直线x=a 和x=b 对称,则函数y=f(x)是周期为2|a-b|的周期函数; 3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a-b|的周期函数; 4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b (a ≠b ),则函数y=f(x)是周期为4|a-b|的周期函数; 5、若函数y=f(x)满足f(a+x)=f(a-x),其中a>0,且如果y=f(x)为奇函数,则其周期为4a ;如果y=f(x)为偶函数,则其周期为2a ; 6、定义在x ∈R 上的函数y=f(x),满足f(x+a)=-f(x)()1()f x a f x ??+= ???或()1()f x a f x ??+=- ???或,则y=f(x)是周期为2|a|的周期函数; 7、若()()()1 1 f x f x a f x -+= +在x ∈R 恒成立,其中a>0,则y=f(x)是周期为4a 的周期函数; 8、若()() ()11 f x f x a f x -+= +在x ∈R 恒成立,其中a>0,则y=f(x)是周期为2a 的周期函数。 (7、8应掌握具体推导方法,如7) 函数图像的对称性: 1、若函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图像关于直线2 a b x +=对称; 2、若函数y=f(x)满足f(x)=f(2a-x)或f(x+a)=f(a-x),则函数y=f(x)的图像关于直线x=a 对称; 3、若函数y=f(x)满足f(a+x)+f(b-x)=c ,则y=f(x)的图像关于点,2 2a b c +?? ??? 成中心对称图形; 4、曲线f(x,y)=0关于点(a,b )的对称曲线的方程为f(2a-x,2b-y)=0; 5、形如()0,ax b y c ad bc cx d += ≠≠+的图像是双曲线,由常数分离法 d ad ad a x b b a c c c y d d c c x c x c c ??+-+-+ ???==+????++ ? ???? ?知:对称中心是点,d a c c ??- ???; 6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b-x)的图像关于直线2b a x -=对称; 7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a 对称。 一、换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例1. 已知f(1+sinx)=2+sinx+cos 2x , 求f(x) ()()()()()()()1 1 11212112()() 11 f x f x a f x f x a f x f x a f x f x f x --+-+-+====--++++

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

高中数学 对抽象函数问题的具体解法教案

抽象函数问题的具体解法 所谓抽象函数,就是指没有明确给出具体的函数解析表达式,只是给出一些特殊条件的函数,它在高中数学教材中没有具体涉及到,但在高考及各类模拟试题中经常见到, 该类问题比较抽象,考察学生能力,学生普遍感到束手无策,下面就抽象函数问题类型及解题策略作总结: 1、 定义域问题 ]1[02 113]1[2 10122 121111111010]10[1k k k k k k k k k k k k k k k k k k k x k k x k k x k x k x f k x f x F x f y +-≤≤-+≤-≤-≤≤-≤≤->-<->+>-???+≤≤-≤≤-???≤-≤≤+≤--+==,时,定义域为即)当(,时,定义域为即)当(时,函数定义域为或即或)当(得分析:由定义域。 )的()()(,求函数,)的定义域为(、若函数例φ 2、函数值和最值问题 处取得。和数。最大最小值在数满足条件,且为减函学过的函数中正比例函,在 指、对函数不满足条件分析:二次函数、幂、上的最大值与最小值 ,)在区间(求, )(且)(时,)当(), ()()(,有,)对任意(,且同时满足条件:)的定义域为(、已知函数例)(所以)()()()(分析:) (,求)() ()()(,若)的定义域为(、函数例33 ]33[21002134 3 23 24424482382---=<>+=+∈= ===+==+=++x f f x f x y f x f y x f R y x R x f f f f f f f f y f x f y x f R x f

