当前位置:文档之家› 2020年高二数学上期中试卷附答案

2020年高二数学上期中试卷附答案

2020年高二数学上期中试卷附答案
2020年高二数学上期中试卷附答案

2020年高二数学上期中试卷附答案

一、选择题

1.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生

B .200号学生

C .616号学生

D .815号学生

2.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是

A .

14

B .

8

π C .

12

D .

4

π 3.如图所示,墙上挂有边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶

点为圆心,半径为

2

a

的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是 ( )

A .18

π-

B .

4

π C .14

π-

D .与a 的值有关联

4.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则 A .270,75x s =<

B .270,75x s =>

C .270,75x s ><

D .270,75x s <>

5.为研究某种细菌在特定环境下,随时间变化的繁殖情况,得到如下实验数据: 天数x (天) 3 4 5

6 繁殖个数y (千个)

2.5

3

4

4.5

由最小二乘法得y 与x 的线性回归方程为??0.7y

x a =+,则当7x =时,繁殖个数y 的预测值为( ) A .4.9 B .5.25 C .5.95

D .6.15

6.一组数据如下表所示:

x

1 2 3 4

y e

3e 4e 6e

已知变量y 关于x 的回归方程为+0.5

?bx y

e =,若5x =,则预测y 的值可能为( ) A .5e

B .

11

2e

C .

132

e

D .7e

7.

某程序框图如图所示,若输出的S=57,则判断框内为 A .k >4? B .k >5? C .k >6?

D .k >7?

8.用电脑每次可以从区间()0,1内自动生成一个实数,且每次生成每个实数都是等可能性的,若用该电脑连续生成3个实数,则这3个实数都大于1

3

的概率为( ) A .

127

B .

23

C .

827

D .49

9.某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立,随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为( )

A.2

5

B.

12

25

C.

16

25

D.

4

5

10.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为

A.7 B.15 C.25 D.35

11.从一批产品中取出三件产品,设事件A为“三件产品全不是次品”,事件B为“三件产品全是次品”,事件C为“三件产品不全是次品”,则下列结论正确的是()A.事件A与C互斥B.事件B与C互斥

C.任何两个事件均互斥D.任何两个事件均不互斥

12.为计算

11111

1

23499100

S=-+-++-

…,设计了下面的程序框图,则在空白框中应填入

A.1

i i=+

B.2

i i=+

C.3

i i=+

D.4

i i=+

二、填空题

13.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为_________

14.某人向边长分别为5,12,13的三角形区域内随机丢一粒芝麻,假设芝麻落在区域内的任意一点是等可能的,则其恰落在离三个顶点距离都大于2的地方的概率为__.

15.一盒中有6个乒乓球,其中4个新的,2个旧的,从盒子中任取3个球来用,用完后装回盒子中,此时盒中旧球个数X是一个随机变量,则(4)

P X=的值为___________. 16.执行如图所示的程序框图,若输入的A,S分别为0,1,则输出的S=____________.

17.下方茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为14,乙组数据的平均数为16,则x y +的值为__________.

18.已知函数log 2

,3()(5)3,3a x x f x a x x ->?=?--≤?()满足对任意的实数12x x ≠,都有

()()1212

0f x f x x x ->-成立,则实数a 的取值范围为______________;

19.在平面直角坐标系中,横坐标与纵坐标都在集合A ={0,1,2,3,4,5}内取值的点中任取一个点,此点正好在直线y x =上的概率为________.

20.正四面体的4个面上分别写着1、2、3、4,将3个这样均匀的正四面体同时投掷于桌面上,与桌面接触的3个面上的3个数的乘积能被4整除的概率是_____________.

三、解答题

21.为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民生产粮食的积极性,从2014年开始,国家实施了对种粮农民直接补贴的政策通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额x (单位:亿元)与该地区粮食产量y (单位:万亿吨)之间存在着线性相关关系,统计数据如下表: 年份 2014 2015 2016 2017 2018 补贴额x /亿元

9

10

12

11

8

(1)请根据上表所给的数据,求出y 关于x 的线性回归直线方程??y

bx a =+; (2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴7亿元,请根据(1)中所得到的线性回归直线方程,预测2019年该地区的粮食产量.

参考公式:()()

()

1

2

1

?n

i

i

i n

i

i x x y y b

x x ==--=-∑∑,??a

y bx =-. 22.光伏发电是将光能直接转变为电能的一种技术,具有资源的充足性及潜在的经济性等优点,在长期的能源战略中具有重要地位,2015年起,国家能源局、国务院扶贫办联合在6省的30个县开展光伏扶贫试点,在某县居民中随机抽取50户,统计其年用量得到以下统计表.以样本的频率作为概率.

(Ⅰ)在该县居民中随机抽取10户,记其中年用电量不超过600度的户数为X ,求X 的数学期望;

(Ⅱ)在总结试点经验的基础上,将村级光伏电站稳定为光伏扶贫的主推方式.已知该县某自然村有居民300户.若计划在该村安装总装机容量为300千瓦的光伏发电机组,该机组所发电量除保证该村正常用电外,剩余电量国家电网以0.8元/度的价格进行收购.经测算每千瓦装机容量的发电机组年平均发电1000度,试估计该机组每年所发电量除保证正常用电外还能为该村创造直接受益多少元?

23.袋子中放有大小和形状相同而颜色互不相同的小球若干个, 其中标号为0的小球1个, 标号为1的小球1个, 标号为2的小球2个, 从袋子中不放回地随机抽取2个小球, 记第一次取出的小球标号为a ,第二次取出的小球标号为b . (1) 记事件A 表示“2a b +=”, 求事件A 的概率;

(2) 在区间[]0,2内任取2个实数,x y , 记()2

a b -的最大值为M ,求事件

“22x y M +<”的概率.

24.为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.

(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;

(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.

甲班 乙班 合计

优秀

不优秀

合计

参考公式:2

2

()()()()()

n ad bc K a b c d a c b d -=++++,其中n a b c d =+++

参考数据:

()20P K k ≥

0.050 0.010 0.001

0k

3.841 6.635 10.828

25.某学校随机抽取部分学生调查其上学路上所需时间(单位:分钟),并将所得数据制成频率分布直方图(如图),若上学路上所需时间的范围为[]

0,100,样本数据分组为

[)0,20,[)20,40,[)40,60,[)60,80,[]80,100.

(1)求直方图中a 的值;

(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,若招收学生1200人,请估计所招学生中有多少人可以申请住宿; (3)求该校学生上学路上所需的平均时间.

26.菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药y(单位:微克)的数据作了初步处理,得到下面的散点图及一些统计量的值. y (微克)

x (千克)

x v

y u v

w v

()

2

8

1

i

i x x =-∑

()

8

2

1

i

i w w =-∑

()()81

i

i

i x x y y =--∑ ()()8

1

i

i

i w w y y =--∑

3 38 11 10 37

4 -121 -751

其中2x ω=

(I )根据散点图判断,?y

bx a =+与2

?y dx c =+,哪一个适宜作为蔬菜农药残量?y 与用水量x 的回归方程类型(给出判断即可,不必说明理由);

(Ⅱ)若用解析式2

?y

dx c =+作为蔬菜农药残量?y 与用水量x 的回归方程,求出?y 与x 的回归方程.(c ,d 精确到0.1)

(Ⅲ)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请估计需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据

5 2.236≈)

附:参考公式:回归方程???y

a bx =+中斜率和截距的最小二乘估计公式分别为: ()()

()

1

2

1

???,n

i

i

i n

i i x x y y b

a

y bx x x ==--==--∑∑

【参考答案】***试卷处理标记,请不要删除

一、选择题 1.C 解析:C 【解析】 【分析】

等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】

详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,

所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n

=+()n *∈N ,

若8610n =+,则1

5

n =

,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】

本题主要考查系统抽样.

2.B

解析:B 【解析】

设正方形边长为a ,则圆的半径为2a ,正方形的面积为2

a ,圆的面积为2

π4

a .由图形的对

称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式

得,此点取自黑色部分的概率是221ππ248

a a ?

