当前位置:文档之家› 仿真实验线性系统稳定性分析报告

仿真实验线性系统稳定性分析报告

仿真实验线性系统稳定性分析报告
仿真实验线性系统稳定性分析报告

仿真实验线性系统稳定性分析报告

实用标准文档

文案大全实验四 Stability analysis of linear systems 线性系统稳定性分析

一、实验目的

1.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。

2.熟练掌握系统的稳定性的判断方法。

二、基础知识及MATLAB 函数

注意:routh ()和hurwitz ()不是MATLAB 中自带的功能函数,(在共享文件夹里有劳斯判据和赫尔维茨判据的m 文件,把其中的routh.m 和hurwitz .m 放到MATLAB 文件夹下的work 文件夹中才能运行)。

1)直接求根判稳roots()

控制系统稳定的充要条件是其特征方程的根均具有负实部。因此,为了判别系统的稳定性,就要求出系统特征方程的根,并检验它们是否都具有负实部。MATLAB 中对多项式求根的函数为roots()函数。

若求以下多项式的根24503510234++++s s s s ,则所用的MATLAB 指令为:

>> roots([1,10,35,50,24])

-4.0000

-3.0000

-2.0000

-1.0000

特征方程的根都具有负实部,因而系统为稳定的。

2)劳斯稳定判据routh ()

劳斯判据的调用格式为:[r, info]=routh(den)

该函数的功能是构造系统的劳斯表。其中,den 为系统的分母多项式系数向量,r 为返回的routh 表矩阵,info 为返回的routh 表的附加信息。

以上述多项式为例,由routh 判据判定系统的稳定性。

>> syms EPS

den=[1,10,35,50,24];

ra=routh(den,EPS)

r=

实用标准文档

文案大全 1 35 24

10 50 0

30 24 0

42 0 0

24 0 0

[ ]

由系统返回的routh 表可以看出,其第一列没有符号的变化,系统是稳定的。

3)赫尔维茨判据hurwitz ()

赫尔维茨的调用格式为:H=hurwitz (den )。该函数的功能是构造hurwitz 矩阵。其中,den 为系统的分母多项式系数向量。

以上述多项式为例,由hurwitz 判据判定系统的稳定性。

>>den=[1,10,35,50,24]; H=hurwitz(den)

H=

10 50 0 0

1 35 24 0

0 10 50 0

0 1 35 24

由系统返回的hurwitz 矩阵可以看出,系统是稳定的。与前面的分析结果完全一致。

4)开环增益K 0和时间常数T 改变对系统稳定性及稳态误差的影响系统开环传递函数为:)

1)(11.0(10)(0++=

Ts s s K s G ,参考以下图片中的仿真程序:系统开环传递函数为:

)1)(11.0(10)(0++=Ts s s K s G 式中,0K =12/R R ,

Ω==Ω=Ω=k 100,k 500~0k 10021R RC T R R ;,,C 取1F μ或0.1F μ两种情况。

(1)输入信号F C U μ11

r ==,;改变电位器,使2R 从0→500Ωk 方向变化,观察系统的输出波形,确定使系统输出产生等幅震荡时相应的2R 值及0K 值,分析0K 变化对系

实用标准文档

文案大全统稳定性的影响。

(2)分析T 值变化对系统的影响。

(3)观察系统在不同输入下稳态误差变化的情况。

四、软件仿真实现方法

(1)开机执行程序c:\Matlab\bin\Matlab.exe (或用鼠标双击MATLAB 图标),进入MATLAB 命令窗口:“mand

Window ”。

(2)系统开环传递函数为:

)

1)(11.0(10)(0++=Ts s s K s G 取T=0.1,即令F C R

μ1k 100=Ω=,;取0K =1,即令Ω==k 10021R R ,建立系统数学模型,绘制并记录其阶跃曲线。

(3)理论分析0K 对稳定性的影响。保证T=0.1不变,改变0K ,令0K 分别等于2,3,4,5,即将可变电阻2R 分别设置在

200,300,400,500Ωk 。用劳斯判据求出使系统稳定的0K 值范围,并对上述各种情况分别判断稳定性。

(4)由实验验证第(3)步的理论分析结果。分别绘制相应的阶跃响应曲线,并分析0K 变化对系统稳定性的影响。键入程序:

%定义元件参数

R1=10^5; %电阻参数Ω=k 1001R

R=10^5; %电阻参数Ω=k 100R

R2=[1,2,3,4,5]*10^5; %电阻参数2R 矩阵,包含2R 可取的5个数据

C1=10^(-6); %电容参数F C

μ11=

C2=10^(-7); %电容参数F C

μ1.02=

T=[R*C1,R*C2]; %时间常数T 矩阵,包含T 可取的两个值 %建立系统传递函数;并绘制其阶跃响应曲线

for i=1:5

K0(i)=R2(i)/R1; %给增益0K 赋值

实用标准文档

文案大全 num=10*K0(i); %开环传递函数分子多项式模型

den=[0.1*T(1),0.1+T(1),1,0]; %开环传递函数分母多项式模型

Gopen=tf(num,den) %建立开环传递函数open G

Gclose=feedback(Gopen,1,-1) %建立闭环传递函数close G

figure(i) %建立第i 个图形窗口

t=0:.01:10

step(Gclose,t) %求系统阶跃响应并作图

end

运行结果如图3.2-3所示。可见,0K =2时,系统临界稳定;随着0K 的增加,系统将趋于不稳定。

(5)在0K =1(系统稳定)和0K =2(系统临界稳定)两种情况下,分别绘制T=0.1和T=0.01(即保持R=100k Ω不变,C 分别取1μF 和0.1μF )时系统的阶跃响应,分析T 值变化对系统阶跃响应及稳定性的影响。键入程序:

%定义元件参数

R1=10^5;

R=10^5;

R2=[1,2,3,4,5]*10^5;

C1=10^(-6);

C2=10^(-7);

T=[R*C1,R*C2];

%取K0=1,分别绘制T=0.1和T=0.01时的阶跃响应曲线

K0=R2(1)/R1;

for i=1:2

num=10*K0; %开环传递函数分子多项式模型

den=[0.1*T(i),0.1+T(i),1,0]; %开环传递函数分母多项式模型

Gopen(i)=tf(num,den) %建立开环传递函数open G

Gclose(i)=feedback(Gopen(i),1,-1) %建立闭环传递函数close G

end

figure(1) %建立第1个图形窗口

实用标准文档

文案大全

step(Gclose(1), 'r',Gclose(2),

'g') %求系统阶跃响应并作图

Time (sec)