10 0432 222<<--<->>+>+∞+∞-a a a R x f a f a f a f a f x f a a f a f R x f 所以上递减,则)在(而) ()(所以)()()是奇函数,(分析:因为的取值范围。 的实数)()(求满足)上是减函数, ,(上的奇函数,且在区间)是(、例、单调性问题 )为偶函数 (,即)(,所以)(因为)()(所以) ()()。(,则分析:令)的奇偶性 (,试判断)(且), ()()(,函数都满足,、若对于一切实数例、奇偶性问题 x f x f f x f f f x f x f y x f f y f x f y x f y x 1000 ]1[000000.54=≠=-==≠= 为周期。上的周期函数,且以)是(这表明),()(代换,得 以将上式中),()(),所以()()是偶函数知(又由),()(对称,所以)关于直线(分析;依题设)是周期函数 (证明:)(),且()()(都有,,对于任意对称, 于直线上的偶函数,其图象关)是定义在(、设例、周期性问题 2222101]2 10[165212121R x f R x x f x f x x R x x f x f x f x f x f R x x f x f x x f y x f a f x f x f x x f x x x R x f ∈+=-∈-=-=-∈-===>==+∈= 22120098 482tan tan 1tan 14tan 11220092211]1[27+===? ==-+=+-+=+= +=+=-+)()(从而)的周期是(,由此猜想并证明,而的周期为而)(,联想到)()()(分析:由)(,则)(又)()()(的函数,且)是定义域为(、设函数例f f x f y x y x x x x f x f x f f f x f x f x f R x f πππ

抽象函数+解题技巧

抽象函数与解题策略 上海南洋模范中学 熊晓东 2005年11月19日 (一)抽象函数的定义、特征和一般解题策略 (1)什么是抽象函数? 那些没有给出函数的具体解析式,只给出一些特殊条件或特征的函数称为抽象函数。 (2)抽象函数与一般函数的有什么联系? 抽象函数往往有它所对应的具体的函数模型。例如,)x (f )x (f )x x (f 2121+=+对应的是指数函数2 1 2 1x x x x a a a ?=+;)x (f )x (f )x x (f 2121+=对应的是对数函数 2a 1a 21a x l o g x l o g )x x (l o g +=等等。当然,也有的时候并没有我们比较熟悉的函数模型,而是新定义的一种函数。 抽象函数也可以与我们熟悉的函数,如指数函数、对数函数等一样,有自己的性质,如奇偶性、周期性、单调性等。有自己的特殊点,有自己的对称性,能画出大致图像。 (3)抽象函数的解题策略一般有哪些? 面对抽象函数数学题,我们的解题思路一般不外乎①合理赋值,化抽象为具体;②作恒等变形,找出该函数规律性、特征性特点;③分类讨论,归纳出抽象函数的实质问题。 (二)高考中的抽象函数 (1)抽象函数在高考中的地位 函数是高考数学中非常重要的一部分,根据上海卷命题的要求,每年函数部分的内容将占到整个卷面分值的三分之一左右,2005年高考上海卷中,函数相关的内容将近55分。而抽象函数是函数中考核要求较高,难度较大的内容。2000年开始,不论是全国卷还是上海卷都对学生提出了考查抽象函数的要求。03年上海卷一年中考了两道与抽象函数有关的题目,03、04、05年连续三年上海高考试卷中均有与抽象函数有关的题目。

二次函数解决实际问题归纳

二次函数解决实际问题归纳及练习 一、应用二次函数解决实际问题的基本思路和步骤: 1、基本思路:理解问题→分析问题中的变量和常量以及它们之间的关系→用函数关系式表示它们的关系→用数学方法求解→检验结果的合理性; 2、基本步骤:审题→建模(建立二次函数模型)→解模(求解)→回答(用生活语言回答,即问什么答什么)。 二、利用二次函数解决实际问题的类型 1、用二次函数解决几类典型问题

解决最值问题应用题思路区别于一般应用题有两点:①设未知数在“当某某为何值时,什么最大(最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数;②问的求解依靠配方法或最值公

式而不是解方程。 (1)利用二次函数解决利润最大问题 此类问题围绕总利润=单件利润×销售总量,设未知数时,总利润必然是因变量y,而自变量有两种情况:①自变量x是所涨价多少或降价多少;②自变量x是最终销售价格。 例:商场销售M型服装时,标价75元/件,按8折销售仍可获利50%,现搞促销活动,每件在8折的基础上再降价x元,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x﹥0) ①求M型服装的进价 ②求促销期间每天销售M型服装所获得的利润W的最大值。 (2)利用二次函数解决面积最值 例:已知正方形ABCD边长为8,E、F、P分别是AB、CD、AD上的点(不与正方形顶点重合),且PE⊥PF,PE=PF 问当AE为多长时,五边形EBCFP面积最小,最小面积多少 2、用二次函数解抛物线形问题