=,选B. 点睛:对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计

算()P A .

3.C

解析:C 【解析】

试题分析:本题考查几何概型问题,击中阴影部分的概率为22

2()214

a a a ππ-=-.

考点:几何概型,圆的面积公式. 4.A

解析:A 【解析】 【分析】

分别根据数据的平均数和方差的计算公式,求得2,x s 的值,即可得到答案. 【详解】

由题意,根据平均数的计算公式,可得705080607090

7050

x ?+-+-=

=,

设收集的48个准确数据分别记为1248,,,x x x L , 则()()()()()22222

12481757070706070907050x x x ??=

-+-++-+-+-?

?L ()()()222

1248170707050050x x x L ??=

-+-++-+?

?, ()()()()()22222

2124817070708070707050s x x x ??=-+-++-+-+-?

?L ()()()222

124817070701007550x x x ??=

-+-++-+

?L , 故275s <.选A . 【点睛】

本题主要考查了数据的平均数和方差的计算公式的应用,其中解答中熟记数据的平均数和方差的公式,合理准确计算是解答的关键,着重考查了推理与运算能力,数基础题.

5.B

解析:B 【解析】 【分析】

根据表格中的数据,求得样本中心为97

(,)22

,代入回归直线方程,求得?0.35a =,得到回归直线的方程为?0.70.35y

x =+,即可作出预测,得到答案. 【详解】

由题意,根据表格中的数据,可得34569 2.534 4.57

,4242

x y ++++++=

===, 即样本中心为97

(,)22

,代入回归直线方程??0.7y

x a =+,即79

?0.722

a

=?+, 解得?0.35a

=,即回归直线的方程为?0.70.35y x =+, 当7x =时,?0.770.35 5.25y

=?+=,故选B . 【点睛】

本题主要考查了回归直线方程的应用,其中解答中熟记回归直线方程的特征,求得回归直线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.

6.C

解析:C 【解析】 【分析】

令ln z y $=,求得,x z 之间的数据对照表,结合样本中心点的坐标满足回归直线方程,即可求得b ;再令5x =,即可求得预测值y . 【详解】

将式子两边取对数,得到$ln 0.5y bx =+,令ln z y $=,得到0.5z bx =+, 根据已知表格数据,得到,x z 的取值对照表如下:

1234

2.54x +++=

=,1346 3.54

z +++==, 利用回归直线过样本中心点,即可得3.5 2.50.5b =+, 求得 1.2b =,则 1.20.5z x =+, 进而得到$ 1.2+0.5x y e =,将5x =代入, 解得13

6.52y e e ==. 故选:C . 【点睛】

本题考查利用样本中心点坐标满足回归直线方程求参数值,以及由回归方程进行预测值得求解,属中档题.

7.A

解析:A 【解析】

试题分析:由程序框图知第一次运行112,224k S =+==+=,第二次运行

213,8311k S =+==+=,第三次运行314,22426k S =+==+=,第四次运行

4154,52557k S =+=>=+=,输出57S =,所以判断框内为4?k >,故选C.

考点:程序框图.

8.C

解析:C 【解析】 由题意可得: 每个实数都大于

13的概率为12133

p =-=, 则3个实数都大于13的概率为3

28327

??= ???. 本题选择C 选项.

9.C

解析:C 【解析】 【分析】

甲同学收到李老师或张老师所发活动通知的信息的对立事件是甲同学既没收到李老师的信息也没收到张老师的信息,李老师的信息与张老师的信息是相互独立的,由此可计算概率. 【详解】

设甲同学收到李老师的信息为事件A ,收到张老师的信息为事件B ,A 、B 相互独立,

42()()105

P A P B ==

=, 则甲同学收到李老师或张老师所发活动通知的信息的概率为

3316

1()1(1())(1())15525

P AB P A P B -=---=-?=.

故选C . 【点睛】

本题考查相互独立事件的概率,考查对立事件的概率.在求两个事件中至少有一个发生的概率时一般先求其对立事件的概率,即两个事件都不发生的概率.这样可减少计算,保证正确.

10.B

解析:B 【解析】

试题分析:抽样比是,所以样本容量是

考点:分层抽样

11.B

解析:B 【解析】 【分析】

根据互斥事件的定义,逐个判断,即可得出正确选项. 【详解】

A 为三件产品全不是次品,指的是三件产品都是正品,

B 为三件产品全是次品,

C 为三件产品不全是次品,它包括一件次品,两件次品,三件全是正品三个事件

由此知:A 与B 是互斥事件;A 与C 是包含关系,不是互斥事件;B 与C 是互斥事件,故选B . 【点睛】

本题主要考查互斥事件定义的应用. 12.B

解析:B 【解析】

分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.

详解:由11111123499100

S =-

+-+?+-得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入2i i =+,选B.

点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.

二、填空题

13.【解析】五种抽出两种的抽法有种相克的种数有5种故不相克的种数有5种故五种不同属性的物质中随机抽取两种则抽取的两种物质不相克的概率是故答案为

解析:1

2

【解析】

五种抽出两种的抽法有2

510C =种,相克的种数有5种,故不相克的种数有5种,故五种

不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率是

12,故答案为12

. 14.【解析】由题意可知与三个顶点的距离都小于2的区域的面积恰好为一个半径为2的半圆的面积即所以与三个顶点的距离都大于2的区域的面积由几何概型的概率公式知其恰落在与三个顶点的距离都大于2的地方的概率为答案

解析:1515

π

- 【解析】

由题意可知,与三个顶点的距离都小于2的区域的面积恰好为一个半径为2的半圆的面积,即2π,所以与三个顶点的距离都大于2的区域的面积302π-。 由几何概型的概率公式知其恰落在与三个顶点的距离都大于2的地方的概率为

302153015

ππ

--=. 答案:

1515

π

- 点睛:应用几何概型求概率的方法

建立相应的几何概型,将试验构成的总区域和所求事件构成的区域转化为几何图形,并加以度量.

(1)一个连续变量可建立与长度有关的几何概型,只需把这个变量放在数轴上即可; (2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;

(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系即可建立与体积有关的几何概型.

15.【解析】【分析】要使盒子中恰好有4个是用过的球要求开始取的3个球1个是用过的2个没有用过的结合组合知识根据古典概型公式可得到结果【详解】从盒子中任取的3个球使用用完全后装回盒子中要使盒子中恰好有4个

解析:3

5

【解析】 【分析】

要使盒子中恰好有4个是用过的球,要求开始取的3个球1个是用过的,2个没有用过的,结合组合知识根据古典概型公式可得到结果. 【详解】

从盒子中任取的3个球使用,用完全后装回盒子中, 要使盒子中恰好有4个是用过的球,

则要求开始取的3个球1个是用过的,2个没有用过的,

共有21

4212C C =种方法,

从装有6个乒乓球的盒子任取3个球使用有3

620C =种方法,

∴盒子中恰好有4个是用过的球的概率为123205

P =

=,故答案为35.

【点睛】

本题主要考查古典概型概率公式的应用,所以中档题.要应用古典概型概率公式,分清在一个概型中某随机事件包含的基本事件个数和试验中基本事件的总数是解题的关键.

16.36【解析】执行程序可得;不满足条件执行循环体不满足条件执行循环体满足条件推出循环输出故答案为【方法点睛】本题主要考查程序框图的循环结构流程图属于中档题解决程序框图问题时一定注意以下几点:(1)不要

解析:36 【解析】

执行程序,可得0A =,1S =; 1k =,011A =+=,111S =?=,

不满足条件4k >,执行循环体,3k =,134A =+=,144S =?=,不满足条件

4k >,执行循环体,5k =,459A =+=,4936S =?=,满足条件4k >,推出循环,输出36S =,故答案为36.

【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.

17.9【解析】阅读茎叶图由甲组数据的中位数为可得乙组的平均数:解得:则:点睛:茎叶图的绘制需注意:(1)叶的位置只有一个数字而茎的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录不能遗漏特别

解析:9 【解析】

阅读茎叶图,由甲组数据的中位数为14 可得4x = ,

乙组的平均数:

824151810165

y

+++++= ,解得:5y = ,

则:459x y +=+= .