A m p l i t u d e

Time (sec)

A m p l i t u d e

Time (sec)

A m p l i t u d e

Time (sec)

A m p l i t u d e

Step Response

Time (sec)

A m p l i t u d e

图3.2-3 0K 取不同值时系统响应曲线

运行结果如图3.2-4所示。可见,时间常数T 减少时,系统动态性能得到改善。 %取0K =2,分别绘制T=0.1和T=0.01时的阶跃响应曲线

K0=R2(2)/R1; %取0K =2,即使系统临界稳定的0K 值 for i=1:2

num=10*K0; %开环传递函数分子多项式模型

实用标准文档

文案大全 den=[0.1*T(i),0.1+T(i),1,0] %开环传递函数分母多项式模型

Gopen(i)=tf(num,den) %建立开环传递函数open G

Gclose(i)=feedback(Gopen(i),1,-1) %建立闭环传递函数close G

end

figure(2) %建立第2个图形窗口

hold on

step(Gclose(1), 'r',Gclose(2),

'g') %系统阶跃响应并作图

运行结果如图3.2-5所示。可见,T 从0.1变为0.01时,系统由原来的临界稳定状态变为衰减震荡,稳定性和动态性能均得到改善。

图3.2-4 0K =1,T 分别取0.1和0.01时系统响应曲线

实用标准文档

文案大全

图3.2-5 0K =2,T 分别取0.1和0.01时系统响应曲线

三、实验内容

1.系统的特征方程式为010532234=++++s s s s ,试用三种判稳方式判别该系统的稳定性。

2.单位负反馈系统的开环模型为

)

256)(4)(2()(2++++=s s s s K s G 试分别用劳斯稳定判据和赫尔维茨稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。

3,分析开环增益K 0和时间常数T 改变对系统稳定性及稳态误差的影响,系

统开环传递函数为:)

31.0)(1)(11.0(10)(0+++=

s Ts s s K s G 。四、实验报告

1.根据内容要求,写出调试好的MATLAB 语言程序,及对应的MATLAB 运算结果。

实用标准文档

2. 记录各种输出波形,根据实验结果分析参数变化对系统的影响。

3.总结判断闭环系统稳定的方法,说明增益K对系统稳定性的影响。

4.写出实验的心得与体会。

五、预习要求

1. 预习实验中基础知识,运行编制好的MATLAB语句,

2. 结合实验内容,提前编制相应的程序。

4.熟悉闭环系统稳定的充要条件及学过的稳定判据。

文案大全

线性系统的频率特性实验报告(精)

实验四 线性系统的频率特性 一、实验目的: 1. 测量线性系统的幅频特性 2. 复习巩固周期信号的频谱测量 二、实验原理: 我们讨论的确定性输入信号作用下的集总参数线性非时变系统,又简称线性系统。线性系统的基本特性是齐次性与叠加性、时不变性、微分性以及因果性。对线性系统的分析,系统的数学模型的求解,可分为时间域方法和变换域方法。这里主要讨论以频率特性为主要研究对象,通过傅里叶变换以频率为独立变量。 设输入信号)(t v in ,其频谱)(ωj V in ;系统的单位冲激响应)(t h ,系统的频率特性 )(ωj H ;输出信号)(t v out ,其频谱)(ωj V out ,则 时间域中输入与输出的关系 )()()(t h t v t v in out *= 频率域中输入与输出的关系 )()()(ωωωj H j V j V in out ?= 时间域方法和变换域方法并没有本质区别,两种方法都是将输入信号分解为某种基本单元,在这些基本单元的作用下求得系统的响应,然后再叠加。变换域方法可以将时域分析中的微分、积分运算转化为代数运算,将卷积积分变换为乘法;在信号处理时,将输入时间信号用一组变换系数(谱线)来表示,根据信号占有的频带与系统通带间的关系来分析信号传输,判别信号中带有特征性的分量,比时域法简便和直观。 三、实验方法: 1. 输入信号的选取 这里输入信号选取周期矩形信号,并且要求 τ T 不为整数。这是因为周期矩形信号具有丰富的谐波分量,通过观察系统的输入、输出波形的谐波的变化,分析系统滤波特性。周期矩形信号可以分解为直流分量和许多谐波分量;由于测量频率点的数目有限,因此需要排除谐波幅度为零的频率点,周期矩形信号谐波幅度为零的频率点是 Ω KT ,其中1=K 、2、3、… 。 图11.1 输入的周期矩形信号时域波形 t

检测系统的基本特性

第2章 检测系统的基本特性 2.1 检测系统的静态特性及指标 2.1.1检测系统的静态特性 一、静态测量和静态特性 静态测量:测量过程中被测量保持恒定不变(即dx/dt=0系统处于稳定状态)时的测量。 静态特性(标度特性):在静态测量中,检测系统的输出-输入特性。 n n x a x a x a x a a y +++++= 332210 例如:理想的线性检测系统: x a y 1= 如图2-1-1(a)所示 带有零位值的线性检测系统:x a a y 10+= 如图2-1-1(b)所示 二、静态特性的校准(标定)条件――静态标准条件。 2.1.2检测系统的静态性能指标 一、测量范围和量程 1、 测量范围:(x min ,x max ) x min ――检测系统所能测量到的最小被测输入量(下限) x max ――检测系统所能测量到的最大被测输入量(上限)。 2、量程: min max x x L -= 二、灵敏度S dx dy x y S x =??=→?)( lim 0 串接系统的总灵敏度为各组成环节灵敏度的连乘积 321S S S S = 三、分辨力与分辨率 1、分辨力:能引起输出量发生变化时输入量的最小变化量min x ?。 2、分辨率:全量程中最大的min x ?即min max x ?与满量程L 之比的百分数。 四、精度(见第三章) 五、线性度e L max .. 100%L L F S e y ?=± ? max L ?――检测系统实际测得的输出-输入特性曲线(称为标定曲线)与其拟合直线之