巧记实际问题要解决,正确建模是关键;根据题意的函数,提取配方定顶点; 抛物线有对称轴,增减特性可看图;线轴交点是顶点,顶点 纵标最值出。 练习 1:某涵洞是抛物线形,它的截面如图所示,测得水面宽1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么 2:某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为,现有载满货物的汽车欲通过大门,货物顶部距地面,装货宽度为。这辆汽车能否顺利通过大门若能,请你通过计算加以说明;若不能,请简要说明理由. 3、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售

指数函数知识点总结

指数函数知识总结 (一)指数与指数幂的运算 1.根式的概念: 一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . ①负数没有偶次方根;②0的任何次方根都是0,记作00=n 。 ③当n 是奇数时,a a n n =, 当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0()1(*>∈>=n N n m a a a n m n m )1,,,0(1 1)2(*>∈>= = - n N n m a a a a n m n m n m (3)0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. 题型一、计算 1.44 等于( ) A 、16a B 、8a C 、4a D 、2 a 2.⑴ 33 )2(-= ⑵ 44 )2(-= ⑶ 66)3(π-= ⑷ 2 22y xy x ++= 3.① 625625++- ② 335252-++ 4.计算(1 + 2048 21)(1 + 1024 21)…(1 + 421)(1 + 2 21)(1 + 21 ). 5. 计算(0.0081)4 1-- [3×(87)0]1-·[8125 .0-+(38 3)31-]21 -.

题型二、化简 1. 3 2 13 2b a b a ?- ÷3 2 11- --??? ? ? ?a b b a 2. 322a a a ?(a >0). 3.化简: 3 32 b a a b b a (a >0,b >0). 题型三、带附加条件的求值问题 1. 已知a 2 1+ a 2 1-= 3,求下列各式的值: ⑴ a + a 1 - ⑵ a 2+ a 2 - ⑶ 2 12 1232 3- - --a a a a 2. 已知2a x x =+-2(常数),求8x x -+8的值。 3. 已知x + y = 12, xy = 9,且x <y ,求 2 12 1 212 1y x y x +-的值。 4.已知a 、b 是方程x 2 - 6x + 4 = 0的两根,且a >b >0,求b a b a +-的值。

抽象函数常见解法及意义总结

含有函数记号“ ()f x ”有关问题解法 由于函数概念比较抽象,学生对解有关函数记号 ()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地 掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出 ()f x ,这也是证某些公式或等式常用的方法,此法解培养学生 的灵活性及变形能力。 例1:已知 ( )211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴ 2()1x f x x -= - 2.凑合法:在已知 (())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁, 还能进一步复习代换法。 例2:已知 33 11()f x x x x +=+,求 ()f x 解:∵ 22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11 ||||1|| x x x x +=+≥ ∴ 23()(3)3f x x x x x =-=-,(|x |≥1) 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设 ()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ =22 222()24ax bx a c x x +++=++比较系数得2()4 1321 ,1,2222 a c a a b c b +=??=?===??=? ∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 解:∵ ()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵ ()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0 x x f x x x +≥?=?--

抽象函数解题方法与技巧

抽象函数的解题技巧 1.换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例1. 已知f(1+sinx)=2+sinx+cos 2x, 求f(x) 解:令u=1+sinx,则sinx=u-1 (0≤u ≤2),则f(u)=-u 2+3u+1 (0≤u ≤2) 故f(x)=-x 2+3x+1 (0≤u ≤2) 2.方程组法 运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题。 例2..232|)x (f :|,x )x 1(f 2)x (f ),)x (f ,x ()x (f y ≥=-=求证且为实数即是实数函数设 解:02)x (xf 3 x ,x 1)x (f 2)x 1(f ,x x 12=++=-与已知得得代换用 .232|)x (f |,024)x (9f 02≥∴≥?-≥?得由 例3.f(x).1),x 0(x ,x 1)x 1x ( f )x (f 求且已知≠≠+=-+ 解:(1)1),x 0(x x 1)x 1x (f )x (f ≠≠+=-+且 ,x 1x 1)x 1x 1x 1x (f )x 1x (f :x x 1-x -+=---+-得代换用 :x )1(x -11 (2) .x 1x 2)x 11(f )x 1-x f( 得中的代换再以即-=-+ (3) .x 1x 2)x (f )x -11f( ,x 111)x 111x 11(f )1x 1(f --=+-+=---+-即 1)x 0(x x 2x 21x x )x (f :2)2()3()1(223≠≠---=-+且得由 3.待定系数法 如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。 例4.已知f(x)是多项式函数,且f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:由已知得f(x)是二次多项式,设f(x)=ax 2+bx+c (a ≠0) 代入比较系数得过且过:a=1,b= -2,c= -1,f(x)=x 2-2x-1. 4.赋值法