点睛:茎叶图的绘制需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置的数据.

18.【解析】为单独递增函数所以点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性除注意各段的单调性外还要注意 解析:45a ≤<

【解析】

()()1212

0f x f x x x ->-? log 2,3()(5)3,3a x x f x a x x ->?=?--≤?

()

为单独递增函数,所以

15045log (32)3(5)3a

a a a a >?

?

->?≤

?-≥--? 点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[,]a b 上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围

19.【解析】【分析】试验发生包含的事件是横纵坐标都在内任取一个点共有

种结果满足条件的事件是点正好在直线上可以列举出结果数得到概率【详解】由题意知本题是一个等可能事件的概率∵试验发生包含的事件是横纵坐标都

解析:1

6

【解析】 【分析】

试验发生包含的事件是横纵坐标都在{}01

2345A =,,,,,内任取一个点,共有66?种结果,满足条件的事件是点正好在直线y x =上,可以列举出结果数,得到概率. 【详解】

由题意知本题是一个等可能事件的概率,

∵试验发生包含的事件是横纵坐标都在{}01

2345A =,,,,,内任取一个点, 共有6636?=种结果,

满足条件的事件是点正好在直线y x =上,可以列举出共有(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)共有6种结果, ∴要求的概率是61

366

P =

=, 故答案为

16

. 【点睛】

本题考查等可能事件的概率,解决本题的关键是注意利用列举法求满足条件的事件数时,注意做到不重不漏,千万不要漏掉原点.

20.【解析】将3个正四面体同时投掷于桌面时共有种情况与桌面接触的3个面上的3个数的乘积能被4整除时则这3个数的乘积为4的倍数(1)这3个数为122时有3种情况;(2)这3个数为124时有种;(3)这3个 解析:

1116

【解析】

将3个正四面体同时投掷于桌面时,共有3464= 种情况,与桌面接触的3个面上的3个数的乘积能被4整除时,则这3个数的乘积为4的倍数,(1)这3个数为1,2,2时,有3种情况;(2)这3个数为1,2,4时,有3

3=6A 种;(3)这3个数为1,3,4时,有3

3=6A 种;(4)这3个数为1,1,4时,有3种;(5)这3个数为2,2,2时,有1种;(6)这3个数为2,2,3时,有3种;(7)这3个数为2,2,4时,有3种;(8)这3个数为1,4,4时,有3种;(9)这3个数为2,3,4时,有33=6A 种;(10)这3个数为2,4,4时,有3种;(11)这3个数为3,3,4时,有3种;(12)这3个数为3,4,4时,有3种;(13)这3个数为4,4,4时,有1种。故共有3+6+6+3+1+3+33633+3+1=44++++ 种,故与桌面接触的3个面上的3个数的乘积能被4整除的概率为4411=

=6416

P 。

点睛:本题主要考查古典概型求概率,属于易错题。在求与桌面接触的3个面上的3个数的乘积能被4整除时,采用分类讨论法,注意要做到不重不漏。

三、解答题

21.(1)? 2.24y

x =+(2)大约为19.4万亿吨 【解析】 【分析】

(1)分别求出x 和y ,根据公式,求出?b

和?a ,即可得出线性回归方程; (2)由(1)得? 2.24y

x =+,可估计出2019年该地区的粮食产量. 【详解】

解:(1)由表中所给数据可得,

91012118

105x ++++==,

2526312721

265

y ++++=

=,

代入公式()()

()

5

1

5

2

1

?i

i

i i

i x x y y b

x x ==--=-∑∑,解得? 2.2b

=, 所以??4a

y bx =-=. 故所求的y 关于x 的线性回归直线方程为? 2.24y

x =+. (2)由题意,将7x =代入回归方程? 2.24y x =+, 可得,?19.4y

=. 所以预测2019年该地区的粮食产量大约为19.4万亿吨. 【点睛】

本题考查求线性回归方程,以及根据回归方程解决实际问题,考查计算能力. 22.(Ⅰ)6;(Ⅱ)1?15200元. 【解析】

试题分析:(1)频率近似概率及古典概型可求得()3

P A 5

=

,由样本估计总体和,可知X 服从二项分布,EX=np.(2)由样本期望估计总体期望,得该自然村年均用电量约156 000度.

由剩余电量可求得收益.

试题解析:(Ⅰ)记在抽取的50户居民中随机抽取1户,其年用电量不超过600度为事件

A ,则()3P A 5

=

. 由已知可得从该县山区居民中随机抽取10户,记其中年用电量不超过600度的户数为

X ,X 服从二项分布,即3X ~B 10,5?? ???,故()3

E X 1065

=?

=. (Ⅱ)设该县山区居民户年均用电量为()E Y ,由抽样可得

()7815137

1003005007009005205050505050

E Y =?

+?+?+?+?=则该自然村年均用电量约156 000度. 又该村所装发电机组年预计发电量为300000度,故该机组每年所发电量除保证正常用电外还能剩余电量约144 000度,能为该村创造直接收益1440000.8115200?=元. 23.)(1)1

3;(2)4

π. 【解析】 【分析】

(1)用列举法表示所有基本事件,数出满足“a +b =2”为事件A 的个数,然后利用古典概型求解概率;

(2)直接利用几何概型,求解全部结果的区域面积与所求结果的区域面积,求解概率即可. 【详解】

(1)不放回地随机抽取2个小球的所有基本事件个数有(0,1),(1,0),(0,21),(21,0),(0,22),(22,0),(1,21),(21,1),(1,22),(22,1),(21,22),(22,21)

记事件A 表示“a +b =2”,有(0,21),(21,0),(0,22),(22,0), ∴事件A 的概率P (A )41

123

=

=, (2)记“x 2+y 2<M ”为事件B , (a ﹣b )2的最大值为M ,则M =4,

则x 2+y 2<M ”的概率等价于“x 2+y 2<4的概率”, (x ,y )可以看成平面中的点的坐标,

则全部结果所构成的区域为Ω={(x ,y )|0≤x ≤2,0≤y ≤2,x ,y ∈R}, 而事件B 构成的区域为B ={(x ,y )|x 2+y 2<4,(x ,y )∈Ω}. 所以所求的概率为P (B )4

π

=.

【点睛】

本题考查古典概型以及几何概型的概率的求法,古典概型的计算关键在于找到所有的基本事件及所求的基本事件个数,几何概型关键在于确定属于“长度型、面积型还是体积型”,基本知识的考查,属于中档题. 24.(1)7

10

;(2)见解析 【解析】 【分析】

(1)根据茎叶图可知成绩不低于80分的学生共有5人,其中成绩为87分的有2人,先求解出成绩为87分的同学没有人被抽中的概率,利用对立事件的概率公式求得结果;(2)根据茎叶图补全列联表,根据公式计算得到2K ,对比临界值表得到结果. 【详解】

(1)由茎叶图可知,甲班中成绩不低于80分的学生共有5人,其中成绩为87分的有2人 记:“成绩为87分的同学至少有一名被抽中”为事件A

()2325310C P A C ∴== ()()37

111010

P A P A ∴=-=-=

(2)由茎叶图可补全列联表如下:

()22

40661414() 6.4 3.841()()()()20202020

n ad bc K a b c d a c b d ??-?-∴===>++++???

∴有95%的把握认为“成绩优秀与教学方式有关”

【点睛】

本题考查对立事件概率的求解问题、独立性检验的应用,属于常规题型. 25.(1)0.0135a =(2)276人(3)32.8 【解析】 【分析】

(1)由直方图中频率和(小矩形面积和)为1可求得a ;

(2)求出上学路上所需时间不少于40分钟的学生的频率,然后乘以1200可得; (3)用各小矩形中点估算为这一组的均值,然后乘以频率,并相加可得. 【详解】

解:(1)由200.025200.0055200.0032201a ?+?+?+??=, 解得0.0135a =.

(2)Q 上学路上所需时间不少于40分钟的学生可申请在学校住宿,招收学生1200人,

∴估计所招学生中有可以申请住宿人数为:

()0.00550.0032201200276+???=.