间的最大偏差 ..S F y ――满量程(F.S.)输出 注意:线性度和直线拟合方法有关。 最常用的求解拟合直线的方法:端点法 最小二乘法 图2-1-3线性度 a.端基线性度; b.最小二乘线性度 四、迟滞e H %100. .max ??= S F H y H e 回程误差――检测系统的输入量由小增大(正行程),继而自大减小(反行程)的测试 过程中,对应于同一输入量,输出量的差值。 ΔHmax ――输出值在正反行程的最大差值即回程误差最大值。 迟滞特性 五、稳定性与漂移 稳定性:在一定工作条件下,保持输入信号不变时,输出信号随时间或温度的变化而出 现缓慢变化的程度。 时漂: 在输入信号不变的情况下,检测系统的输出随着时间变化的现象。 温漂: 随着环境温度变化的现象(通常包括零位温漂、灵敏度温漂)。 2.2 检测系统的动态特性及指标 动态测量:测量过程中被测量随时间变化时的测量。 动态特性――检测系统动态测量时的输出-输入特性。 常用实验的方法: 频率响应分析法――以正弦信号作为系统的输入;

线性系统理论Matlab实践仿真报告

线性系统理论Matlab实验报告 1、本题目是在已知状态空间描述的情况下要求设计一个状态反馈控制器,从而使得系统具 有实数特征根,并要求要有一个根的模值要大于5,而特征根是正数是系统不稳定,这样的设计是无意义的,故而不妨设采用状态反馈后的两个期望特征根为-7,-9,这样满足题目中所需的要求。 (1)要对系统进行状态反馈的设计首先要判断其是否能控,即求出该系统的能控性判别矩阵,然后判断其秩,从而得出其是否可控; 判断能控程序设计如下: >> A=[-0.8 0.02;-0.02 0]; B=[0.05 1;0.001 0]; Qc=ctrb(A,B) Qc = 0.0500 1.0000 -0.0400 -0.8000 0.0010 0 -0.0010 -0.0200 Rc=rank(Qc) Rc =2 Qc = 0.0500 1.0000 -0.0400 -0.8000 0.0010 0 -0.0010 -0.0200 得出结果能控型判别矩阵的秩为2,故而该系统是完全可控的,故可以对其进行状态反馈设计。 (2)求取状态反馈器中的K,设的期望特征根为-7,-9; 其设计程序如下: >> A=[-0.8 0.02;-0.02 0]; B=[0.05 1;0.001 0]; P=[-7 -9]; k=place(A,B,P) k = 1.0e+003 * -0.0200 9.0000 0.0072 -0.4500 程序中所求出的k即为所求状态反馈控制器的状态反馈矩阵,即由该状态反馈矩阵所构成的状态反馈控制器能够满足题目要求。 2、(a)要求求该系统的能控型矩阵,并验证该系统是不能控的。

随机信号经线性系统的特性分析

随机信号通过线性系 统实验 ——随机信号通过 低通滤波器 班级:010913 作者:葛楠(01091256) 李丹(01091272) 张卫康(01091220)

一、摘要 基于Matlab让产生的一个随机信号通过低通滤波器,并且分析随机信号的数学特征,当其通过低通滤波器后再次分析其数字特征,从而得出实验结论。 二、目的 1.研究随机信号的线性叠加型。 2了解输入、输出信号的特性,包括均值、方差、相关函数、频谱及功率谱密度等。 3.掌握随机信号的检测及分析方法。 三、实验的特点和原理 特点:完全基于Matlab仿真 原理:(1)均值:即为数学期望,表示信号变化的中心趋势,是信号的直流分量。 (2)均方值:表示信号的强度,代表信号的平均能量。 (3)方差:反映了信号绕均值的波动程度。 (4)自相关函数:表示波形自身在不同时间的相似程度,其值越大表示相似性越高。信号一般是相关的,即自相关函数不为零。而 噪声是随机的,基本上不相关,所以自相关理论上为零。 (5)频谱函数:从频域上分析信号在不同频率分量的大小,而信号的频谱和功率谱函数只是在数值上不同的,其图形相似。 四、实验的过程 1.分别生成一个方波信号和一个高斯白噪声,将两者线性叠加,研究各信号的频域和时域特性。设定采样频率Fs=44.1kHz,取的样本点数N=256,方波基频为1000Hz,加入SNR为10dB的高斯白噪声得到输入信号xi,间接获得白噪声xn。

1 2 34 5 6 x 10 -3 -1-0.8-0.6-0.4-0.200.2 0.40.60.8 1方波信号时域波形 t x s (t ) x 10 4 方波信号频域波形 f X S (f )

第三章 测试系统的基本特性

第三章 测试系统的基本特性 (一)填空题 1、某一阶系统的频率响应函数为1 21)(+= ωωj j H ,输入信号2 sin )(t t x =,则输出信号)(t y 的频率为= ω,幅值= y ,相位= φ。 2、试求传递函数分别为5.05.35 .1+s 和2 22 4.141n n n s s ωωω++的两个环节串联后组成的系统 的总灵敏度。为了获得测试信号的频谱,常用的信号分析方法有、 和 。 3、当测试系统的输出)(t y 与输入)(t x 之间的关系为)()(00t t x A t y ?=时,该系统能实现 测试。此时,系统的频率特性为=)(ωj H 。4、传感器的灵敏度越高,就意味着传感器所感知的越小。5、一个理想的测试装置,其输入和输出之间应该具有 关系为最佳。 (二)选择题1、 不属于测试系统的静特性。 (1)灵敏度 (2)线性度(3)回程误差(4)阻尼系数 2、从时域上看,系统的输出是输入与该系统 响应的卷积。(1)正弦 (2)阶跃 (3)脉冲 (4)斜坡 3、两环节的相频特性各为)(1ωQ 和)(2ωQ ,则两环节串联组成的测试系统,其相频特性 为 。 (1))()(21ωωQ Q (2))()(21ωωQ Q +(3)) ()() ()(2121ωωωωQ Q Q Q +(4)) ()(21ωωQ Q ?4、一阶系统的阶跃响应中,超调量 。 (1)存在,但<5%(2)存在,但<1(3)在时间常数很小时存在 (4)不存在 5、忽略质量的单自由度振动系统是 系统。(1)零阶 (2)一阶 (3)二阶 (4)高阶 6、一阶系统的动态特性参数是 。 (1)固有频率 (2)线性度 (3)时间常数(4)阻尼比 7、用阶跃响应法求一阶装置的动态特性参数,可取输出值达到稳态值 倍所经过的