指数函数及对数函数复习(有详细知识点及习题详细讲解)

指数函数与对数函数总结与练习 一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则???<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)( )33 8- (2)() 2 10- (3)()44 3π- (4) 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. (二)分数指数幂

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答) 抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。抽象函数问题既是教学中的难点,又是近几年来高考的热点。 本资料精选抽象函数经典综合问题33例(含详细解答) 1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2 )>1,求x 的取值范围。 解 (1)令a=b=0,则f(0)=[f(0)]2 ∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴) (1 )(x f x f = - 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0) (1 )(>-= x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴ 1)()()() () (121212>-=-?=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数 (4)f(x)·f(2x-x 2 )=f[x+(2x-x 2 )]=f(-x 2 +3x)又1=f(0), f(x)在R 上递增 ∴由f(3x-x 2 )>f(0)得:3x-x 2 >0 ∴ 0

抽象函数的解题方法与技巧

抽象函数的解题方法与技巧 摘要:抽象函数是没有具体的解析式,只给出它的一些特征、性质或一些特殊关系式的函数。因而显得特别抽象。所以解决抽象函数问题需要从函数的本质出发,考虑其定义,性质,加之解决抽象函数问题时常用的技巧——赋值法,换元法等。尽可能使抽象函数变得不再抽象。 关键词:抽象函数;性质;求值;解析式 ;解题方法;技巧 Problem-solving methods and skills of abstract functions Xue Jie School of Mathematics and Statistics, Southwest University, Chongqing 400715, China Abstract :: abstract function is not analytic type specific, given only the function characteristics, its nature or some special relationship. So it is especially abstract. So to solve the abstract function problems need from the view of function essence, considering its definition, nature, and solve the abstract function problems commonly used techniques -- assignment method, substitution method etc.. As far as possible to make the abstract function is no longer abstract. Keywords : abstract function; property; evaluation; analytic method; problem solving skills; 1. 提出问题的背景 抽象函数问题是函数中的一类综合性较强的问题,这类问题通过对函数性质结构的代数表述,能够综合考查学生对于数学符号语言的理解和接受能力,考查对函数性质的代数推理和论证能力,考查学生的抽象思维和对知识的灵活运用能力,考查学生对于一般和特殊关系的认识,因而成为近几年高考命题的热点。由于抽象函数问题只给出函数所满足的一般性质或运算法则,没有明确的表示形式,因其抽象性和综合型,对学生而言有较大的难度。因此有必要对抽象函数的解题方法和技巧进行归纳总结。 2. 抽象函数的知识点 (1)定义域:函数的定义域指自变量x 的取值范围。所以对抽象函数()x f ,()[]x g f 而言,其定义域均指的是x 的取值范围。对于()[]x g f 和()[]x h f ,其中()x g 和()x h 的地位是等价的,故取值范围是一样的。 (2)值域:函数的值域指函数值的取值范围。那么具有相同对应关系的两个抽象函数 ()[]x g f 和()[]x h f ,它们的值域是相同的。

抽 象 函 数 的 解 题 方 法

解 抽 象 函 数 的 常 用 方 法 抽象函数是指没有给出具体解析式的函数。此类函数试题既能全面地考查学生对函数概念的理解及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和转化能力,以及对一般和特殊关系的认识,因此备受命题者的青睐,成为高考热点。然而,由于抽象函数本身的抽象性、隐蔽性,大多数学生在解决这类问题时,感到束手无策。 我在多年的教学中,积累了一些解题方法,供大家参考. 一、 利用线性函数模型 在中学数学教材中,大部分抽象函数是以具体函数为背景构造出来的,解题时最根本点是将抽象函数具体化,这种方法虽不能代替具体证明,但却能找到这些抽象函数的解题途径,特别是填空题、选择题,直接用满足条件的特殊函数求解,得出答案即可。常见的抽象函数模型有: 例1、函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且f (1)=2, f (x )在区间[-4,2]上的值域为 。 0a a ≠且