(3)该校学生上学路上所需的平均时间为:

100.013520300.02520500.005520700.00320900.0032032.8

??+??+??+??+??=

【点睛】

本题考查频率分布直方图,考查数学期望,解题关键是掌握频率分布直方图的性质:直方图中所有频率之和为1,即各小矩形面积和为1.

26.(1)见解析; (2)2

? 2.060.0y

x =-+;(3)需要用4.5千克的清水清洗一千克蔬菜. 【解析】 【分析】

(I )根据散点图判断2?y

dx c =+适宜作为蔬菜农药残量?y 与用水量x 的回归方程类型;(II )令2x ω=,先建立y 关于w 的线性回归方程,平均数公式可求出ω与y 的值从而可

得样本中心点的坐标,从而求可得公式()()()

8

182

1751= 2.0374?i i i i i w w y y d w w ==---=≈--∑∑, =38??211=60c

y dw =-+?,可得y 关于w 的回归方程,再代换成y 关于x 的回归方程可得结果;(III )解关于x 的不等式,求出x 范围即可. 【详解】

(I )根据散点图判断2

?y

dx c =+适宜作为蔬菜农药残量?y 与用水量x 的回归方程类型; (Ⅱ)令2w x =,先建立y 关于w 的线性回归方程,

由于()()()

8

182

1751= 2.0374?i i i i i w w y y d w w ==---=≈--∑∑,∴=38??211=60c y dw =-+?. ∴y 关于w 的线性回归方程为 2.060.?0y

w =-+, ∴y 关于x 的回归方程为2

2.06.0?0y

x =-+. (Ⅲ)当?20y

<时,22.060.020x -+<

, 4.5x >≈ ∴为了放心食用该蔬菜,估计需要用4.5千克的清水清洗一千克蔬菜. 【点睛】

本题考查了非线性拟合及非线性回归方程的求解与应用,是源于课本的试题类型,解答非线性拟合问题,先作出散点图,再根据散点图选择合适的函数类型,设出回归方程,利用换元法将非线性回归方程化为线性回归方程,求出样本数据换元后的值,然后根据线性回归方程的计算方法计算变换后的线性回归方程系数,即可求出非线性回归方程,再利用回归方程进行预报预测,注意计算要细心,避免计算错误.

新高二数学上期末试卷带答案

新高二数学上期末试卷带答案 一、选择题 1.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为() A.0795B.0780C.0810D.0815 2.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是() A.3 20 B. 7 20 C. 3 16 D. 2 5 3.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是() A. 1 16 B. 1 8 C.3 8 D. 3 16 4.我国古代数学著作《九章算术》中,其意是:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?右图是源于其思想的一个程序框图,若输出的2 S=(单位:升),则输入k的值为 A.6 B.7 C.8 D.9 5.执行如图所示的程序框图,若输入8 x=,则输出的y值为()

A .3 B . 52 C . 12 D .34 - 6.执行如图的程序框图,如果输入72m =,输出的6n =,则输入的n 是( ) A .30 B .20 C .12 D .8 7.某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有( ) ①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人; ②用简单随机抽样的方法从新生中选出100人;

新人教版高二数学下学期期中考试试卷

一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 复数 =() A.B.C.D. 2. 下列有关命题的说法正确的是() A.命题“若 =1,则x=1的否命题为” 若“ =1,则x 1 ” B.若为真命题,则,均为真命题 C.命题“ 使得+x+1 ”的否定是:“ 均有+x+1 ” D.命题“若x=y,则sinx=siny”的逆否命题为真命题 3. 曲线在点处的切线方程是( ) A. B.C.D. 4. 下面四个条件中,使成立的充分而不必要的条件是( ) A. B. C. D. 5. 已知抛物线的准线与圆相切,则的值为( ) A. B.1 C.2 D.4 6. 设是函数的导函数, 的图象如右图所示,则的图象最有可能的是( ) 7. 执行下面的程序框图,输出的S 值为() A. B. C. D . 8. 右侧茎叶图表示的是甲、乙两人在5次

综合测评中的成绩,其中一个数字被污 损. 则甲的平均成绩超过乙的平均成绩 的概率为() A.B. C. D. 9. 若,则的单调递增区间为() A.B.C.D. 10.椭圆的两顶点为,且左焦点为,是 以角为直角的直角三角形,则椭圆的离心率为() A. B. C. D. 11. 已知R上可导函数的图象如图所示,则不等式的解集 为() A.B. C. D. 12. 已知点是椭圆上的动点,为椭圆的两个焦点,是坐标原点,若是的角平分线上一点,且,则的取值范围是() A.B.C. D. 第II卷(非选择题,共90分) 二、填空题(本大题共4小题,每小题5分,共20分)

13. 某地区有小学150所,中学75所,大学25所. 现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取_________所学校. 14. 以F1(-3,0)、F2(3,0)为焦点,渐近线方程为的双曲线的标准方程是 __________________; 15. 已知函数在处的切线与直线平行,则 =_____; 16. 已知函数在区间上恰有一个极值点,则实数的取值范围是__________________. 三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分) 设互为共轭复数,满足,且在复平面内对应的点在第一象限,求 . 18.(本小题满分12分) 直线过抛物线的焦点F,是与抛物线的交点,若 , 求直线的方程. 19 .(本小题满分12分) 已知p:,q:x2-2x+1-m2 0(m>0),若 p是 q的必要而不充分条 件,求实数m的取值范围. 20.(本小题满分12分) 有两枚大小相同、质地均匀的正四面体玩具,每个玩具的各个面上分别写着数字1,2,3,5. 同时投掷这两枚玩具一次,记为两个朝上的面上的数字之和. (1)求事件“m不小于6”的概率; (2)“m为奇数”的概率和“m为偶数”的概率是不是相等?证明你作出的结论.

2019年高二数学期中考试试卷分析报告

高二数学期中考试试卷分析报告 一、总体评价: 这套试卷主要考查基础,考查数学能力,以促进数学教学质量的提高为原则,在训练命题中立意明确,迎合了高考命题的要求,把水平测试和能力测试融为一体,命题科学,区分度强,达到了考查目的,是一份较好的试题。 二、试题分析: 1.试题结构 此试卷继续保持试卷结构和题量不变,试卷包括Ⅰ、Ⅱ两卷,总题量22小题,总分150分,第Ⅰ卷有12道选择题,共60分;第Ⅱ卷由4道填空题和6道解答题组成,共90分,试卷中各部分知识占分比例为选修《2-1》50%,之前知识50%,。试题各部分难度适中,层次分明,区分度强,信度高,体现了试题测试功能。 2.试题特点 (1)考查全面,重点突出 试题考查了高中数学《选修2-1》以及前面章节的内容,全面考查了学生“双基”,体现了数学教学的基本要求,对重点内容《圆锥曲线》重点考查,符合考纲说明。 (2)突出了对数学思想方法的考查 数学思想方法决定着数学基批知识教学的水平,培养数学能力,优化思维素养和数学基本技能的培养、能力的发展有十分重要的

意义。也是考纲考查的重点。本试题考查了数形结合思想、化归转化思想、建模思想等数学思想与方法。 (3)注重双基,突出能力考查 试卷的较多试题来自课本,源于平时的练习,以基本概念、基本原理和公式的应用为切入点,考查了学生对基础知识的掌握程度,同时还有提升,对理解和应用能力、运算能力、空间想象能力及对解决综合问题的能力进行了考查。 (4)重视数学基本方法运用,淡化特殊技巧 试题回避过难、过繁的题目,解题思路不依靠特殊技巧,只要掌握基本方法,就能找到解题思路。 3.答卷中存在的问题 (1)基本概念不强,灵活应用能力差 从学生答卷情况来看,部分考生对教材基本概念,基本性质等基础知识掌握理解不够,知识记忆模糊,灵活运用较差。(2)分析问题,解决问题能力较差 在答卷中对简单或明显套用公式的题,考生一般可得分,但对常规题的条件或结论稍做改变,或需探索才能得出结果的题,则有相当一部分考生被卡住,这些考生分析问题解决问题的能力较差。如第18题第二问得分率很低。 (3)运算能力差 对于试卷中的计算题,有许多考生不能计算出准确答案,有的符号错误,有的计算错误,不该失的分失去,表明平时做题不