全维状态观测器的设计

实 验 报 告 课程 线性系统理论基础 实验日期 2016年 6月 6 日 专业班级 姓名 学号 同组人 实验名称全维状态观测器的设计 评分 批阅教师签字 一、实验目的 1、 学习用状态观测器获取系统状态估计值的方法,了解全维状态观测器的 极点对状态的估计误差的影响; 2、 掌握全维状态观测器的设计方法; 3、 掌握带有状态观测器的状态反馈系统设计方法。 二、实验内容 开环系统? ??=+=cx y bu Ax x &,其中 []0100001,0,10061161A b c ????????===????????--???? a) 用状态反馈配置系统的闭环极点:5,322-±-j ; b) 设计全维状态观测器,观测器的极点为:10,325-±-j ; c) 研究观测器极点位置对估计状态逼近被估计值的影响; d) 求系统的传递函数(带观测器及不带观测器时); 绘制系统的输出阶跃响应曲线。 三、实验环境 MATLAB6、5 四、实验原理(或程序框图)及步骤

利用状态反馈可以使闭环系统的极点配置在所希望的位置上,其条件就是必须对全部状态变量都能进行测量,但在实际系统中,并不就是所有状态变量都能测量的,这就给状态反馈的实现造成了困难。因此要设法利用已知的信息(输出量y 与输入量x),通过一个模型重新构造系统状态以对状态变量进行估计。该模型就称为状态观测器。若状态观测器的阶次与系统的阶次就是相同的,这样的状态观测器就称为全维状态观测器或全阶观测器。 设系统完全可观,则可构造如图4-1所示的状态观测器 图4-1 全维状态观测器 为求出状态观测器的反馈ke 增益,与极点配置类似,也可有两种方法: 方法一:构造变换矩阵Q,使系统变成标准能观型,然后根据特征方程求出k e ; 方法二:就是可 采用Ackermann 公式: []T o e Q A k 1000)(1Λ-Φ=,其中O Q 为可观性矩阵。 利用对偶原理,可使设计问题大为简化。首先构造对偶系统 ???=+=ξ ηξξT T T b v c A & 然后可由变换法或Ackermann 公式求出极点配置的反馈k 增益,这也可

测试系统的特性

第4章测试系统的特性 一般测试系统由传感器、中间变换装置和显示记录装置三部分组成。测试过程中传感器将反映被测对象特性的物理量(如压力、加速度、温度等)检出并转换为电信号,然后传输给中间变换装置;中间变换装置对电信号用硬件电路进行处理或经A/D变成数字量,再将结果以电信号或数字信号的方式传输给显示记录装置;最后由显示记录装置将测量结果显示出来,提供给观察者或其它自动控制装置。测试系统见图4-1所示。 根据测试任务复杂程度的不同,测试系统中每个环节又可由多个模块组成。例如,图4-2所示的机床轴承故障监测系统中的中间变换装置就由带通滤波器、A/D变换器和快速傅里叶变换(Fast Fourier Transform,简称FFT)分析软件三部分组成。测试系统中传感器为振动加速度计,它将机床轴承振动信号转换为电信号;带通滤波器用于滤除传感器测量信号中的高、低频干扰信号和对信号进行放大,A/D变换器用于对放大后的测量信号进行采样,将其转换为数字量;FFT分析软件则对转换后的数字信号进行快速傅里叶变换,计算出信号的频谱;最后由计算机显示器对频谱进行显示。 要实现测试,一个测试系统必须可靠、不失真。因此,本章将讨论测试系统及其输入、输出的关系,以及测试系统不失真的条件。 图4-1 测试系统简图 图4-2 轴承振动信号的测试系统

4.1 线性系统及其基本性质 机械测试的实质是研究被测机械的信号)(t x (激励)、测试系统的特性)(t h 和测试结果)(t y (响应)三者之间的关系,可用图4-3表示。 )(t x )(t y )(t h 图4-3 测试系统与输入和输出的关系 它有三个方面的含义: (1)如果输入)(t x 和输出)(t y 可测,则可以推断测试系统的特性)(t h ; (2)如果测试系统特性)(t h 已知,输出)(t y 可测,则可以推导出相应的输入)(t x ; (3)如果输入)(t x 和系统特性)(t h 已知,则可以推断或估计系统的输出)(t y 。 这里所说的测试系统,广义上是指从设备的某一激励输入(输入环节)到检测输出量的那个环节(输出环节)之间的整个系统,一般包括被测设备和测量装置两部分。所以只有首先确知测量装置的特性,才能从测量结果中正确评价被测设备的特性或运行状态。 理想的测试装置应具有单值的、确定的输入/输出关系,并且最好为线性关系。由于在静态测量中校正和补偿技术易于实现,这种线性关系不是必须的(但是希望的);而在动态测量中,测试装置则应力求是线性系统,原因主要有两方面:一是目前对线性系统的数学处理和分析方法比较完善;二是动态测量中的非线性校正比较困难。但对许多实际的机械信号测试装置而言,不可能在很大的工作范围内全部保持线性,只能在一定的工作范围和误差允许范围内当作线性系统来处理。 线性系统输入)(t x 和输出)(t y 之间的关系可以用式(4-1)来描述 )()(...)()()()(...)()(0111101111t x b dt t dx b dt t x d b dt t x d b t y a dt t dy a dt t y d a dt t y d a m m m m m m n n n n n n ++++=++++------ (4-1) 当n a ,1-n a ,…,0a 和m b ,1-m b ,…,0b 均为常数时,式(4-1)描述的就是线性系统,也称为时不变线性系统,它有以下主要基本性质: (1)叠加性 若 )()(11t y t x →,)()(22t y t x →,则有

二阶倒立摆实验报告

. I 线性系统实验报告 : 院系:航天学院 学号: . .