解析:由题设可知,函数f (x )是正比例()y kx k =为常数的抽象函数,由f (1)=2可求得 k=2,∴ f (x )的值域为[-8,4]。 例2、已知函数f (x )对任意,x y R ∈,满足条件()()()2f x y f x f y +=+-,且当x >0时, f (x )>2,f (3)=5,求不等式2(22)3f a a --的解。 分析:由题设条件可猜测:f (x )是y =x +2的抽象函数,且f (x )为单调增函数,如果 这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。 解:设1221,0x x x x -则,∵当x >0时,f (x )>2,∴21()2f x x -,则 , 即,∴f (x )为单调增函数。 ∵, 又∵f (3)=5,∴f (1)=3。∴2(22) (1)f a a f --,∴2221a a --, 解得不等式的解为-1 < a < 3。 例3、定义在R上的函数()y f x =,对任意的12,x x 满足12x x ≠时都有12()()f x f x ≠,且有 ()()()f x y f x f y +=成立。求: (1)f (0); (2)对任意值x ,判断f (x )值的正负。 分析:由题设可猜测f (x )是指数函数()(01)x f x a a a =≠且的抽象函数, 从而猜想f (0)=1且f (x )>0。 解:(1)令y =0代入()()()f x y f x f y +=,则()()(0)f x f x f =, ∴[]()1(0)0f x f -=。若f (x )=0,则对任意12x x ≠,有12()()0f x f x ==,

抽象函数问题的解题策略

抽象函数问题的解题策略Last revision on 21 December 2020

抽象函数问题的解题策略 一、利用特殊模型 有些抽象函数问题,用常规解法很难解决,但与具体函数“对号入座”后,问题容易迎刃而解.这种方法多用于解填空题、选择题、解答题的解题后的检验,但解答题的解答书写过程一般不能用此法. 例1 若函数f(x)与g(x)在R 上有定义,且f(x-y)=f(x)g(y)-g(x)f(y), f(-2)=f(1)≠0,则g(1)+g(-1)= . 解 因为 f(x-y)=f(x)g(y)-g(x)f(y), 这是两角差的正弦公式模型, 又f(-2)=f(1)≠0, 则可取x x f 3 2sin )(π= 于是 f(-1-1)=f(-1)g(1)-g(-1)f(1) 例2 设函数f(x)是定义在R 上的减函数,且满足f(x+y)=f(x)f(y), f(-3)=8,则不等式f(x)f(x-2)< 的解集为 . 解 因为函数f(x)满足f(x+y)=f(x)f(y),这是指数函数模型, 又 f(-3)=8, 则可取 ∵f(x)f(x-2)< ∴2)21()21(-x x <2561, 即22)21(-x <8)2 1(, ∴ 2x-2 >8, 解不等式,得 x>5, ∴ 不等式的解集为 {x|x >5}. 二、利用函数性质 函数的特征是通过函数的性质反映出来的,抽象函数也不例外,只有充分利用题设条件所表明的函数的性质,灵活进行等价转化,抽象函数问题才能峰回路 转、化难为易. 1. 利用单调性 例3 设f(x)是定义在(0,+∞)上的增函数,满足f(xy)=f(x)+f(y), f(3)=1,解不等式f(x)+f(x-8)≤2. 解 ∵ 函数f(x)满足f(xy)=f(x)+f(y), f(3)=1, ∴ 2=1+1=f(3)+f(3)=f(9), 由f(x)+f(x-8)≤2,得 f[x(x-8)]≤f(9), ∵ 函数f(x)是定义在(0,+∞)上的增函数, 则 ∴ 不等式解集为 {x|80, x-8>0, x(x-8)≤9, 8

指数函数知识点汇总

指数函数知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时, a a n n =,当n 是偶数时, ? ? ?<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m ) 1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数 )1,0(≠>=a a a y x 且叫做指数函数,其中x 是自 变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a >1 0