2018年高二下学期期中考试数学文科试卷

2018年高二下学期期中考试试卷 文科数学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。 第Ⅰ卷 一、选择题(本题共12小题,每小题5分,共60分,只有一个选项正确,请把答案写.....在答题卷上.....) 1.复数z 满足z =7+i 1-2i (i 为虚数单位),则复数z 的共轭复数z =( ) A .1+3i B .1-3i C .3-I D .3+i 2.若集合A ={x |2x >1},集合B ={x |l n x >0},则“x ∈A ”是“x ∈B ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 3.古诗云:远望巍巍塔七层,红光点点倍加增.共灯三百八十一,请问尖头几盏灯?( ) A .2 B .4 C .3 D .5 4.设向量=(1,2),=(m ,m+1),∥,则实数m 的值为( ) A .1 B .﹣1 C .﹣ D .﹣3 5.若f (x )是定义在R 上的偶函数,当x <0时,f (x )=-l og 2(-2x ),f (32)=( ) A .-32 B .6 C .-6 D .64 6.下列四个图象可能是函数的图象的是( ) A B C D 7.某几何体的三视图如图(1)所示,则该几何体的体积是( ) A .4π3 B .4+2π 3 C .2+2π 3 D .5π3 (1) (2) 8.执行如图(2)所示的程序框图,如果输入n =3,则输出的S =( ) A .37 B .67 C .89 D .49 9.设抛物线y 2=8x 的焦点为F ,过点F 作直线l 交抛物线于A 、B 两点,若线段AB 的中点E 到y 轴的距离为3,则弦AB 的长为( ) A .5 B .8 C .10 D .12 10.若k ∈[-3,3],则k 的值使得过A (1,1)可以作两条直线与圆(x -k )2+y 2=2相切的概率等于( ) A .12 B .13 C .23 D .34 11.已知定义在R 上的可导函数f (x )的导函数为f '(x ),满足f '(x )<f (x ),且 f (0)=2,则不等式f (x )﹣2e x <0的解集为( ) A .(﹣2,+∞) B .(0,+∞) C .(1,+∞) D .(4,+∞) 12.双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的左、右焦点为F 1,F 2,过F 2的直线交双曲线的右支于A ,B 两点,若△F 1AB 是顶角A 为120°的等腰三角形,双曲线离心率( ) A .5-2 3 B .5+2 3 C . 3 D .5-2 3 此 卷 只 装 订不 密封 班级 姓名 准考证号 考场号 座位号

2020年高二上学期数学期中考试试卷

2020 年高二上学期数学期中考试试卷
姓名:________
班级:________
成绩:________
一、 单选题 (共 4 题;共 8 分)
1. (2 分) (2016 高二下·洞口期末) 若平面向量 、 满足| |= ,则 与 的夹角是( )
,| |=2,( ﹣ )⊥
A. π
B.
C.
D.
2. (2 分) 在
中,“
A . 充分非必要条件
B . 必要非充分条件
C . 充分必要条件
D . 既非充分也非必要条件
”是“
”的
()
3. (2 分) (2016 高二下·市北期中) 设 x,y 满足约束条件 >0)的最大值为 12,则 + 的最小值为( )
A.4
B. C.1
第 1 页 共 12 页
,若目标函数 z=ax+by(a>0,b

D.2 4. (2 分) (2018 高二上·嘉兴期中) 于 ,则 的最小值是( ) A.1
B.
C.
是边长为 2 的等边三角形, 是边 上的动点,
D.
二、 填空题 (共 12 题;共 12 分)
5. (1 分) (2018 高一下·瓦房店期末) 与向量
垂直的单位向量为________.
6. (1 分) (2019 高二上·上海期中) 若矩阵

,则
________.
7. (1 分) 当 a>0,b>0 且 a+b=2 时,行列式 8. (1 分) (2018 高二上·扬州期中) 直线
的值的最大值是________ . 的倾斜角为________.
9. (1 分) 已知矩阵 A=
. 若矩阵 A 属于特征值 6 的一个特征向量为 a1= , 属于特征值 1 的一
个特征向量为 a2=
, 矩阵 A=________ .
10. (1 分) (2019 高一下·宿迁期末) 线 的值为________
的方程为
,若
,则实数
11. (1 分) (2017 高一上·长春期末) 已知圆 C:(x﹣3)2+(y﹣4)2=1,点 A(0,﹣1),B(0,1),设 P 是圆 C 上的动点,令 d=|PA|2+|PB|2 , 则 d 的取值范围是________.
12. (1 分) 圆心为(1,1)且与直线 x﹣y=4 相切的圆的方程是________
第 2 页 共 12 页

高二数学期末考试试卷分析

高二数学期末考试试卷分析 数学组姜尊烽 一、试卷特点: 本学期期末试卷的命题坚持课改精神,加强了对学生思维品质的考查。试题以课标和课本为本,考查了数学基础知识、基本技能、基本方法、逻辑思维能力,以及运用所学知识和方法分析问题,解决实际问题的能力。但对基础知识的考查直接运用的比重较少,搞知识堆积的题型比重较大,这不利于基础掌握能力比较差的学生学习。对基本技能,不考繁杂的内容,这对当前高中数学教学有很好的指导意义。重视了数学思想的普查。体现了学生实践能力的考查,让学生解决自己身边的实际问题,体现知识的价值,激发学习的热情。 二、学生答题情况的分析 所教授的两个班级考试成绩都不太理想,与学校年级平均成绩差不多,仅仅有7名学生考了及格。 三、答题中存在的问题: 从答题情况看,只有少部分学生能较好地掌握高中数学的基础知识和基本技能,学生答题中不乏简捷和富有个性的解法。存在的重要问题如下: 1、审题不认真细致。如第4题:不注意在达到结果和a的值还在递减1,应在a=3时结束循环,没有考虑到而导致失分。 2、学生缺乏运用基础知识模型的意识,不会基本方法解题,基本计算能力较差。如第18、19、20题。18为求点的轨迹方程基本方法把握不足,19是古典概型和几何概型的基本求法还把握不足,20为利用最小二乘法求回归直线方程中基本计算能力不足。 3、学生缺乏转化的思想。如第22题不会将向量数量积转化为坐标表示,利用韦达公式解题。 4、学生对基本题型的掌握能力差。如第21题不会对图形建立直角坐标系,及对各点的坐标表示把握不足,不会利用坐标表示来证明垂直和二面角的大小,基本知识点的记忆不足。 5、运算时不注意符号,在符号上出错。也由于粗心大意或学习习惯不好出现计算错误。 6、不能很好的掌握课堂知识。如第21题第(1)(2)问只停留在凭感觉做题,做过的题理解不透彻理解不深刻。

高二期中联考数学试卷(文科)

高二期中联考数学试卷(文科) 注意事项: 1.答题前,考生务必将自己的学校、姓名、考号、班级填写在试卷指定位置。 2.第Ⅰ卷答案写在第Ⅱ卷卷首答题栏内,第Ⅱ卷答案写在各题指定的答题处。 第Ⅰ卷 一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列图形中可能不为平面图形的是 A.三角形 B.梯形 C.圆 D.四条线段顺次首尾连接 2.下列说法不. 正确的是 A.射影相等的两条斜线段相等 B.斜线和平面所成的角是这条斜线和这个平面的直线所成的一切角中最小的角 C.直线l 和一个平面α内的任意一条直线都垂直,则直线l 和平面α互相垂直 D.一个平面内有两条相交直线都平行于另一个平面,则这两个平面平行 3.乘积(a 1+a 2)(b 1+b 2+b 3)(c 1+c 2+c 3+c 4+c 5)展开后共有 A.15项 B .20项 C.30项 D .35项 4.若A m 12 =12×11×10×9×8×7,则m= A.5 B.8 C.6 D.9 5.如果两条直线a 和b 没有公共点,则a 与b A.是异面直线 B.共面 C.平行 D.可能是异面直线,也可能是平行直线 6.(1+x)20 的展开式中,系数最大的项是 A.第11项 B.第10项 C.第9项 D.第9项与第10项 7.4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择听其中的1个讲座,则 不同的选法种数共有 A.43 B.34 C.4×3×23! D.4×3×2 8.下列命题中正确的是