2015年12月

1.实验目的 1)熟悉Matlab/Simulink仿真; 2)掌握LQR控制器设计和调节; 3)理解控制理论在实际中的应用。 倒立摆研究的意义是,作为一个实验装置,它形象直观,简单,而且参数和形状易于改变;但它又是一个高阶次、多变量、非线性、强耦合、不确定的绝对不稳定系统的被控系统,必须采用十分有效的控制手段才能使之稳定。因此,许多新的控制理论,都通过倒立摆试验对理论加以实物验证,然后在应用到实际工程中去。因此,倒立摆成为控制理论中经久不衰的研究课题,是验证各种控制算法的一个优秀平台,故通过设计倒立摆的控制器,可以对控制学科中的控制理论有一个学习和实践机会。 2.实验容 1)建立直线二级倒立摆数学模型 对直线二级倒立摆进行数学建模,并将非线性数学模型在一定条件下化简成线性数学模型。对于倒立摆系统,由于其本身是自不稳定的系统,实验建立模型存在一定的困难,但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系应用经典力学理论建立系统的动

力学方程。对于直线二级倒立摆,由于其复杂程度,在这里利用拉格朗日方程推导运动学方程。 由于模型的动力学方程中存在三角函数,因此方程是非线性的,通过小角度线性化处理,将动力学非线性方程变成线性方程,便于后续的工作的进行。 2)系统的MATLAB仿真 依据建立的数学模型,通过MATLAB仿真得出系统的开环特性,采取相应的控制策略,设计控制器,再加入到系统的闭环中,验证控制器的作用,并进一步调试。控制系统设计过程中需要分析容主要包括得出原未加控制器时系统的极点分布,系统的能观性,能控性。 3)LQR控制器设计与调节实验 利用线性二次型最优(LQR)调节器MATLAB仿真设计的参数结果对平面二阶倒立摆进行实际控制实验,参数微调得到较好的控制效果,记录实验曲线。 4)改变控制对象的模型参数实验 调整摆杆位置,将摆杆1朝下,摆杆2朝上修改模型参数、起摆条件和控制参数,重复3的容。 3.实验步骤

随机信号通过线性系统的仿真

实验报告 实验课程:随机信号分析实验项目:随机信号通过线性系统的仿真学员姓名:学号: 专业班次:队别: 实验日期:实验成绩: 教员签字: 内容要求:一、实验目的; 二、实验内容或任务;三、实验仪器设备(名称、型号、精度、数量);四、实验原理与线路图;五、实验步骤与结果记录(数据、图表等);六、实验结果分析与结论。 一、实验目的 (1)掌握对随机过程通过线性系统后的统计特性的分析方法。 (2)掌握典型系统对随机过程的影响。 二、实验内容 (1)白噪声通过线性系统的仿真和分析; (2)高斯过程通过线性系统的仿真和分析。 三、实验仪器和设备 (1)计算机一台。 (2)Matlab软件。 四、实验原理 随机信号通过线性系统分析的中心问题是:给定系统的输入函数(或统计特性:均值和自相关函数)和线性系统的特性,求输出函数。设L为线性变换,信 号) (t (t Y为系统的输出,也是随机信号。即有:X为系统输入,) t L= Y X )( )] ( [t 众所周知,LTI系统又可以表示为 =) * ( y?+∞∞-- )( )( )( t ( ) = u h u x t du t y t x 其中)] t hδ L =是系统的冲激响应。如果考虑傅里叶变换,令 [ ( ) (t

)()(),()(),()(ωωωj Y t y j X t x j H t h ??? 则 )()()(ωωωj H j X j Y = 下面来分析输出随机信号的均值和相关函数。 依定理5.1,对于任何稳定的线性系统有 {}{})]([)]([t X E L t X L E = 依定理5.2,如果)(t X 为平稳过程,)(t h 为实LTI 系统,)()()(t h t X t Y *=,则)()(t Y T X 和是联合广义平稳的,并且有 ) ()()()() ()()() ()()() 0(ττττττττττ-**=-*=*==h h R R h R R h R R j H m m X Y X XY X YX X Y 其中,dt t h j H j H ?+∞∞-===)()()0(0ωω,是系统的直流增益。 进一步得到推论:若系统的频率响应函数为)(ωj H ,则其功率谱与互功率谱关系如下: )()()()()()() ()()(2 ωωωωωωωωωj H S S j H S S j H S S X XY X Y X YX *=== 五、实验步骤与结果记录 在本实验中我利用simulink 模拟的方法分析了随机信号通过LTI 系统的具体过程:图1 是用MATLAB 的sumulink 模拟白噪声通过图1 的RC 电路,用示波器观察输入和输出的波形,改变RC 的值,使电路时间常数改变,观察输出波形的变化。 图1 实验RC 电路 对于上述低通RC 滤波器, 用传递函数描述,令RC 1=α,则有 αα +=S S H )( 在 Similink 里,有时域连续系统的传递函数模块,如图2所示:

仿真实验线性系统稳定性分析报告

仿真实验线性系统稳定性分析报告 实用标准文档 文案大全实验四 Stability analysis of linear systems 线性系统稳定性分析 一、实验目的 1.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 2.熟练掌握系统的稳定性的判断方法。 二、基础知识及MATLAB 函数 注意:routh ()和hurwitz ()不是MATLAB 中自带的功能函数,(在共享文件夹里有劳斯判据和赫尔维茨判据的m 文件,把其中的routh.m 和hurwitz .m 放到MATLAB 文件夹下的work 文件夹中才能运行)。 1)直接求根判稳roots() 控制系统稳定的充要条件是其特征方程的根均具有负实部。因此,为了判别系统的稳定性,就要求出系统特征方程的根,并检验它们是否都具有负实部。MATLAB 中对多项式求根的函数为roots()函数。 若求以下多项式的根24503510234++++s s s s ,则所用的MATLAB 指令为: >> roots([1,10,35,50,24])

-4.0000 -3.0000 -2.0000 -1.0000 特征方程的根都具有负实部,因而系统为稳定的。 2)劳斯稳定判据routh () 劳斯判据的调用格式为:[r, info]=routh(den) 该函数的功能是构造系统的劳斯表。其中,den 为系统的分母多项式系数向量,r 为返回的routh 表矩阵,info 为返回的routh 表的附加信息。 以上述多项式为例,由routh 判据判定系统的稳定性。 >> syms EPS den=[1,10,35,50,24]; ra=routh(den,EPS) r= 实用标准文档 文案大全 1 35 24 10 50 0 30 24 0 42 0 0 24 0 0

系统的能控性,能观测性,稳定性分析

实验报告 课程线性系统理论基础实验日期年月日 专业班级姓名学号同组人 实验名称系统的能控性、能观测性、稳定性分析及实现评分 批阅教师签字 一、实验目的 加深理解能观测性、能控性、稳定性、最小实现等观念。掌握如何使用MATLAB进行以下分析和实现。 1、系统的能观测性、能控性分析; 2、系统的稳定性分析; 3、系统的最小实现。 二、实验内容 (1)能控性、能观测性及系统实现 (a)了解以下命令的功能;自选对象模型,进行运算,并写出结