抽象函数的几类常见问题及解题方法

抽象函数的几类常见问题及解题方法 抽象函数是没有具体的解析式,只给出它的一些特征、性质或一些特殊关系式的函数。因而显得特别抽象。所以解决抽象函数问题需要从函数的本质出发,考虑其定义,性质,加之解决抽象函数问题时常用的技巧——赋值法,换元法等,尽可能使抽象函数变得不再抽象。这类问题既能全面地考查学生对函数概念和性质的理解以及代数推理和论证能力,又能综合考查学生对数学符号语言的理解和接受能力. 对于发展学生的思维能力.尤其是抽象思维能力,渗透数学思想方法,起着非常重要的作用,所以备受各地模考、高考的青睐.因此有必要对抽象函数的解题方法和技巧进行归纳总结。以下是我归纳的常见的三类问题及其解法。 1.有关定义域问题 函数的定义域指自变量的取值范围。所以对抽象函数,而言,其定义域均指的是的取值范围。对于和,其中和的地位是等价的,故取值范围是一样的。 例 1. 函数y= 的定义域为(一∞,1] ,则函数y=f [ 1 og 】的定义域是————。 解析:因为1 og相当于 f (x )中的X,所以1 og≤ 1,得

指数函数知识点总结

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m ? 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 《 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2 注意:利用函数的单调性,结合图象还可以看出:

(1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [ (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; ' 指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---21 3321x x 、 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 ? 练习:(1)4 12-=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d | B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),

抽象函数的性质问题解析

抽象函数的性质问题解析 抽象函数是高中数学的一个难点,也是近几年来高考的热点。考查方法往往基于一般函数,综合考查函数的各种性质。本节给出抽象函数中的函数性质的处理策略,供内同学们参考。 1、 定义域:解决抽象函数的定义域问题——明确定义、等价转换。 材料一:若函数)1(+=x f y 的定义域为)3,2[-,求函数)21(+=x f y 的定义域。 解析:由)1(+=x f y 的定义域为)3,2[-,知1+x 中的)3,2[-∈x ,从而411<+≤-x ,对函数)21 (+=x f y 而言,有1124x -≤ +<,解之得:),21(]31,(+∞--∞∈ x 。 所以函数)21(+=x f y 的定义域为),21(]31,(+∞--∞ 总结:函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围),如本题中的1+x 与 21+x 的范围等同。 2、 值域:解决抽象函数的值域问题——定义域、对应法则决定。 材料二:若函数)1(+=x f y 的值域为]1,1[-,求函数)23(+=x f y 的值域。 解析:函数)23(+=x f y 中定义域与对应法则与函数)1(+=x f y 的定义域与对应法则完全相同,故函数)23(+=x f y 的值域也为]1,1[-。 总结:当函数的定义域与对应法则不变时,函数的值域也不会改变。 3、 对称性:解决抽象函数的对称问题——定义证明是根本、图象变换是捷径、特值代入是妙法。 材料三:设函数)(x f y =定义在实数集上,则函数)1(-=x f y 与)1(x f y -=的图象关于( ) A 、直线0=y 对称 B 直线0=x 对称 C 直线1=y 对称 D 直线1=x 对称 解法一(定义证明):设点),(00y x P 是函数)1(-=x f y 的图象上的任意一点,则)1(00-=x f y ,),(00y x P 关于直线m x =的对称点为),2(00/y x m P -,要使点),2(00/y x m P -在函数)1(x f y -=的图象上,则)21()]2(1[000m x f x m f y -+=--=,应有121-=-m ,故1=m , 所以函数)1(-=x f y 与)1(x f y -=的图象关于直线1=x 对称。 解法二(图象变换法):由函数)(x f y =的图象向右平移1个单位得到函数)1(-=x f y 的图象;由函数)(x f y =的图象关于y 轴对称得到函数)(x f y -=的图象,再向右平移1个单位,得到)1()]1([x f x f y -=--=的图象。如图所示,选D 。 解法三(特值代入法):由已知可得点))1(,0(-f P 在函数)1(-=x f y 的图象上,点))1(,2(-f Q 在函数)1(x f y -=的图象上,又点P 、Q 关于直线1=x 对称,选D 。

高中数学专题:抽象函数常见题型解法

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。 一、定义域问题 例1. 已知函数 )(2x f 的定义域是[1,2],求f (x )的定义域。 例2. 已知函数)(x f 的定义域是]21 [,-,求函数)] 3([log 2 1x f -的定义域。 二、求值问题 例 3. 已知定义域为+ R 的函数f (x ),同时满足下列条件:① 51 )6(1)2(= =f f ,;② )()()(y f x f y x f +=?,求f (3),f (9)的值。 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2 )]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 )]2([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在 R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题

相关主题
文本预览
相关文档 最新文档