A.垂直于同一直线的两条直线平行 B.平行于同一平面的两条直线平行 C.垂直于同一平面的两条直线平行 D.与两条异面直线都相交的两条直线平行 9.直线a,b互相垂直的一个充分不必要条件是 A.a α,且b⊥α(其中α为平面) B.a,b都垂直于同一条直线 C.a,b都垂直于同一个平面 D.a,b所成的角为90° 10.王老师买了一辆小汽车准备上牌照号码,如果牌照号码是由2个英文字母后接4个数字 组成的,且英文字母不能相同,则王老师上牌照号码有多少种选择方案 A.650×105 B.600×104 C.600×105 D.650×104 第Ⅱ卷 (非选择题共100分) 二、填空题:本大题共5小题,每小题5分,共25分,请把答案填在答题栏的相应位置上. 11.已知(x + )n展开式的二项式系数之和比(a+2b)2n展开式的二项式系数之和小 240,则n= . 12.元旦晚会上安排5名唱歌的同学演出顺序时,某同学要求不第一个出场.也不最后一 个出场,则不同的排法种数是_____. 13.已知半径为R的球面上有三点A、B、C,且AC=8,BC=6,AB=10.球心到平 面ABC的距离是12,则R=___. 14.若(1-2x)2010=a0+a1x+a2x2+a3x3+…+…a2010x2010(x∈R), 则(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2010)=_____.(用数字作答). 15.在60°的二面角α-l-β中,动点A∈α,动点B∈β,AA1⊥β,垂足为A1,且 AA1=a,AB=2a ,那么,点B到平面α的最大距离是_______. 三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知(x + a x )8展开式中x的系数为448,其中实数a为常数. (1)求a的值; (2)求函数f(x)=ax2+(a-1)x+1在x∈[-1,1]上的最小值.

【压轴卷】高二数学上期中模拟试卷(含答案)

【压轴卷】高二数学上期中模拟试卷(含答案) 一、选择题 1.民间有一种五巧板拼图游戏.这种五巧板(图1)可以说是七巧板的变形,它是由一个正方形分割而成(图2),若在图2所示的正方形中任取一点,则该点取自标号为③和④的巧板的概率为( ) A . 518 B . 13 C . 718 D . 49 2.为研究某种细菌在特定环境下,随时间变化的繁殖情况,得到如下实验数据: 天数x (天) 3 4 5 6 繁殖个数y (千个) 2.5 3 4 4.5 由最小二乘法得y 与x 的线性回归方程为??0.7y x a =+,则当7x =时,繁殖个数y 的预测值为( ) A .4.9 B .5.25 C .5.95 D .6.15 3.设,m n 分别是先后抛掷一枚骰子得到的点数,则方程20x mx n ++=有实根的概率为 ( ) A . 19 36 B . 1136 C . 712 D . 12 4.在去年的足球甲A 联赛上,一队每场比赛平均失球数是1.5,全年比赛失球个数的标准差为1.1;二队每场比赛平均失球数是2.1,全年失球个数的标准差是0.4,你认为下列说法中正确的个数有( ) ①平均来说一队比二队防守技术好;②二队比一队防守技术水平更稳定;③一队防守有时表现很差,有时表现又非常好;④二队很少不失球. A .1个 B .2个 C .3个 D .4个 5.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ?)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x C ? 17 13 8 2

月销售量y (件) 24 33 40 55 由表中数据算出线性回归方程y bx a =+$$$中的2b =-$,气象部门预测下个月的平均气温为 6C ?,据此估计该商场下个月毛衣销售量约为( ) A .58件 B .40件 C .38件 D .46件 6.统计某校n 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组: [)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图 如图所示,若不低于140分的人数为110.①0.031m =;②800n =;③100分以下的人数为60;④分数在区间[)120,140的人数占大半.则说法正确的是( ) A .①② B .①③ C .②③ D .②④ 7.《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第十五日所织尺数为( ) A .13 B .14 C .15 D .16 8.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( ) A .2,5 B .5,5 C .5,8 D .8,8 9.某校高一1班、2班分别有10人和8人骑自行车上学,他们每天骑行路程(单位:千

高二数学-高二下学期期中考试数学(理)试卷

2014-2015学年高二(下)期中数学试卷(理科) 一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.) 1.若命题P:“?x∈Q,x2+2x﹣3≥0”,则命题P的否定:. 2.抛物线y=x2的准线方程是. 3.已知复数(i为虚数单位),则复数z的虚部为. 4.已知双曲线的渐近线方程为,则m=. 5.已知正三棱锥的底面边长为6,侧棱长为5,则此三棱锥的体积为. 6.用反证法证明命题:“如果a,b∈N,ab可被3整除,那么a,b中至少有一个能被3整除”时,假设的内容应为. 7.设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与l2:x+(a+1)y+4=0平行”的条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”) 8.某同学的作业不小心被墨水玷污,经仔细辨认,整理出以下两条有效信息:①题目:“在平面直角坐标系xoy中,已知椭圆x2+2y2=1的左顶点为A,过点A作两条斜率之积为2的射线与椭圆交于B,C,…” ②解:设AB的斜率为k,…点B(,),D(﹣,0),…据此,请你写出直线CD的斜率为.(用k表示) 9.已知A(3,1)、B(﹣1,2),若∠ACB的平分线在y=x+1上,则AC所在直线方程是. 10.设α,β为两个不重合的平面,m,n是两条不重合的直线,给出下列四个命题: ①若m?α,n?α,m∥β,n∥β,则α∥β; ②若n?α,m?β,α与β相交且不垂直,则n与m不垂直; ③若α⊥β,α∩β=m,m⊥n,则n⊥β; ④若m∥n,n⊥α,α∥β,则m⊥β.其中所有真命题的序号是.

11.如图所示,已知抛物线y2=2px(p>0)的焦点恰好是椭圆的右焦点F,且两条曲线的交点连线也过焦点F,则该椭圆的离心率为. 12.函数f(x)=lnx+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是. 13.若实数a,b,c成等差数列,点P(﹣1,0)在动直线ax+by+c=0上的射影为M,点N 坐标为(3,3),则线段 MN长度的最小值是. 14.已知函数f(x)=x﹣1﹣(e﹣1)lnx,其中e为自然对数的底,则满足f(e x)<0的x 的取值范围为. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(14分)(2015春?淮安校级期中)已知命题P:函数y=log a(2x+1)在定义域上单调递增;命题Q:不等式(a﹣2)x2+2(a﹣2)x﹣4<0对任意实数x恒成立,若P、Q都是真命题,求实数a的取值范围. 16.(14分)(2013?越秀区校级模拟)如图,在四棱锥P‐ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,E为PD的中点.求证: (1)PB∥平面AEC; (2)平面PCD⊥平面PAD. 17.(15分)(2015春?淮安校级期中)已知圆M的方程为x2+(y﹣2)2=1,直线l的方程为x﹣2y=0,点P在直线l上,过P点作圆M的切线PA,PB,切点为A,B. (1)若∠APB=60°,试求点P的坐标; (2)若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当CD=时,求直线CD的方程; (3)经过A,P,M三点的圆是否经过异于点M的定点,若经过,请求出此定点的坐标;若不经过,请说明理由.