果。 gram, ctrb, obsv, lyap, ctrbf, obsvf, minreal ; (b )已知连续系统的传递函数模型,182710)(23++++=s s s a s s G ,当a 分别取-1,0,1时,判别系统的能控性与能观测性; (c )已知系统矩阵为???? ??????--=2101013333.06667.10666.6A ,??????????=110B ,[]201=C ,判别系统的能控性与能观测性; (d )求系统18 27101)(23++++= s s s s s G 的最小实现。 (2)稳定性 (a )代数法稳定性判据 已知单位反馈系统的开环传递函数为:) 20)(1()2(100)(+++=s s s s s G ,试对系统闭环判别其稳定性 (b )根轨迹法判断系统稳定性 已知一个单位负反馈系统开环传递函数为 ) 22)(6)(5()3()(2+++++=s s s s s s k s G ,试在系统的闭环根轨迹图上选择一点,求出该点的增益及其系统的闭环极点位置,并判断在该点系统闭环的稳定性。 (c )Bode 图法判断系统稳定性

仿真实验线性系统稳定性分析报告

实验四Stability an alysis of lin ear systems 线性系统稳定性分析 一、实验目的 1 ?通过响应曲线观测特征参量和n对二阶系统性能的影响。 2 ?熟练掌握系统的稳定性的判断方法。 二、基础知识及MATLAB函数 注意:routh ()和hurwitz ()不是MATLAB中自带的功能函数,(在共享文件夹里有劳斯判据和赫尔维茨判据的m文件,把其中的routh.m和hurwitz .m放到MATLAB文件夹下的work文件夹中才能运行)。 1) 直接求根判稳roots() 控制系统稳定的充要条件是其特征方程的根均具有负实部。因此,为了判别系统的稳定性,就要求出系统特征方程的根,并检验它们是否都具有负实部。MATLAB 中对多项式求根的函数为roots()函数。 若求以下多项式的根s4 10s3 35s2 50s 24,则所用的MATLAB指令为: >> roots([1,10,35,50,24]) ans = -4.0000 -3.0000 -2.0000 -1.0000 特征方程的根都具有负实部,因而系统为稳定的。 2) 劳斯稳定判据routh () 劳斯判据的调用格式为:[r, in fo]=routh(de n) 该函数的功能是构造系统的劳斯表。其中,den为系统的分母多项式系数 向量,r为返回的routh表矩阵,info为返回的routh表的附加信息。 以上述多项式为例,由routh判据判定系统的稳定性。

>> syms EPS den=[1,10,35,50,24]; ra=routh(de n,EPS) r= 13524 10500 30240 4200 2400 info= [] 由系统返回的routh表可以看出,其第一列没有符号的变化,系统是稳定的。 3) 赫尔维茨判据hurwitz () 赫尔维茨的调用格式为:H=hurwitz ( den )。该函数的功能是构造hurwitz 矩阵。其中,den为系统的分母多项式系数向量。 以上述多项式为例,由hurwitz判据判定系统的稳定性。 >>de n=[1,10,35,50,24]; H=hurwitz(de n) H= 105000 135240 010500 013524 由系统返回的hurwitz矩阵可以看出,系统是稳定的。与前面的分析结果完 全一致。 4) 开环增益K。和时间常数T改变对系统稳定性及稳态误差的影响 10K

第4章测试系统的基本特性解析

第4章测试系统的基本特性 4.1 知识要点 4.1.1测试系统概述及其主要性质 1.什么叫线性时不变系统? 设系统的输入为x (t )、输出为y (t ),则高阶线性测量系统可用高阶、齐次、常系数微分方程来描述: )(d )(d d )(d d )(d 01111t y a t t y a t t y a t t y a n n n n n n ++++--- )(d )(d d )(d d )(d 01111t x b t t x b t t x b t t x b m m m m m m ++++=--- (4-1) 式(4-1)中,a n 、a n -1、…、a 0和b m 、b m -1、…、b 0是常数,与测量系统的结构特性、输入状况和测试点的分布等因素有关。这种系统其内部参数不随时间变化而变化,称之为时不变(或称定常)系统。既是线性的又是时不变的系统叫做线性时不变系统。 2.线性时不变系统具有哪些主要性质? (1)叠加性与比例性:系统对各输入之和的输出等于各单个输入的输出之和。 (2)微分性质:系统对输入微分的响应,等同于对原输入响应的微分。 (3)积分性质:当初始条件为零时,系统对输入积分的响应等同于对原输入响应的积分。 (4)频率不变性:若系统的输入为某一频率的谐波信号,则系统的稳态输出将为同一频率的谐波信号。 4.1.2测试系统的静态特性 1.什么叫标定和静态标定?采用什么方法进行静态标定?标定有何作用?标定的步骤有哪些? 标定:用已知的标准校正仪器或测量系统的过程。 静态标定:就是将原始基准器,或比被标定系统准确度高的各级标准器或已知输入源作用于测量系统,得出测量系统的激励-响应关系的实验操作。 静态标定方法:在全量程范围内均匀地取定5个或5个以上的标定点(包括零点),从零点开始,由低至高,逐次输入预定的标定值(称标定的正行程),然后再倒序由高至低依次输入预定的标定值,直至返回零点(称标定的反行程),并按要求将以上操作重复若干次,记录下相应的响应-激励关系。 标定的主要作用是:确定仪器或测量系统的输入-输出关系,赋予仪器或测量系统分度

系统的能控性、能观测性、稳定性分析

实 验 报 告 课程 线性系统理论基础 实验日期 年 月 日 专业班级 学号 同组人 实验名称 系统的能控性、能观测性、稳定性分析及实现 评分 批阅教师签字 一、实验目的 加深理解能观测性、能控性、稳定性、最小实现等观念。掌 握如何使用MATLAB 进行以下分析和实现。 1、系统的能观测性、能控性分析; 2、系统的稳定性分析; 3、系统的最小实现。 二、实验内容 (1)能控性、能观测性及系统实现 (a )了解以下命令的功能;自选对象模型,进行运算,并写出结 果。 gram, ctrb, obsv, lyap, ctrbf, obsvf, minreal ; (b )已知连续系统的传递函数模型,18 2710)(23++++=s s s a s s G ,当a 分别取-1,0,1时,判别系统的能控性与能观测性;