高一数学期中试卷分析

高一数学期中试卷分析 王文兰 一、试卷分析 1.试题范围: 试题内容覆盖了必修三第一、二、三章的全部内容,和必修四的1.1至1.4的内容。做到试题内容、内容比例、题型比例符合标准的要求;不出超纲题、偏题、怪题。以确保内容有效度。 2.试题的难易程度符合1:2:7的比例,并具有一定的区分度。能将优秀的学生区分出来。具体说,试题的平均分控制在75~85分之间。 3.题量和试卷分量适当。试题量控制在22题(选择题12道,填空题4道,解答题6道)。试题份量以优秀水平的考生能在规定的时间里从容地完成试题作答为宜。试题的排列顺序遵循先易后难,先简后繁的原则,使学生尽可能发挥水平。 二、学生答卷分析 从学生答卷分析主要存在以下问题: 1、基础知识掌握不够牢固,基本概念不是很清晰。 2、学生做题时粗心大意,马虎大意。审题不严,对错看不清。不按要求答题,轻易落笔。 3、答题语言的规范性、完整性和准确性欠佳. 4、平时练习不够。 三、后半学期的具体措施 针对考试中反映出的这些问题,在今后的教学工作中应该有目的、有针对性地去解决: 1、重视基础知识的掌握和基本能力的培养 夯实基础,强化所学重点知识的识记。抓差生,端正态度,提高兴趣,加强督查。一方面,着力于课堂教学的实效性,力争把问题解决在课堂教学中;另一方面,加强督促,使学生更主动的去识记。 2、重视随堂的练习,夯实基础

在课堂中、以及课后,通过多种形式进行练习,及时巩固所学知识,同时注重练习的灵活性、针对性和典型性。 3、注重章节测试 每章结束后,组织学生进行测试,及时发现问题、解决问题。 4、加强对学生的学法进行指导,提高学习效率 5、精选习题,规范答题 6、端正学生学习数学的态度

高二数学试卷(文科)期中联考(doc 9页)

高二数学试卷(文科)期中联考(doc 9页)

更多企业学院: 《中小企业管理全能版》183套讲座+89700份资料《总经理、高层管理》49套讲座+16388份资料《中层管理学院》46套讲座+6020份资料《国学智慧、易经》46套讲座 《人力资源学院》56套讲座+27123份资料《各阶段员工培训学院》77套讲座+ 324份资料《员工管理企业学院》67套讲座+ 8720份资料《工厂生产管理学院》52套讲座+ 13920份资料《财务管理学院》53套讲座+ 17945份资料《销售经理学院》56套讲座+ 14350份资料《销售人员培训学院》72套讲座+ 4879份资料

8.下图中流程图表示的算法的运行结果是_________ 9.阅读右框中伪代码,若输入的n 为50,则输出的结果是 . 10.若点A 的坐标,F 为抛物线的焦点,点在该抛物线上 Read x If x ≥0 Then y ←x 2 Else Read n i←1 s←0 While (第9题)

移动,为使得取得最小值,则点的坐标为________ . 11.过点作直线与圆交于A 、B 两点,若AB=8,则直线的方程为___________________________ 12.如图,某人向圆内投镖,如果他每次都投中圆内, 那么他投中正方形区域的概率为 (结果用分数表示) 13. 设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 14.P 为椭圆上的一点,M 、N 分别是圆 和上的点,则|PM | + |PN |的最大值为 . 二.解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)将一颗骰子先后抛掷2次,观察

高二数学期末试卷分析

高二数学期末试卷分析 试卷分文理科分开命题。年级绝大多数学生学习态度端正,比较重视数学学习。上课听讲认真,大部分学生能按时完成作业。但是学生的数学基础比较薄弱,在一些关键知识上存在漏洞,致使后续学习存在一定的障碍;数学学习方式较落后,基本还停滞于模仿,缺乏自主学习能力,数学综合素质有待于进一步提高。 一、关于试卷分析 (一)创设试卷的命题立意 这次高二数学试卷,命题体现了课改的理念向高考改革靠拢,有利于提高我校数学教学质量。试卷的题型着眼于考查现阶段学生的基础知识及基本技能掌握情况,也重视对学生在数学思考能力和解决问题能力等方面发展状况的评价,还重视学生对数学认识水平的评价。整份试卷难易适中,没有偏、难、怪题,保护了学生的学习信心并激励学生继续学习的热情;在选题和确定测试重点上都认真贯彻了“注重基础,突出知识体系中的重点、难点,培养能力”的命题原则,重视对学生运用所学的基础知识和技能分析问题、解决问题能力的考查。

(二)试卷考查的内容 ?本次考试的内容主要是:理科考查必修 、选修 ??及选修 ??的第一章,满分 ??分;文科考查必修 ,选修 ??及选修 ??的第一章,满分 ??分。 数列、圆锥曲线、线性规划、立体几何、导数等都是高考重点考察模块 、 、 、 、 、 、 、 、 、 ?文理考察相同,并且知识基础,给了学生做题的信心, ?文理考察的都是离心率, ?文理考察的都是有关零点问题,但理科题目略难。同学们大多在 ?、 ?题失分。 填空题 ?题也属于基础题,但有部分学生在利用裂项相消时出现错误,导致失分。 解答题: ?、 ?、 ?、 ?文理考察相同,学生能基本得分, ?题第二问失分严重,学生有思路但计算能力跟不上。 理科 ?题是应用题,利用基本不等式求最值。 ?题考查立体几何知识,第二问失分严重。 文科 ?题考察独立性检验, ?考察抛物线,同样也是第二问失分严重。 三、教学建议 高二是整个高中的关键阶段,在今后教学的过程中,教师应该切实贯彻新课程理念,着意激发学生兴趣,注重学生的学习体验,提高课堂教学效率,努力提高学生的数学能力和综合素质。主要从以下几方面着手:?

【冲刺卷】高二数学上期中模拟试卷(及答案)

【冲刺卷】高二数学上期中模拟试卷(及答案) 一、选择题 1.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生 D .815号学生 2.在区间上随机取两个数,x y ,记1p 为事件“1 2 x y +≥ ”的概率,2p 为事件“12x y -≤ ”的概率,3p 为事件“1 2 xy ≤”的概率,则 ( ) A .123p p p << B .231p p p << C .312p p p << D .321p p p << 3.甲、乙两名射击运动员分别进行了5次射击训练,成绩(单位:环)如下: 甲:7,8,8,8,9 乙:6,6,7,7,10; 若甲、乙两名运动员的平均成绩分别用12,x x 表示,方差分别为2212,S S 表示,则( ) A .22 1212,x x s s >> B .22 1212,x x s s >< C .221212 ,x x s s << D .221212 ,x x s s <> 4.如图所示的程序框图的算法思路源于世界数学名题“3x +1问题”.执行该程序框图,若输入的N =3,则输出的i = A .9 B .8 C .7 D .6 5.某城市2017年的空气质量状况如下表所示: 污染指数T 30 60 100 110 130 140 概率P 1 10 16 13 730 215 130

其中污染指数50T ≤时,空气质量为优;50100T <≤时,空气质量为良; 100150T <≤时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为( ) A .35 B .1180 C .119 D .56 6.为计算11111 123499100 S =- +-++-…,设计了下面的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+ 7.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是( ) A .336 B .510 C .1326 D .3603 8.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率()|P A B 等于( ) A . 5 108 B . 113 C . 17 D . 710 9.执行如图所示的程序框图,若输出的结果为48,则输入k 的值可以为

2017-2018学年高二下学期期末考试数学试卷

一、选择题(12×5=60) 1.已知复数34,z i i =+为虚数单位,z 是z 的共轭复数,则 i z =() A. 4355i -+ B. 4355i -- C. 432525i - + D. 43 2525 i -- 2.对于命题“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四面体() A. 各正三角形内的点 B. 各正三角形某高线上的点 C. 各正三角形的中心 D. 各正三角形各边的中点 3.用反证法证明命题“若220a b +=,则,a b 全为()0,a b R ∈”,其反设正确的是( ) A. ,a b 至少有一个不为0 B. ,a b 至少有一个为0 C. ,a b 全不为0 D. ,a b 中只有一个为0 4.函数()()21e x f x x =-的递增区间为() A. (),-∞+∞ B. 1,2?? +∞ ??? C. 1,2? ?-∞- ??? D. 1,2??-+∞ ??? 5.若函数y=f(x)的导函数 错误!未找到引用源。的图像如下图所示,则y=f(x)的图像可能 为() 6.函数y=f(x)的图像在x=5处的切线方程是y=-2x+8,则f(5)-f’(5)等于( ) A.1 B.0 C.2 D. 7.先后投掷同一枚骰子两次,落在水平桌面后,记正面朝上的点数分别为x 、y,设事件A 为“x+y 为偶数”,事件B 为“x ≠y ”,则P(B|A)=( ) A. B. C. D. 8.如图所示,阴影部分的面积( ) A. 12 B. 23 C. 1 D. 76 9.某班有的学生数学成绩优秀,如果从该班随机找出5名学生,其中数学成绩优秀的学生人