(c )已知系统矩阵为???? ??????--=2101013333.06667.10666.6A ,??????????=110B ,[]201=C ,判别系统的能控性与能观测性; (d )求系统18 27101)(23++++= s s s s s G 的最小实现。 (2)稳定性 (a )代数法稳定性判据 已知单位反馈系统的开环传递函数为:) 20)(1()2(100)(+++=s s s s s G ,试对系统闭环判别其稳定性 (b )根轨迹法判断系统稳定性 已知一个单位负反馈系统开环传递函数为 ) 22)(6)(5()3()(2+++++=s s s s s s k s G ,试在系统的闭环根轨迹图上选择一点,求出该点的增益及其系统的闭环极点位置,并判断在该点系统闭环的稳定性。 (c )Bode 图法判断系统稳定性 已知两个单位负反馈系统的开环传递函数分别为 s s s s G s s s s G 457.2)(,457.2)(232231-+=++= 用Bode 图法判断系统闭环的稳定性。 (d )判断下列系统是否状态渐近稳定、是否BIBO 稳定。 []x y u x x 0525,100050250100010-=????? ?????+??????????-=

随机信号通过线性系统和非线性系统后的特性分析

随机信号分析 ----通过线性系统和非线性系统后的特性分析 一、实验目的 1、了解随机信号自身的特性,包括均值、均方值、方差、相关函数、概率密度、频谱及功率谱密度等的概念和特性 2、研究随机信号通过线性系统和非线性系统后的均值、均方值、方差、相关函数、概率密度、频谱及功率谱密度有何变化,分析线性系统和非线性系统所具有的性质 3、掌握随机信号的分析方法。 4、熟悉常用的信号处理仿真软件平台:matlab、c/c++、EWB。 二、实验仪器 1、256MHz以上内存微计算机。 2、20MHz双踪示波器、信号源。 3、matlab或c/c++语言环境、EWB仿真软件。 4、fpga实验板、面包板和若干导线。 三、实验步骤 1、根据选题的内容和要求查阅相关的文献资料,设计具体的实现程序流程或电路。 2、自选matlab、EWB或c仿真软件。如用硬件电路实现,需用面包板搭建电路并调试成功。 3、按设计指标测试电路。分析实验结果与理论设计的误差,根据随机信号的特征,分析误差信号对信号和系统的影响。 四、实验任务与要求 1、用matlab或c/c++语言编程并仿真 2、输入信号为x(t)加上白噪声n(t),用软件仿真通过滤波器在通过限幅器后的信号y1(t),在仿真先平方律后在通过滤波器后的信号y2(t).框图如下: 3、计算x(t)、a、b、c、y(t)的均值、均方值、方差、频谱、功率谱密度,自相关函数,并绘出函数曲线。 五.实验过程与仿真 1、输入信号的获取与分析

(a)输入信号的获取 按照实验要求,Matlab仿真如下: %输入信号x的产生 t=0:1/16000:0.01; x1=sin(1000*2*pi*t)+sin(2000*2*pi*t)+sin(3000*2*pi*t); x=awgn(x1,5,'measured'); %加入高斯白噪声n=x-x1; %高斯白噪声 (b)输入信号及其噪声的分析 %输入信号x自相关系数 x_arr=xcorr(x); tau = (-length(x)+1:length(x)-1)/16000; %输入信号x的频谱和功率谱 x_mag=abs(fft(x,2048)); f=(0:2047)*16000/2048; x_cm=abs(fft(x_arr,2048)); %画出高斯白噪声n的时域图和频域图 figure(1) subplot(1,2,1) plot(t,n) title('高斯白噪声n') xlabel('t/s') ylabel('n(t)') grid on subplot(1,2,2) N=fft(n,2048); plot(f(1:length(f)/2),N(1:length(f)/2)) title('高斯白噪声n的频谱图') xlabel('f/Hz') ylabel('幅值') grid on 结果为:

状态观测器的设计——报告

东南大学自动化学院 实 验 报 告 课程名称: 自动控制基础 实验名称: 状态观测器的设计 院 (系): 自动化学院 专 业: 自动化 姓 名: 吴静 学 号: 08008419 实 验 室: 机械动力楼417室 实验组别: 同组人员: 实验时间:2011年05月13日 评定成绩: 审阅教师: 一、实验目的 1. 理解观测器在自动控制设计中的作用 2. 理解观测器的极点设置 3. 会设计实用的状态观测器 二、实验原理 如果控制系统采用极点配置的方法来设计,就必须要得到系统的各个状态,然后才能用状态反馈进行极点配置。然而,大多数被控系统的实际状态是不能直接得到的,尽管系统是可以控制的。怎么办?如果能搭试一种装置将原系统的各个状态较准确地取出来,就可以实现系统极点任意配置。于是提出了利用被控系统的输入量和输出量重构原系统的状态,并用反馈来消除原系统和重构系统状态的误差,这样原系统的状态就能被等价取出,从而进行状态反馈,达到极点配置改善系统的目的,这个重构的系统就叫状态观测器。 另外,状态观测器可以用来监测被控系统的各个参量。 观测器的设计线路不是唯一的,本实验采用较实用的设计。 给一个被控二阶系统,其开环传递函数是G (s )=12 (1)(1)K T s T s ++ ,12 K K K =观测器如图示。

设被控系统状态方程 构造开环观测器,X ∧ Y ∧ 为状态向量和输出向量估值 由于初态不同,估值X ∧ 状态不能替代被控系统状态X ,为了使两者初态跟随,采用输出误差反馈调节,加入反馈量H(Y-Y)∧ ,即构造闭环观测器,闭环观测器对重构造的参数误差也有收敛作用。 也可写成 X =(A-HC)X +Bu+HY Y CX ? ∧ ∧ ∧∧ = 只要(A-HC )的特征根具有负实部,状态向量误差就按指数规律衰减,且极点可任意配置,一般地,(A-HC )的收敛速度要比被控系统的响应速度要快。工程上,取小于被控系统最小时间的3至5倍,若响应太快,H 就要很大,容易产生噪声干扰。 实验采用X =A X +Bu+H(Y-Y)? ∧ ∧∧ 结构,即输出误差反馈,而不是输出反馈形式。 取:1212min 35 20,5,2,0.5,0.2K K T T t λ-= =====,求解12g g ?????? 三、实验设备: THBDC-1实验平台 THBDC-1虚拟示波器 Matlab/Simulink 软件 四、实验步骤 按要求设计状态观测器 (一) 在Matlab 环境下实现对象的实时控制 1. 将ZhuangTai_model.mdl 复制到E:\MATLAB6p5\work 子目录下,运行matlab ,打开ZhuangTai_model.mdl 注:‘实际对象’模块对应外部的实际被控对象,在simulink 下它代表计算机与外部接口: ● DA1对应实验面板上的DA1,代表对象输出,输出通过数据卡传送给计算机; ● AD1对应实验面板上的AD1,代表控制信号,计算机通过数据卡将控制信号送给实际对象;