高二数学文科期中试卷及答案

2019-2020学年第二学期高二数学期中测试卷(文科) (本试卷满分150) 一、选择题(每小题5分,共60分) 1.[2016·北京高考]已知集合A ={x ||x |<2},B ={-1,0,1,2,3},则A ∩B =( ) A .{0,1} B .{0,1,2} C .{-1,0,1} D .{-1,0,1,2} 答案 C 解析 由题意得A =(-2,2),A ∩B ={-1,0,1},选C. 2.[2016·北京高考]复数1+2i 2-i =( ) A .i B .1+i C .-i D .1-i 答案 A 解析 1+2i 2-i =(1+2i )(2+i )(2-i )(2+i )=2+i +4i +2i 24-i 2=5i 5=i ,故选A. 3.[2017·安徽模拟]“(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案 B 解析 “x =1 2或x =0”是“x =0”的必要不充分条件,选B. 4.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的解析式是( ) A .2x +1 B .2x -1 C .2x -3 D .2x +7 答案 B 解析 因为g (x +2)=f (x )=2x +3=2(x +2)-1,所以g (x )=2x -1. 5.[2014·湖北高考]根据如下样本数据:

得到的回归方程为y=bx+a,则() A.a>0,b>0 B.a>0,b<0 C.a<0,b>0 D.a<0,b<0 答案 B 解析由表中数据画出散点图,如图,由散点图可知b<0,a>0. 6.复数z=2sin θ+(cos θ)i的模的最大值为() A.1B.2 C. 3 D. 5 解:选B |z|=(2sin θ)2+cos2θ=3sin2θ+1. 当sin2θ=1时,|z|max=3×1+1=2.故选B. 7、给出下面一段演绎推理: 有理数是真分数,大前提 整数是有理数,小前提 整数是真分数.结论 结论显然是错误的,是因为()

(完整版)高二数学试卷分析

高二第二学期末数学试卷分析 一.试题考查的内容和学生失误的分析: 第1题:属概率问题,考查互斥事件的概念及性质,学生容易错选答案C。 第2题:考查复数的除法和乘方运算,先去括号较为简单。 第3题:考查异面直线所成角的计算和异面直线所成角的取值范围。第4题:考查对二项式系数和与各项系数和的正确理解,以及数列极限的计算。 第5题:考查球的表面积和截面的性质,属基本题型。 第6题:考查函数左极限、右极限、极限的概念,属基本题型,学生答题的正确率较高。 第7题:考查球面上两点之间的距离的概念及计算,重在考查学生运用所学知识分析问题和解决问题的能力。学生的得分率是16道小题中最低的,说明学生的思维能力没有达到应有的要求。 第8题:考查分类计数原理和排列组合的基本公式。 第9题:考查点到平面的距离的概念及计算,同时也考查等积法求高。第10题:考查导数的计算、导数的几何意义、曲线的切线方程、平行线间的距离、点到直线的最小距离以及转化的数学思想,属综合题型,考查学生的综合能力。 第11题:考查间接法求独立重复试验的概率和学生的逆向思考能力。学生答题的正确率较高。

第12题:考查的知识点属高二第一学期的内容,重在考查学生的空间想象能力和推理能力。 第13题:考查排列和等可能事件概率,难度不大。 第14题:考查导数的乘法运算和函数在某一点的导数的概念。。 第15题:考查二项展开式中某一项的系数、二项展开式的通项。学生的得分率一般,反映了学生对有关公式掌握不牢,运算有问题。第16题:考查直线与平面所成角的求法,着重考查学生的空间想象能力。得分率偏低,说明学生的空间想象能力还有缺陷。 第17题:考查导数的运算、函数的极值的求法、曲线的切线方程的求法,虽属综合题目,但难度不大,学生得分率较高。 第18题:考查线面垂直的证法和二面角的求法,着重考查学生的空间想象能力和逻辑推理能力。 第19题:考查服从二项分布的随机变量的概率、分布列以及期望,属基础题型,学生得分率较高。 第20题:考查面面平行的证法和线面所成角的求法,着重考查学生的空间想象能力和推理能力。学生失分的主要原因有:①推理能力较差;②空间想象能力不够;③不能正确地将问题进行转化。 第21题:考查数学归纳法在不等式证明中的运用,本题中确定好n0的值很关键。 第22题:考查函数的单调区间的求法及利用不等式求参数的取值范围。学生失分的主要原因有:①不能从本质上领会有关概念的定义; ②运算能力薄弱;③不等式的常规解法不熟练,没有基本思路。

2020年高二数学上期中试题(含答案)

2020年高二数学上期中试题(含答案) 一、选择题 1.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是 A . 14 B . 8 π C . 12 D . 4 π 2.民间有一种五巧板拼图游戏.这种五巧板(图1)可以说是七巧板的变形,它是由一个正方形分割而成(图2),若在图2所示的正方形中任取一点,则该点取自标号为③和④的巧板的概率为( ) A . 518 B . 13 C . 718 D . 49 3.为研究某种细菌在特定环境下,随时间变化的繁殖情况,得到如下实验数据: 天数x (天) 3 4 5 6 繁殖个数y (千个) 2.5 3 4 4.5 由最小二乘法得y 与x 的线性回归方程为??0.7y x a =+,则当7x =时,繁殖个数y 的预测值为( ) A .4.9 B .5.25 C .5.95 D .6.15

4. 某程序框图如图所示,若输出的S=57,则判断框内为 A.k>4? B.k>5? C.k>6? D.k>7? 5.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为 A.7 B.15 C.25 D.35 6.执行如图所示的程序框图,则输出的n值是() A.5B.7C.9D.11 7.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 A.4 5 B. 3 5 C. 2 5 D. 1 5

2021年北师大版高二数学下期中试卷及答案

高二年级数学学科期中试卷 金台高中 命题人:李海强 参考公式及数据:2 2 ()()()()() n ad bc K a b c d a c b d -=++++, 20()P K k ≥ 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828 1. 对两个变量Y 与X 进行回归分析,分别选择不同的模型,它们的相关系数r 如下,其中拟合效果最好的模型是( ) (A )模型Ⅰ的相关系数r 为0.96 (B )模型Ⅱ的相关系数r 为0.81 (C )模型Ⅲ的相关系数r 为0.53 (D )模型Ⅳ的相关系数r 为0.35 2.用反证法证明“如果a b <,那么33 a b < ”,假设的内容应是( ) (A)33b a = (B)33b a < (D)33b a =且33b a < (D)33b a =或33 a b > 3.复数132z i =-,21z i =+,则z=12z z ?在复平面内的对应点位于( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 4.右图是《集合》的知识结构图,如果要加入“交集”,则应该放在( ) (A)“集合”的下位 (B)“含义与表示”的下位 (C)“基本关系”的下位 (D)“基本运算”的下位 5. 利用独立性检验来考虑两个分类变量 X 和Y 是否有关系时,通过查阅临界值表来确定断言“X 和Y 有关系”的可信度.如果k>5.024,那么就有把握认为“X 和Y 有关系”的百分比为( ) A.25% B.75% C.2.5% D.97.5% 6.22 13(3) i i -+等于 A . 1344+ B .1344i -- C .13 22 i + D .1322i -- 7.下面使用类比推理正确的是 (A)“若33,a b ?=?则a b =”类推出“若00a b ?=?,则a b = 基本关系 基本运算

相关主题
文本预览
相关文档 最新文档