仿真实验线性系统稳定性分析报告

实验四 Stability analysis of linear systems 线性系统稳定性分析 一、实验目的 1.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 2.熟练掌握系统的稳定性的判断方法。 二、基础知识及MATLAB 函数 注意:routh ()和hurwitz ()不是MATLAB 中自带的功能函数,(在共享文件夹里有劳斯判据和赫尔维茨判据的m 文件,把其中的routh.m 和hurwitz .m 放到MATLAB 文件夹下的work 文件夹中才能运行)。 1)直接求根判稳roots() 控制系统稳定的充要条件是其特征方程的根均具有负实部。因此,为了判别系统的稳定性,就要求出系统特征方程的根,并检验它们是否都具有负实部。MATLAB 中对多项式求根的函数为roots()函数。 若求以下多项式的根24503510234++++s s s s ,则所用的MATLAB 指令为: >> roots([1,10,35,50,24]) ans = -4.0000 -3.0000 -2.0000 -1.0000 特征方程的根都具有负实部,因而系统为稳定的。 2)劳斯稳定判据routh () 劳斯判据的调用格式为:[r, info]=routh(den) 该函数的功能是构造系统的劳斯表。其中,den 为系统的分母多项式系数向量,r 为返回的routh 表矩阵,info 为返回的routh 表的附加信息。 以上述多项式为例,由routh 判据判定系统的稳定性。 >> syms EPS den=[1,10,35,50,24]; ra=routh(den,EPS) r=

过程控制系统综合设计报告

过程控制系统综合设计报告 班级: 姓名: 学号: 学期:

一、实验目的与要求 1.掌握DDC控制特点; 2.熟悉CS4100实验装置,掌握液位控制系统和温度控制系统构成; 3.熟悉智能仪表参数调整方法及各参数含义; 4.掌握由CS4100实验装置设计流量比值控制、液位串接控制、液位前馈反馈控制及四水箱解耦控制等设计方法; 5.掌握实验测定法建模,并以纯滞后水箱温度控制系统作为工程案例,掌握纯滞后水箱温度控制系统的建模,并用DDC控制方案完成控制算法的设计及系统调试。 以水箱流量比值控制、水箱液位串接控制、水箱液位前馈反馈控制及四水箱解耦控制为被被控对象,完成系统管路设计、电气线路设计、控制方案确定、系统调试、调试结果分析等过程的训练。以纯滞后水箱作为被控对象,以第二个水箱长滞后温度作为被控量,完成从实验测定法模型建立、管路设计、线路设计、控制方案确定、系统调试、结果分析等过程的训练。 具体要求为: 1)检索资料,熟悉传感器、执行器机械结构及工作原理。 2)熟悉CS4100过控实验装置的机械结构,进行管路设计及硬件接线; 3)掌握纯滞后水箱温度控制系统数学模型的建立方法,并建立数学模型; 4)掌握智能仪表参数调节方法; 5)进行控制方案设计,结合具体数学模型,计算系统所能达到性能指标,并通过仿真掌握控制参数的整定方法; 6)掌握系统联调的步骤方法,调试参数的记录方法,动态曲线的测定记录方法。记录实验数据,采用数值处理方法和相关软件对实验数据进行处理并加以分析,记录实验曲线,与理论分析结果对比,得出有意义的结论。 7)撰写实验设计报告、实验报告,具体要求见:(五)实践报告的内容与要求。 二、实验仪器设备与器件 1.CS4100过程控制实验装置 2.PC机(组态软件) 3.P909智能仪表若干

一、二阶系统频率特性测试与分析

【实验目的】 1. 掌握测量典型一阶系统和二阶系统的频率特性曲线的方法; 2. 掌握软件仿真求取一、二阶系统的开环频率特性的方法; 3. 学会用Nyquist 判据判定系统的稳定性。 【实验设备与软件】 1. labACT 实验台与虚拟示波器 2. MATLAB 软件 【实验原理】 1.系统的频率特性测试方法 对于现行定常系统,当输入端加入一个正弦信号)sin()(t X t X m ωω=时,其稳态输出是一个与输入信号频率相同,但幅值和相位都不同的正弦信号 )si n ()()si n ()(ψωωψω+=+=t j G X t Y s Y m m 。 幅频特性:m m X Y j G /)(=ω,即输入与输出信号的幅度比值,通常转换成 )(lg 20ωj G 形式。 相频特性:)(arg )(ωω?j G =,可以直接基于虚拟示波器读取,也可以用“李沙育图行”法得到。 可以将用Bode 图或Nyquist 图表示幅频特性和相频特。 在labACT 试验台采用的测试结构图如下: 被测定稳 定系统对于实验就是有源放大电路模拟的一、二阶稳定系统。 2.系统的频率测试硬件原理 1)正弦信号源的产生方法 频率特性测试时,一系列不同频率输入正弦信号可以通过下图示的原理产生。按

照某种频率不断变化的数字信号输入到DAC0832,转换成模拟信号,经一级运放将其转换为模拟电压信号,再经过一个运放就可以实现双极性电压输出。 根据数模转换原理,知 R V N V 8012 - = (1) 再根据反相加法器运算方法,得 R R R V N V N V R R V R R V 1281282282201210--=??? ??+-?-=???? ??+-= (2) 由表达式可以看出输出时双极性的:当N 大于128时,输出为正;反之则为负;当输入为128时,输出为0. 在labACT 实验箱上使用的参考电压时5V 的,内部程序可以产生频率范围是对一阶系统是0.5 H Z ~64H Z 、对二阶系统是0.5 H Z ~16 H Z 的信号,并由B2单元的OUT2输出。 2)被测对象输出信号的采样方法 对被测对象的输出信号夏阳,首先将其通过LM324与基准电压进行比较嵌位,再通过CD14538进行脉冲整形,一保证有足够的IRQ 采样时间,最后将信号送到处理器的IRQ6脚,向处理器申请中断,在中断中对模拟量V y 进行采样并模数转换,进而进行处理与计算幅值与相位。途中采用ADC089采集模拟量,以单极性方式使用,所以在出现振荡的情况下需要加入一个二极管,将V y 出现负值时将其直接拉倒0。

相关主题
文本预览
相关文档 最新文档